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Digital compressive chemical quantitation and
hyperspectral imaging

David S. Wilcox,a Gregery T. Buzzard,b Bradley J. Lucier,bc Owen G. Rehrauer,a

Ping Wanga and Dor Ben-Amotz*a

Digital compressive detection, implemented using optimized binary (OB) filters, is shown to greatly

increase the speed at which Raman spectroscopy can be used to quantify the composition of liquid

mixtures and to chemically image mixed solid powders. We further demonstrate that OB filters can be

produced using multivariate curve resolution (MCR) to pre-process mixture training spectra, thus

facilitating the quantitation of mixtures even when no pure chemical component samples are available

for training.
1 Introduction

Modern analytical applications, including hyperspectral
imaging and online monitoring, routinely generate large, high
dimensional data sets. In many cases, however, the relevant
chemical information resides in a much lower dimensional
space. This chemical information is conventionally extracted by
projecting the measured data (e.g., a spectrum) onto a more
informative dimension (e.g., a concentration space) that can be
used for classication or quantitation. Consequently, the time
required to obtain full-spectral data with sufficient signal-to-
noise ratio ultimately limits the speed at which the important
lower dimensional information can be acquired. Compressive
detection spectroscopy overcomes this limitation by adapting
the measurement process to the problem, in order to directly
detect the lower dimensional information of interest. In this
study we extend our recently developed optimized binary (OB)
compressive detection strategy1 to demonstrate that it can be
used to rapidly measure the concentration of liquid mixtures
and generate chemical images of mixed powders.

Compressive detection spectrometers1–10 incorporate multi-
variate optical elements, such as a liquid-crystal spatial light
modulator or digital micromirror device (DMD), and use a
single channel detector in place of a multi-channel detector
such as a charge-coupled-device (CCD) camera.11,12 In other
words, compressive detection is achieved by transmitting (or
reecting) the light of interest through a programmable optical
lter whose shape is optimized so as to obtain the concentra-
tions of the chemical components of interest with a maximum
signal-to-noise ratio in a given total detection time, particularly
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when that time is sufficiently short that conventional CCD-
based full spectra detection is not feasible.

The OB compressive detection method relies on binary
optical lters (produced using a holographic optical volume
grating and a DMD) obtained by minimizing the mean square
error in estimates of the photon emission rates, and thus the
corresponding concentrations (or total amounts) of the chem-
ical components of interest.1 We previously demonstrated that
OB compressive detection can be used to accurately distinguish
(classify) pairs of liquids in time scales of microseconds to
milliseconds (and that it outperforms alternative spectral clas-
sication strategies based on total least squares). A key math-
ematical result of that study was that the optimal lters for
minimizing concentration error were “nearly” binary, such that
rounding all non-binary entries of each lter satisfactorily
provided (near-)optimal binary lters. Such lters are naturally
suited for use with a DMD, in which the mirrors direct light
either towards or away from a single-channel, photon-counting,
amplied photodiode detector.

Here we extend our previous work to study quantitation and
hyperspectral imaging using OB compressive detection. Accu-
rate quantitation of binary and ternary liquid solutions is
demonstrated on 10–100 ms time scales. Moreover, a raster
scanning technique is implemented to rapidly scan the micro-
scope eld of view to image mixtures of sugars on 0.1–10 ms per
pixel time scales. Finally, we show that multivariate curve
resolution can be used to generate lters when no pure chem-
ical component samples are available.
2 Methods
2.1 Binary lter model

The following is a brief overview of key results of the mathe-
matical model used to produce optimal binary lters (which
have previously been described in greater detail).1 We assume
This journal is ª The Royal Society of Chemistry 2013



Fig. 1 Schematic of the Raman excitation optics, including the raster scanning
mirrors and transfer lenses used to produced chemical images. The red, green,
and blue (RGB) inset panels show independently measured images of a USAF bar
target (the periodicity of the target lines in group 6 ranges from 4.39 mm to
7.81 mm). The image in the lower right-hand panel is a composite obtained by
superposing the three RGB images (see text for details).
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that all photons are emitted from n known spectra and are
counted by the detector as Poisson random variables. We also
assume that each photon can be classied into one of N energy
bins. If these known spectra are normalized to unit area and
compiled into the columns of a matrix P, then the rates that
photons “hit” all energy bins can be expressed as PL�, where the
components of the vector L�are the mean photon rates emitted
by each chemical species.

