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1. Introduction

In recent years many authors have introduced cer-
tain nonlinear algorithms for data compression, noise re-
moval, and image reconstruction. These methods include
wavelet and quadrature-mirror filters combined with quan-
tization of filter coefficients for image compression, wavelet
shrinkage estimation for Gaussian noise removal, and cer-
tain minimization techniques for image reconstruction.
In many cases these algorithms have out-performed lin-
ear algorithms (such as convolution filters, or projections
onto fixed linear subspaces) according to both objective
and subjective measures. Very recently, several authors,
e.g., [5], [7], [14], have developed mathematical theories
that explain the improved performance in terms of how
one measures the smoothness of images or signals. In this
paper we present a unified mathematical approach that al-
lows one to formulate both linear and nonlinear algorithms
in terms of minimization problems related to the so-called
K-functionals of harmonic analysis. We then summarize
the previously developed mathematics that analyzes the
image compression and Gaussian noise removal algorithms.
We do not know of a specific formulation of the image re-
construction problem that supports an analysis or even
definition of optimal solution. Although our framework
and analysis can be applied to any d-dimensional signals
(d = 2 for images, d = 1 for audio signals, etc.), we restrict
our discussion in this paper to images.

The outline of our paper is as follows. We want to find
an approximation f̃ to a given image f on a square domain
I, either to compress the image, remove noise from the
image, etc. The size of the difference between f and f̃ is
measured by a norm, which we shall take in this paper to
be the L2(I) (mean-square) norm. (We emphasize that we
do not believe that the L2(I) norm matches the spatial-
frequency–contrast response of the human visual system—
we use the L2(I) norm here only because the presentation
is simpler; see, e.g., [5], where we develop a theory of image
compression in Lp(I), with 0 < p < ∞.) We wish to

balance the smoothness of f̃ with the goodness of fit ‖f −
f̃‖L2(I); to this end we consider the problem of minimizing

(1) ‖f − g‖L2(I) + λ‖g‖Y ,
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where Y is a space that measures the smoothness of the
approximations g. We take f̃ to be a function that min-
imizes (1). If the positive parameter λ is large, then the
smoothness of g is important; if it is small, the approxi-
mation error between f and g is important. We consider
two families of spaces in which to measure the smoothness
of f̃ , the Sobolev spaces Wα(L2(I)), whose functions have
α “derivatives” in L2(I), and the Besov spaces Bασ (Lσ(I))
with σ = 2/(1+α), which contain functions with α “deriva-
tives” in Lσ(I). The first family of spaces will likely be
more familiar to the reader than the second, but the sec-
ond family is also quite natural to consider, as it is pre-
cisely the scale of spaces with minimal smoothness to be
embedded in L2(I). By using wavelet decompositions of

the functions f and f̃ , we show that one can find near-
optimal solutions to the variational problem (1) (or one
close to it). This is possible because the norms ‖f‖L2(I),
‖f‖Wα(L2(I)), and ‖f‖Bασ (Lσ(I)) can be determined simul-
taneously be examining the wavelet coefficients of f . The
approximate minimizers f̃ of (1) that arise from these al-
gorithms have surprisingly good approximation properties
to f . In fact, when considering the problem of image com-
pression, by setting Y = Wα(L2(I)) the procedure above

defines a mapping f → f̃ that is a near-optimal approxima-
tion from all linear approximation procedures to functions
in Wα(L2(I)); and by setting Y = Bασ (Lσ(I)), one finds a

mapping f → f̃ that is near-optimal among all nonlinear
approximations to functions in Bασ (Lσ(I)) that satisfy a
certain continuous selection property. Thus, one derives
both linear and nonlinear near-optimal algorithms by con-
sidering the same principle, only with different families of
smoothness spaces. The analysis for noise removal meth-
ods is not as complete as for compression methods, but
we report here several results of Donoho and Johnstone
[13] [14], and, to a lesser extent, the present authors [8],
about nonlinear noise reduction techniques. We finish with
sample images that illustrate the theory in the text.