The speed of compressive detection is realized by nding a
set of optical transmission lters F (0# Fij # 1), which, for each
measurement j (associated with the j th column of F), project
certain wavelengths onto a single channel detector. We assume
for simplicity that the number of measurements M equals the
number of possible chemical species n. The photons reaching
the detector are modeled as Poisson random variables with
means and variances equal to TFTPL�, where T is a diagonal
matrix indicating the normalized integration time of each
measurement lter (

P
Tii ¼ 1). The measured photons

emerging through the lters are denoted x̂. Dening A ¼ FTP
and B ¼ A�1 ¼ (FTP)�1, the rates are recovered by

L�¼ BT�1x̂ (1)

We seek lters such that L̂ is close to L�. Thus, we formulate
our optimization problem to minimize the following
expression:

E(||BT �1x̂ � L�||2) (2)

It can be shown1 that in the absence of read noise, this
expression can be written explicitly as XM

i¼1

jjBeijj
ffiffiffiffiffiffiffiffiffiffiffiffi
ðAL�Þi

q !2

; (3)

where Bei is the ith column of B. Minimizing this expression
subject to A ¼ FTP, B ¼ A�1, and 0 # Fij # 1 for all i, j yields
optimal lters with at most n � 1 non-binary channels. These
channels are subsequently rounded to produce the OB lters.
The matrix of relative measurement times T can be calculated
from A, B, and L�.1
2.2 Compressive detection spectrometer

The compressive detection spectrometer used in this study is
comprised of two main parts: The rst part, shown in Fig. 1,
contains the optical excitation and Raman scattered light
collection components. The second part houses the DMD,
volume holographic grating, photon counting module, and
associated optics (not shown in Fig. 1). The latter optical set-up
has previously been described in detail.1

In the present studies we have modied the Raman
back-scattering optics to include x–y scanning mirrors
(Galvonometer, GVS002, Thorlabs) and transfer lenses (AC254-
150-B-25.4 mm, f ¼ 150.0 mm, Near IR Achromat, Thorlabs) to
rapidly raster-scan the excitation/collection point within the
sample (see Fig. 1). The distance between the raster scanning
optics (galvonometer mirrors) and the rst transfer lens, and
This journal is ª The Royal Society of Chemistry 2013
that between the second transfer lens and the microscope
objective, are each equal to the transfer lens focal length f, while
the distance between the two transfer lenses is 2f (the location
of the mirror in the upper-le of Fig. 1 is not critical). This
conguration ensures that the laser spot always remains
centered at the back of the objective as the x–y raster scanning
mirrors move, and that the back scattered light sent to the
DMD-associated optics remains stationary (independent of the
raster mirror position).

When using a 20� microscope objective (NA ¼ 0.4), the
mirrors can scan a 100 � 100 pixel region (of �0.25 mm2 area)
at speeds of up to�5 frames per second (which is higher than is
possible with a mechanical stage). The spatial resolution of
�5 mm was determined with a USAF bar target, shown in Fig. 1.
Bar target images were acquired by setting all the DMD mirrors
to the on position and integrating each point for 1 ms. The three
RGB colored bar-target images shown in Fig. 1 were produced
from three independently collected data sets that were subse-
quently combined to produce the lower right bar-target image.
These independently collected images are registered to within
an average displacement of about 0.01 pixels, as determined by
comparing the registry of 30 bar target images (as described in
Section 2.6).

Full spectral measurements, used as input training spectra
to produce OB lters, were acquired by notch scanning
sequential vertical stripes of 8 or 16 DMD mirrors (corre-
sponding to a spectral vibrational frequency resolution of �15
Analyst, 2013, 138, 4982–4990 | 4983
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and �30 cm�1, respectively) and integrating for 1 s per block.
OB compressive detection measurements were obtained by
setting vertical stripes (8 or 16 DMD mirrors wide) to either the
on or off position, as specied by the OB lters (produced either
using background subtracted pure component spectra or
component spectra obtained as described in Section 2.4).