2. Images, smoothness spaces,
and minimization problems

We begin with a function f that represents a grey-scale
image. To be specific, we assume that as x := (x1, x2),
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, ranges over the unit square
I := [0, 1]2 := [0, 1] × [0, 1], f(x) denotes the intensity of



the image at location x. (We use := to mean “defined
by.”) We want to “approximate” f by a “smoother” func-
tion g. To be precise, we must define what we mean by
“approximate” and “smoother,” and how we wish to trade
off the size of the approximation error and the smoothness
of g. To this end, we introduce the “error” function space
X with norm ‖ · ‖X and the “smoothness” function space
Y with corresponding norm ‖ · ‖Y . (The dot in the pre-
vious expressions indicates where the missing arguments
are to be placed. Thus, we could talk of a function f or
f( · ).) The smoothness of the function g will be measured
by ‖g‖Y and the size of the error between f and g will be
given by ‖f − g‖X .

We shall require that any smooth function have a finite
X-norm, so that there exists a constant C such that for
all g in Y , ‖g‖X ≤ C‖g‖Y . We shall assume also that the
space Y is dense in X, so that given any function f and
any positive ε, there is a g ∈ Y with ‖f − g‖X < ε.

Finally, we set up our minimization problem as: fix a
positive parameter λ and find a function f̃ that minimizes
the right side of

(2) K(f, λ,X, Y ) := inf
g∈Y
{‖f − g‖X + λ‖g‖Y }.

The function K(f, λ,X, Y ) is called the K-functional be-
tween X and Y . The parameter λ determines the relative
importance of the smoothness of g and the approximation
error of f .

We note several properties of K(f, λ,X, Y ). First,
K(f, λ,X, Y ) ≤ ‖f‖X , since we can take g = 0. Second,
K(f, λ,X, Y )→ 0 as λ→ 0, since Y is dense in X. In fact,
one can measure the smoothness of any f in X in terms of
how quickly K(f, λ,X, Y )→ 0 as λ→ 0. We say that f is
in the interpolation space (X,Y )θ,q, 0 < θ < 1, 0 < q ≤ ∞,
if K(f, λ,X, Y ) decays fast enough as λ→ 0 that

‖f‖θ,q :=

(∫ ∞
0

[λ−θK(f, λ,X, Y )]q
dλ

λ

)1/q

<∞.

The spaces (X,Y )θ,q are somehow intermediate in smooth-
ness to X and Y .

We must choose spaces X and Y useful for image pro-
cessing. To simplify our presentation, we shall assume that
X is the space L2(I), the space of square-integrable func-
tions. (Other spaces are of both theoretical and practi-
cal importance; see, e.g., image compression algorithms in
Lp(I), p 6= 2, as described in [5].)

A function f is in L2(I) if

‖f‖2L2(I) :=

∫
I

|f(x)|2 dx <∞.

Two families of spaces are useful for measuring the
smoothness of g. The more classical spaces are the Sobolev
spaces W β(L2(I)), which consist of all functions with β
derivatives in L2(I). When β is an integer, we can define

‖g‖2Wβ(L2(I)) :=
∑
|m|≤β

‖Dmf‖2L2(I);

here m := (m1,m2), mi is a nonnegative integer, |m| :=
m1 +m2, Dmf := Dm1

1 Dm2
2 f , and Dif := ∂f/∂xi.

When β is not an integer, the Sobolev spacesW β(L2(I))
can be defined in terms of the Besov spaces Bβq (Lp(I)).
Functions in these spaces have, roughly, β “derivatives” in
Lp(I); the parameter q, which measures more subtle gra-
dations in smoothness, is necessary for certain theorems.
A precise definition of the Besov spaces of interest to us
can be found in [5]. The spaces W β(L2(I)) can be defined

by Wβ(L2(I)) = Bβ2 (L2(I)). In computations, it is more
convenient to consider the functional

(3) inf
g∈Wβ(L2(I))

{‖f − g‖2L2(I) + λ‖g‖2Wβ(L2(I))},

which, by a certain abuse of notation, we shall also call
K(f, λ, L2(I),Wβ(L2(I))).

We consider a second class of smoothness spaces, the
Besov spaces Bβτ (Lτ (I)) with 1/τ = β/2 + 1/2. These
spaces have β “derivatives” in Lτ (I), where τ = 2/(β+ 1).
Since τ < 2, and, indeed, if β > 1 then τ < 1, we see that
functions need less smoothness to be in Bβτ (Lτ (I)) than to

be in W β(L2(I)) = Bβ2 (L2(I)). Stated another way, there
are more functions (images) with β derivatives in Lτ (I)
than there are functions with β derivatives in L2(I).

For the pair (X,Y ) = (L2(I), Bβτ (Lτ (I))) we shall con-
sider the functional

(4) inf
g∈Bβτ (Lτ (I))

{‖f − g‖2L2(I) + λ‖g‖τ
Bβτ (Lτ (I))

},

which we, yet again, denote by K(f, λ, L2(I), Bβτ (Lτ (I))).
One can show that all these choices of K(f, λ,X, Y ) yield
the same family of interpolation spaces (X,Y )θ,q with
the natural transformation of parameters; see Bergh and
Löfström [1], page 68.

The spaces Bβτ (Lτ (I)) are quite natural when consider-
ing approximation in L2(I), because this family of spaces
has the minimal smoothness to be embedded in L2(I).
This means that given a pair β and τ = 2/(1 +β), there is

no β′ < β or τ ′ < τ such that Bβ
′

τ (Lτ (I)) or Bβτ ′(Lτ ′(I))
is contained in L2(I).

One can ask two questions: which of these spaces
can contain common images and what are the interpola-
tion spaces between L2(I) and W β(L2(I)) or Bβτ (Lτ (I))?
First, one should note that the intensity of images of-
ten is discontinuous across lines or one-dimensional curves,
and one finds that, necessarily, images with such a prop-
erty (hereinafter called “images with edges”) cannot be
in Wβ(L2(I)) if β ≥ 1/2, and cannot be in Bβτ (Lτ (I)) if
β ≥ 1; see [5] for the calculation. So images can be in
smoother classes Bβτ (Lτ (I)) than W β(L2(I)). Second, the
interpolation spaces between L2(I) and our smoothness
spaces are again spaces in the same class; specifically, for
α = θβ, 0 < θ < 1,

(L2(I),Wβ(L2(I)))θ,2 = Wα(L2(I))

(see Bergh and Löfström [1]) and

(L2(I), Bβτ (Lτ (I)))θ,σ = Bασ (Lσ(I)) σ = 2/(1 + α),

(see DeVore and Popov [11]).
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3. Wavelet transforms

Even though our methods and analysis apply to any
wavelet transform, we shall consider here only the well-
known Haar transform of images; this avoids certain tech-
nicalities near the boundary of the square I. Some readers
may object that the Haar transform lacks smoothness. In
reply, we point out that if one works with images with
edges, then the Haar transform has enough smoothness
to prove optimal convergence results in L2(I). For exam-
ple, no smoother wavelet transforms can achieve higher
global asymptotic rates of convergence in image compres-
sion applications—using smoother wavelets may decrease
the error by a constant factor, because of their better per-
formance in smooth regions of an image, but they will not
achieve a better rate of convergence.