2.3 Removing background

A background emission originating from the objective lens and
intervening optics is present in all measured spectra. If the
background is constant in shape and intensity (as is typically
the case when performing point measurements on clear liquid
samples), then we have previously demonstrated1 that
compressive detection can be used to eliminate the background
photon contributions from those chemically relevant photons.
Thus, for the analysis of liquid mixtures (as described in
Sections 3.1 and 3.2) the training set is comprised of the spectra
of each pure chemical compound (each of which include the
background spectrum), as well as the isolated background
spectrum (obtained by removing the sample from the collection
volume of the microscope objective).

For the analysis of solid powders and mixtures (as described
in Section 3.3), assumptions regarding constant background
spectrum intensity are no longer applicable (in part due to local
variations in the backscattering from powdered samples). Such
background intensity variations were handled by treating the
background signal as an independent spectral component.
Thus, the training set for solid powered samples could be
comprised of the pure (sample free) background spectrum and
pure chemical component spectra obtained aer subtracting
the background by minimizing the isolated background peak at
�1875 cm�1. An alternative way to obtain background free
training spectra is to use multivariate curve resolution (MCR) to
decompose a series of pure powder spectra into pure back-
ground and pure chemical spectra (as described in Section 2.4).
The former manual subtraction method produces chemical
spectra which are virtually identical to those obtained with
multivariate curve resolution; see Fig. 5.

2.4 Multivariate curve resolution

The speed of the compressive detection spectrometer is fully
realized when the spectra of all pure components are known.
However, if only composite samples are available (see Section
3.4), then training spectra can be acquired with multivariate
curve resolution (MCR). The goal of MCR is to decompose a set
of mixture data into a product of pure concentrations and
spectra with little or no a priori information. The MCR-derived
spectra can subsequently be used as training spectra for nding
OB lters.

We have employed entropy minimization (EM), as described
in Section 3.4, to nd pure spectral estimates from mixture
spectra taken at arbitrary pixels. EM is an MCR technique based
on singular value decomposition of a matrix of mixture data.13

For samples containing n distinct chemical component, the rst
n eigenvectors should contain all of the chemical information
(and the subsequent eigenvectors contain only noise). The rst
4984 | Analyst, 2013, 138, 4982–4990
n eigenvectors are linear combinations of the pure components;
these must be rotated to obtain pure spectral estimates. Since
many different rotations are possible, EM requires that, in
addition to non-negativity, the rotated eigenvectors must have a
minimum Shannon spectral entropy. In essence, this minimi-
zation criteria produces component spectra that have the
simplest, narrowest, and most separated features. We use
simulated annealing to nd the rotation matrix elements that
minimize the normalized second or fourth derivative of the
pure spectral estimates for moderately or highly overlapping
spectra, respectively. The derivative spectra were pre-treated
with Savitsky–Golay smoothing (with a 7 point window width).
Since the spectral prole of the background is known, it was
xed in the minimization algorithm by rst nding the linear
combination of eigenvectors that reproduced the known back-
ground spectra and then subsequently xing the corresponding
row in the rotationmatrix. Fixing one component leads to better
estimates of the remaining pure component spectra.

2.5 Materials

Samples of 1-hexene (97%), m-xylene (99+%), o-xylene (99+%),
p-xylene (99+%), and D-(�)-fructose (99%) were purchased from
Sigma-Aldrich. D-(+)-sucrose and hexanes (min 95% sum of
5 isomers, total hexanes, and methylcyclopentane determined
by GC-MS) were purchased from Mallinckrodt Chemicals and
D-(+)-glucose (99.5%) was purchased from Fluka. All samples
were used without further purication. Liquid samples were
prepared in spectroscopic cuvettes. Solid samples were ground
using a mortar and pestle and then distributed either side by
side (Sections 3.3 and 3.4) or mixed (Section 3.4) on a gold
microscope slide substrate.