To briefly recall the Haar transform, we introduce the
functions

ψ(1)(x) :=

{
1, x1 ≤ 1

2 ,

−1, x1 >
1
2 ,

ψ(2)(x) :=

{
1, x2 ≤ 1

2 ,

−1, x2 >
1
2 ,

ψ(3)(x) = ψ(1)(x)ψ(2)(x), and ψ(4)(x) ≡ 1 for x ∈ I. If we
define

Ψk :=

{ {ψ(1), ψ(2), ψ(3), ψ(4)}, k = 0,

{ψ(1), ψ(2), ψ(3)}, k > 0,

and Z2
k := {j := (j1, j2) | 0 ≤ j1 < 2k, 0 ≤ j2 < 2k}, then

the set

{ψj,k(x) := 2kψ(2kx− j), x ∈ I | ψ ∈ Ψk, j ∈ Z2
k, k ≥ 0}

forms an orthonormal basis for L2(I). This means that
any function f ∈ L2(I) can be written as

f =
∑
0≤k

∑
j∈Z2

k

∑
ψ∈Ψk

cj,k,ψψj,k, cj,k,ψ =

∫
I

f(x)ψj,k(x) dx.

More importantly, we have the following equivalences (see,
e.g., [15]):

(5)

‖f‖2L2(I) =
∑
0≤k

∑
j∈Z2

k

∑
ψ∈Ψk

|cj,k,ψ|2;

‖f‖2Wβ(L2(I)) ≈
∑
0≤k

∑
j∈Z2

k

∑
ψ∈Ψk

22βk|cj,k,ψ|2, β < 1/2;

‖f‖τ
Bβτ (Lτ (I))

≈
∑
0≤k

∑
j∈Z2

k

∑
ψ∈Ψk

|cj,k,ψ|τ

for β < 1 and τ = 2/(1 + β). (Two notes: We have 1/τ =
β/d + 1/2 for d-dimensional signals, and A(f) ≈ B(f)
means that A(f)/B(f) is bounded above and below by
positive constants that are independent of f .) Thus, the
norms ‖f‖L2(I), ‖f‖Wβ(L2(I)), and ‖f‖Bβτ (Lτ (I)) are simul-

taneously equivalent to the corresponding sequence norms
on the right hand side of (5). We haven’t yet bothered to
define precisely the norms ‖f‖Wβ(L2(I)) and ‖f‖Bβτ (Lτ (I));

we now use the sequence norms on the right side of (5) as
the definition of these quantities.

4. Solving minimization problems

We consider how to minimize (3). We decompose f
as above, and write g =

∑
0≤k

∑
j∈Z2

k

∑
ψ∈Ψk

dj,k,ψψj,k.

Using the equivalent sequence norms, we wish to minimize∑
0≤k

∑
j∈Z2

k

∑
ψ∈Ψk

[(cj,k,ψ − dj,k,ψ)2 + λ22βk|dj,k,ψ|2].

Clearly, one minimizes the entire expression by minimizing
each term separately. So we consider the problem: given t
and µ > 0, find s that minimizes

E := (t− s)2 + µs2.

It is easy to see that this expression attains its minimum of
t2µ/(1 +µ) when s = t/(1 +µ). By considering separately
the cases µ ≤ 1 and µ ≥ 1, one sees that for all µ > 0,

1

2
min(µ, 1) ≤ µ

1 + µ
≤ min(µ, 1),

so that the following algorithm, which gives E a value of
min(µ, 1)t2, minimizes E to within a factor of 2: If µ < 1
then set s = t, otherwise set s = 0. Thus, an approximate
minimizer of (3) is

(6) f̃ =
∑

λ22βk<1

∑
j∈Z2

k

∑
ψ∈Ψk

cj,k,ψψj,k.

This sum consists of all cj,k,ψψj,k with k < K, where K is
the smallest integer for which λ22βk ≥ 1; this is a linear
algorithm for finding f̃ .

When Y = Bβτ (Lτ (I)), we wish to minimize (4) or∑
0≤k

∑
j∈Z2

k

∑
ψ∈Ψk

(cj,k,ψ − dj,k,ψ)2 + λ
∑
0≤k

∑
j∈Z2

k

∑
ψ∈Ψk

|dj,k,ψ|τ .

Again, one should minimize each term separately, so we
consider the problem of minimizing

E := (t− s)2 + λ|s|τ .

We can assume without loss of generality that t ≥ 0, and,
trivially, 0 ≤ s ≤ t. Note that if s ≤ t/2 then E ≥ t2/4,
and if s ≥ t/2 then E ≥ λtτ/2τ . Since τ < 2, 2τ < 4 and
E is bounded below by

1

4
min(t2, λtτ ).

Thus, the following algorithm, which gives a value of
min(t2, λtτ ) to E, minimizes E to within a factor of 4:
If λtτ ≤ t2, set s = t, otherwise, set s = 0. Thus, an
approximate minimizer of (4) is

(7) f̃ =
∑

λ|cj,k,ψ|τ≤|cj,k,ψ|2
cj,k,ψψj,k.

Note that we choose all cj,k,ψ greater than a certain thresh-

old, namely |cj,k,ψ| ≥ λ1/(2−τ). Thus, this is a nonlinear

method for choosing f̃ .
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5. Image compression

We assume the support of our image is the square I, and
that a function F (x) measures the intensity distribution
of light at each point x in I. We shall assume that I is
covered by 22m pixels, in 2m columns and 2m rows, and
that each pixel pj , j ∈ Z2

m, is the average of the intensity
F (x) on Ij,m, which we define to be the square of side-
length 2−m and lower left corner located at j/2m. (This is
a fair approximation of what happens with CCD cameras.)
It is not hard to see that if we set f(x) = pj for x ∈ Ij,m
and

F =
∑
0≤k

∑
j∈Z2

k

∑
ψ∈Ψk

cj,k,ψψj,k, then

f =
∑

0≤k<m

∑
j∈Z2

k

∑
ψ∈Ψk

cj,k,ψψj,k.

In what follows, we consider smoothness of any order
0 < α < β, because we want to make clear that our algo-
rithms depend only on what family of smoothness spaces
we use, not on the precise value of α. Clearly, the L2(I),
Wα(L2(I)), 0 < α < 1/2, and Bασ (Lσ(I)), 0 < α < 1 and
σ = 2/(1 +α), norms of f are bounded by the correspond-
ing norms of F .

The linear approximation f̃ to f is given by

f̃ =
∑

0≤k<K

∑
j∈Z2

k

∑
ψ∈Ψ

k

cj,k,ψψj,k

where K is the smallest integer such that λ22βK ≥ 1; see
(6). There are N := 22K terms in this sum, and the error

between f and f̃ is bounded by

(8)

‖f − f̃‖2L2(I) =
∑

K≤k<m

∑
j∈Z2

k

∑
ψ∈Ψ

k

|cj,k,ψ|2

≤ 2−2αK
∑

K≤k<m

∑
j∈Z2

k

∑
ψ∈Ψk

22αk|cj,k,ψ|2

≤ 2−2αK‖f‖2Wα(L2(I)).

Thus, we achieve a rate of approximation

‖f − f̃‖L2(I) ≤ N−α/2‖f‖Wα(L2(I)).

This is an optimal rate of linear approximation for func-
tions in Wα(L2(I)); see [17], pp. 3 ff. Recall that α < 1/2
for images with edges.

The analysis of the nonlinear algorithm is only slightly
more difficult. Here, our approximation has the form

f̃ =
∑

|cj,k,ψ|≥ε
cj,k,ψψj,k,

where ε = λ1/(2−τ). Again, we wish to bound (1) the
number of terms N in this sum and (2) the error ‖f −
f̃‖L2(I) in terms of N and ‖f‖Bασ (Lσ(I)). We note that
this is an optimal way to partition the coefficients: If Λ is

any set of N coefficients, then, because we include the N
largest coefficients in f̃ ,

‖f − f̃‖L2(I) ≤ ‖f −
∑

cj,k,ψ∈Λ

cj,k,ψψj,k‖L2(I).