2.6 Computations and soware

All experiments were implemented in Labview 9.0 (National
Instruments). The drivers for the raster-scanning mirrors (Servo
Drive Board) were controlled by a DAQ interface (National
Instruments, USB-6212BNC). The DAQ interface also features
an on-board counter that is used for counting the TTL pulses
output by the photon counting photodiode module (Perki-
nElmer, SPCMCD2969PE). The DMD (DLP D4000, Texas
Instruments) connects via USB interface, and is controlled
through soware available from Texas Instruments (Load
Blocks.vi, DDC4100). Matlab R2012a (MathWorks, Inc.) was
used to generate lters in a program built around the fmin-
con.m function from the Optimization Toolbox. The Matlab
program used in this work is available upon request (see http://
www.math.purdue.edu/~buzzard/soware/). The evaluation of
the image registration was also performed in Matlab R2012a
using the imregister.m function from the Image Processing
Toolbox. Images were registered to a reference bar target image
using only translational movements in a monomodal congu-
ration for intensity-based registration. Entropy minimization
was also performed in Matlab R2012a.

Data was further processed in IgorPro 6.04 (WaveMetrics). In
Sections 3.3 and 3.4, the chemical images were constructed by
rst setting all pixels with negative estimated absolute photon
This journal is ª The Royal Society of Chemistry 2013
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rates, or spectral weights, to zero (note that the expression in
eqn (2) allows negative estimated rates, as L̂ is an unbiased
estimate of L�; the occurrence of such negative estimates varies
inversely with integration time and with component concen-
tration). In the 1 ms per pixel chemical images of Fig. 6 (middle
panel) and 7, the absolute L̂ at the ith pixel of the nth component
were mapped to an 8 bit grayscale as follows:

pixel1 ms
i;n ¼ L̂1 ms

i;n =max
j

ðL̂1 ms
j;n Þ � 255

where the maximum rates were 2.8083 � 106 and 1.6106 � 106

photon s�1 for fructose and glucose, respectively, in Fig. 6
(middle panel). The maximum rates in Fig. 7 were of similar
magnitude. In the 0.1 ms per pixel image of Fig. 6 (far right
panel), L̂i,n was mapped to an 8 bit grayscale according to

pixel0:1 ms
i;n ¼ min

�
255; round

�
L̂0:1 ms

i;n =max
j

ðL̂1 ms
j;n Þ � 255

��
;

where maxj (L̂
1 ms
j,n ) is the maximum photon rate of the corre-

sponding component in the 1 ms per pixel image (this adjusted
the brightness of the 0.1 ms per pixel image). The nal cyan and
yellow image is given by the RGB vector (r,g,b)

RGBpixeli ¼ (pixeli,1, max(pixeli,1, pixeli,2), pixeli,2).

A similar normalization was applied in Fig. 9, but with all
panels normalized by maxj(L̂

10 ms
j,n ).

3 Results and discussion

The relative contributions of multiple components to the
Raman light emanating from a liquid sample can be used to
obtain the mole fraction of each component. If L̂i is the
experimental estimate of the detected photon rate arising from
component i, then the relative intensity contribution of that

component to the light collected from the mixture is L̂i=
P
i
L̂i.

In order to obtain the apparent mole fraction of each compo-
nent in a mixture, the measured rates must each be multiplied
by an appropriate weighting factor to obtain

ci ¼
wiL̂iP
i

wiL̂i

:

If the weighting factors are dened as wi¼Mi/L
max
i (whereMi

is the molarity of the ith pure liquid, and Lmax
i is the average rate

obtained from a sample consisting purely of component i), then
ci becomes an experimental estimate of the mole fraction of
each component. Note that variations in the excitation laser
intensity (as well as optical alignment, etc.) may change the
values of Lmax

i and L̂i. However, as long as the latter rates are
measured under identical conditions (e.g., with the same laser
intensity, optical alignment, etc.) then such variation will not
affect the values of ci.

3.1 Two-component liquids

The spectra of hexanes and 1-hexene are shown in panels (a)
and (b) in Fig. 2. These liquid samples were selected because
This journal is ª The Royal Society of Chemistry 2013
they are moderately difficult to distinguish due to the degree of
spectral similarity, and because such mixtures are of practical
relevance to the determination of the degree of unsaturation of
cooking oils. Each of the measured spectra included back-
ground features arising from the objective lens (shown in panel
(c)). The grey bars in panels (a)–(c) of Fig. 2 indicate the loca-
tions of mirrors that are turned on in the OB lter associated
with each spectrum. Determining the photon rates of each
sample requires applying all three lters and measuring the
resulting total number of photons reected towards the
detector by each lter. Since the spectra overlap at many
wavelengths, each lter collects photons from all components
in the system, and a linear combination of these measured
photons produces corresponding photon rates for each
component (see eqn (1)). The relative (fractional) integration
times for each lter, determined by minimizing eqn (3), were
0.41, 0.48, and 0.10 for the lters associated with hexanes,
1-hexene, and the background, respectively.