Because∑
0≤k<m

∑
j∈Z2

k

∑
ψ∈Ψk

|cj,k,ψ|σ = ‖f‖σBασ (Lσ(I)),

it is clearly necessary that Nεσ ≤ ‖f‖σBασ (Lσ(I)). Conse-

quently, N ≤ ε−σ‖f‖σBασ (Lσ(I)) and, if N > 0,

ε2−σ ≤ N1−2/σ‖f‖2−σBασ (Lσ(I)).

Therefore, we have

(9)

‖f − f̃‖2L2(I) =
∑

|cj,k,ψ|<ε
|cj,k,ψ|2

≤ ε2−σ
∑

|cj,k,ψ|<ε
|cj,k,ψ|σ

≤ N1−2/σ‖f‖2−σ
Bασ (Lσ(I))‖f‖

σ
Bασ (Lσ(I))

= N−α‖f‖2Bασ (Lσ(I)),

since 1− 2/σ = −α. Thus, for the nonlinear algorithm,

‖f − f̃‖L2(I) ≤ N−α/2‖f‖Bασ (Lσ(I)).

This is an optimal rate of nonlinear approximation for
functions in Bασ (Lσ(I)) among all methods that satisfy a
so-called continuous selection property; see DeVore and
Yu [12]. Even though the linear and nonlinear methods
have the same convergence rate of O(N−α/2), the non-
linear method is better for two reasons: For a given α,
the nonlinear method achieves this convergence rate for
more functions, since Bασ (Lσ(I)) is much larger (contains
many more images) than Wα(L2(I)); and, while α must
be less than 1/2 for the linear method applied to images
with edges, the nonlinear method allows 1/2 ≤ α < 1.

Note that neither the linear nor nonlinear algorithms
depend on the precise value of α. In the linear case, we
choose all coefficients cj,k,ψ with k less than a predeter-
mined value K. This achieves results similar to linear
filtering or projections onto any other finite-dimensional
subspace of dimension 22K of L2(I). In the nonlinear case,
we choose all coefficients cj,k,ψ with |cj,k,ψ| greater than a
predetermined parameter ε. In the engineering literature,
this is known as threshold coding. In each case, only the
resulting rates of convergence depend on α.

6. Removing Gaussian noise from images

In the previous section, we assumed that the mea-
sured pixel values pj, j ∈ Z2

m, were the exact averages
of the intensity F (x) on the pixel squares Ij,m. In this
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section, we assume that our measurements are corrupted
by Gaussian noise, that is, that we measure not pj , but
p̄j := pj + εj, where εj are i.i.d. (independent, identically
distributed) normal random variables with mean 0 and
variance σ2

0 (denoted by N(0, σ2
0)). (This σ0 should not

be confused with the σ in Bασ (Lσ(I)).) Because the map-
ping {2−mpj} → {cj,k,ψ}, which takes scaled pixel values
to wavelet coefficients, is an orthonormal transformation,
the noisy image can be represented by

f̄ =
∑

0≤k<m

∑
j∈Z2

k

∑
ψ∈Ψk

c̄j,k,ψψj,k,

where c̄j,k,ψ := cj,k,ψ + δj,k,ψ and the δj,k,ψ are i.i.d.
N(0, 2−2mσ2

0) random variables. This model assumes that
the expected value of the noise,

E(‖f − f̄‖2L2(I)) = σ2
0 ,

is independent of the number of pixels. We now examine
how the linear and nonlinear algorithms for calculating f̃
can be adapted for noise removal.

Starting with f̄ , the linear algorithm (6) calculates

f̃ =
∑

0≤k<K

∑
j∈Z2

k

∑
ψ∈Ψk

c̄j,k,ψψj,k;

we will choose K (hence λ) to minimize E(‖F − f̃‖2L2(I)).

Using the wavelet decompositions of f̃ and F , we calculate

E(‖F − f̃‖2L2(I)) =
∑

0≤k<K

∑
j∈Z2

k

∑
ψ∈Ψk

E([cj,k,ψ − c̄j,k,ψ]2)

+
∑
K≤k

∑
j∈Z2

k

∑
ψ∈Ψk

|cj,k,ψ|2

≤
∑

0≤k<K

∑
j∈Z2

k

∑
ψ∈Ψ

k

E(δ2
j,k,ψ)

+ 2−2αK‖F‖2Wα(L2(I))

= 22K−2mσ2
0 + 2−2αK‖F‖2Wα(L2(I)).

The inequality follows from our estimate (8), and the sec-
ond equality holds because the 22K random variables δj,k,ψ
each have variance 2−2mσ2

0 .
Again we set N := 22K and we minimize E(‖F −

f̃‖2L2(I)) with respect to N . Calculus shows that we over-

estimate the error by at most a factor of 2 if we set the two
terms in our bound equal to each other, i.e., Nσ2

02−2m =
N−α‖F‖2Wα(L2(I)). This yields

N =

(‖F‖2Wα(L2(I))2
2m

σ2
0

)1/(α+1)

,

and

E(‖F − f̃‖2L2(I)) ≤ 2(2−2mσ2
0)α/(α+1)‖F‖2/(α+1)

Wα(L2(I)).

This linear algorithm removes all terms cj,k,ψψj,k with k
greater than a threshold K; these terms can be considered
to have frequency at least 2K . Thus, the linear method
considers any low-frequency structure to be signal, and
any high-frequency structure to be noise, no matter how
large cj,k,ψ, the scaled amplitude of the signal, might be.
This is not acceptable to people, such as astronomers, who
deal with high amplitude, small extent (and hence high
frequency) signals. The nonlinear algorithm presented
next recognizes high-amplitude, high-frequency structures
as signals. It has been used in astronomical calculations,
e.g., by White [20].

The bound for the nonlinear algorithm is much more
complicated, and will not be derived here. We will, how-
ever, give the following lower bound, derived independently
by Donoho and Johnstone [13], which is based on the as-
sumption that we have extra information about which of
the true coefficients cj,k,ψ are large.

We limit our estimator to the form

f̃ =
∑
0≤k

∑
j∈Z2

k

∑
ψ∈Ψk

c̃j,k,ψψj,k

where either c̃j,k,ψ = c̄j,k,ψ or c̃j,k,ψ = 0. In the first
case, E([cj,k,ψ − c̃j,k,ψ]2) = E(δ2

j,k,ψ) = 2−2mσ2
0 , and in

the second case, E([cj,k,ψ − c̃j,k,ψ]2) = |cj,k,ψ|2. Thus, if
we knew which coefficients cj,k,ψ satisfy |cj,k,ψ|2 < 2−2mσ2

0 ,
we would obtain an optimal estimator

f̃ =
∑

|cj,k,ψ|≥2−mσ0

c̄j,k,ψψj,k.

From Section 5, coefficients satisfying |cj,k,ψ| ≥ 2−mσ0

number at most (2−mσ0)−σ‖F‖σBασ (Lσ(I)), while∑
|cj,k,ψ|<2−mσ0

|cj,k,ψ|2 ≤ (2−mσ0)2−σ‖F‖σBασ (Lσ(I)).

Thus, E(‖F − f̃‖2L2(I)) equals∑
|cj,k,ψ|≥2−mσ0

2−2mσ2
0 +

∑
|cj,k,ψ|<2−mσ0

|cj,k,ψ|2

≤ 2(2−mσ0)2−σ‖F‖σBασ (Lσ(I))

= 2(2−2mσ2
0)α/(α+1)‖F‖2/(α+1)

Bασ (Lσ(I)),

since 2−σ = 2α/(α+1) and σ = 2/(α+1). By considering
functions F all of whose nonzero coefficients cj,k,ψ satisfy
either |cj,k,ψ| = 2−mσ0 or |cj,k,ψ| = 2−mσ0 − δ for some
small δ > 0, we see that half this value is the promised
lower bound. Note that we get the same rate of approx-
imation as in the linear case, but we are using a much
weaker norm to measure the smoothness of the image F .