For this system, the photon rates of the pure components
were measured in 100 ms (total integration time, which does
not include the DMD mirror switching time of �30 ms) and
converted into mole fraction concentrations. Panel (d) of Fig. 2
compares 11 prepared mixtures of hexanes and 1-hexene, with
mole fractions ranging from zero to one. The diamonds
represent the mean of 1000 independent measurements. The
latter mean mole fractions are all within 1% of the dashed
ideal line. The error bars represent two standard deviations
above and below the mean, or �0.04 mole fraction per mixture.
The precision of the quantitation depends on the integration
time. The inset of panel (d) shows that the log of the standard
deviation as a function of the log of the integration time has a
slope of ��0.5, indicating that the noise scales as the square
root of the signal, as expected from Poisson photon counting
statistics.
3.2 Three-component liquids

Here we describe the quantitation of three-component liquid
samples consisting of mixtures of xylene isomers. These
ternary liquid mixtures were selected in part because they have
been previously used in demonstrating the performance of a
DMD-based compressive detection prototype.4 In the latter
work, various feature selection methods were tested with the
goal of nding the wavelengths suitable for quantifying
mixtures with less than 5% error. A method that measures
several peak intensities simultaneously, called the “sum of
characteristic peaks of a component” method, was found to
produce the lowest error (less than 3%) in the shortest time
(approximately 3 s of chemical quantitation and 3 s for back-
ground correction). Here we demonstrate that our OB
compressive detection strategy (i.e. both the instrument and
mathematical lter design) can achieve a similar accuracy over
100 times faster.

Panels (a)–(d) in Fig. 3 show the spectra of m-, o-, p-xylene,
and the background, respectively, along with associated OB
lters (indicated by the vertical grey regions). The linear plot in
Fig. 4 compares the measured (vertical axis) and actual
Analyst, 2013, 138, 4982–4990 | 4985



Fig. 2 Comparison of the spectra of hexanes + background, 1-hexene + background, and the background are shown with the associated filters (gray bars) in panels
(a)–(c). The constant background contribution is removed from these liquid component spectra as previously described.1 Panel (d) shows the quantitation results
obtained from eleven solutions of hexanes and 1-hexene, with mole fraction ranging from 0 to 1, and measured for 100 ms per solution. The error bars represent two
standard deviations of 1000 measurements, which is �4 mole%. The inset of panel (d) shows the decrease in standard deviation with integration time ranging from
1 ms to 1 s (and the resulting best fit line has a slope of �0.497 and a correlation coefficient of �0.997).

Analyst Paper
(horizontal axis) mole fraction for a series of 3 ternary mixtures.
Xylene mixtures were measured using the four OB lters in
Fig. 3 with relative (fractional) times of 0.39, 0.33, 0.22, 0.06 for
the lters in panel (a), (b), (c), and (d), respectively, with a total
integration time of 10 ms (for all four lters). The average
concentrations obtained from 1000 independent measure-
ments were again found to be within 1% of the prepared mole
fractions. The errors bars in Fig. 4 represent two standard
deviations above and below the mean (or �4 mole%). Although
the measure of error reported by Quyen et al.4 was slightly
different (the authors built a regression model and reported the
root mean squared error of prediction of a test data set), the
present results demonstrate that accurate quantitation of this
xylene system is possible in 10 ms, which is over 100 times
Fig. 3 Comparison of the spectra of m-xylene + background (a), o-xylene +
background (b), p-xylene + background (c), and the background (d) with asso-
ciated filters (gray bars).

4986 | Analyst, 2013, 138, 4982–4990
faster than in the previously reported DMD-based compressive
detection strategy.