In practice, we must guess from the noisy coefficients
c̄j,k,ψ which of the cj,k,ψ are large. Our nonlinear approx-
imation algorithm, when applied to the noisy data c̄j,k,ψ,
is of the form

(10) f̃ =
∑

|c̄j,k,ψ|>ε
c̄j,k,ψψj,k,
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and the problem is how to choose ε (= λ1/(2−τ)) to
minimize the maximum expected error. If one chooses
ε = a2−mσ0 with a fixed, then the expected error for F ≡ 0
is

σ2
0

1√
2π

∫
|x|>a

x2e−x
2/2 dx,

which does not tend to zero as the number of data points
22m increases. Thus, a must increase without bound as
the number of data points tends to infinity.

The problem of optimal estimation was studied in sev-
eral papers by Donoho and Johnstone culminating in [14],
and in [8] by the present authors. In various settings,
Donoho and Johnstone show that, asymptotically, the op-
timal choice of a is C

√
log(22m). Instead of keeping all

coefficients with |c̄j,k,ψ| ≥ aσ02−m, they take

c̃j,k,ψ =


c̄j,k,ψ − aσ02−m, c̄j,k,ψ > aσ02−m,

0, |c̄j,k,ψ| ≤ aσ02−m,

c̄j,k,ψ + aσ02−m, c̄j,k,ψ < −aσ02−m,

a technique they call “wavelet shrinkage.” In [8] by the
present authors, it is shown for F in Bασ (Lσ(I)) that a =√
C log(22m) for some C yields an asymptotically near-

optimal algorithm of the form (10). With this choice, the
error is proportional to

(log 22m)α/(α+1)(2−2m)α/(α+1).

Thus, we incur an extra factor of (log 22m)α/(α+1) because
we don’t know which coefficients cj,k,ψ are large.

7. Image reconstruction

Several authors (e.g., [2], [16]) use functionals

min
‖g‖Y <∞

{‖f − f‖2L2(I) + λ‖g‖Y }

for purposes of image reconstruction, where Y is close to
the norms considered here. For example, Bouman and
Sauer [2] investigate minimizing for p ≥ 1∑
j∈Z2

m

|fj − gj|2 + µ
∑
j∈Z2

m

[|gj − gj+(1,0)|p + |gj − gj+(0,1)|p],

where fj are the pixels of f and gj are the pixels of g. In
the continuous limit, this is similar to minimizing

‖f − g‖2L2(I) + λ[‖D1g‖pLp(I) + ‖D2g‖pLp(I)], p ≥ 1,

where ‖g‖pLp(I) :=
∫
I
|g(x)|p dx. They found that for im-

ages with edges, p = 1 was most effective in reconstructing
the original image after bluring. In this case, their func-
tional is precisely

(11) ‖f − g‖2L2(I) + λ‖g‖BV,

where BV is the space of functions of bounded variation on
I. We have B1

1(L1(I)) ⊂ BV ⊂ B1
∞(L1(I)), and B1

1(L1(I))
is one of our nonlinear spaces. Thus, minimizing (11)

should yield a reconstructed f̃ for f that is close to the
usual f̃ we get from our nonlinear algorithm.
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Fig. 1. 512× 512 lena, green component of color image.

Fig. 2. Compressed with the linear method, N = 16384.

Fig. 3. Compressed with the nonlinear method, N = 16384.

Fig. 4. With 32 grey scales RMS noise added.

Fig. 5. Noise removed with linear method, N = 16384.

Fig. 6. Noise removed with wavelet shrinkage, a = 1.
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