It is interesting to note that the spectra of m- and o-xylene
(Fig. 3, panels a and b) have several overlapping bands, whereas
the bands of p-xylene (Fig. 3, panel c) are largely isolated.
Consequently, the standard deviation (error bars in Fig. 4) of the
p-xylene's concentration in each mixture is smaller than those
of the other isomers. This is also reected in the data cube inset,
which shows that the variance is larger in the two dimensions
corresponding tom- and o-xylene than in the p-xylene direction.
Fig. 4 Quantitation results obtained from liquid mixtures of three xylene
isomers. The mole fractions obtained in 10 ms per solution are plotted as a
function of the actual mole fractions. The errors bars represent two standard
deviations, or �4 mole%. The inset shows the same mixture mole fraction results
plotten in a cube, with each axis corresponding to a different xylene component.
The measured pure component mole fractions are shown as red, green, and blue
distributions, and the location of each mixture depends on the relative amount of
each component.

This journal is ª The Royal Society of Chemistry 2013
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3.3 Hyperspectral imaging

Here we demonstrate the application of our OB compressive
detection strategy to the imaging of mixtures of two sugars,
fructose and glucose, using as little as �30 photons per pixel.
These samples were selected because they have an identical
(white powder) appearance and moderately overlapped Raman
spectra, and thus represent a chemical imaging application of
intermediate challenge. In Section 3.4, we apply compressive
detection to distinguish the highly overlapping spectra of
glucose and sucrose. Unlike liquid samples, various factors
including grain size and relative crystal orientation affect the
amount of scattered light, and thus it is more difficult to
determine the number of photons emitted per unit sample.
The chemical images described in this section were con-
structed by mapping the normalized and scaled measured
photon rates of each component at each pixel (see Section 2.6
for more details).

The spectra of fructose, glucose, and the background emis-
sion are shown in Fig. 5. The correlation coefficient (normalized
dot product) of these two sugar spectra is 0.85. Fig. 6 shows
images of fructose and glucose placed side by side in the
imaging eld of view. The two sugars cannot be distinguished
from each other in the “white light” image (taken by setting all
the DMD mirrors to the “on” position). The spatial distribution
of each sugar becomes clear in the chemical images shown in
the two colored images in Fig. 6 (with fructose in yellow and
Fig. 5 Comparison of the Raman spectra and OB filters of pure fructose (a), pure
glucose (b), and the background. The solid and dashed curves compare the cor-
responding directly measured (background-subtracted) spectra and MCR-derived
spectra, respectively (see Sections 2.3, 2.4, and 3.4). The gray bars indicate the OB
filters obtained from the directly measured pure component spectra (solid
curves).

This journal is ª The Royal Society of Chemistry 2013
glucose in cyan). These 300 � 300 pixel chemical images were
obtained using OB lters shown in panels (a)–(c) of Fig. 5, with
relative (fractional) times of 0.37, 0.35, and 0.28, respectively.
The chemical images in the middle and far right of Fig. 6 were
measured with total times 1 ms per pixel and 0.1 ms per pixel,
respectively, (for a total integration time of �90 s and �9 s per
image, respectively). Note that the lter switching time of 30 ms
is in this case negligible, since the images are collected by
scanning the entire 300 � 300 image with each OB lter. The
average number of measured photons per lter in the far right
image of Fig. 6 was only �10.
3.4 Multivariate curve resolution in imaging

In many imaging applications of biological, geological, or
archaeological relevance, pure samples are not readily available
(or perhaps even known). However, it is always possible to
obtain mixture spectra from such samples by collecting full
spectra from different locations within a sample. Here we
demonstrate that multivariate curve resolution (MCR) tech-
niques14 can be used to estimate pure training spectra from
mixture data, with little or no a priori information regarding the
spectral shapes or number of compounds. More specically,
given a representative collection of mixture spectra from various
locations in a sample, MCR can be used to extract component
spectra from which OB lters can be generated, and then used
to rapidly collect a chemical image of the entire sample (or a
series of samples). Note that this approach has some similari-
ties to that used by Perera et al. to obtain a hyperspectral
chemical image of plant tissue.15 However, the latter study
obtained chemical images by post-processing of full CCD
spectral measurements, rather than using a high speed
compressive detection strategy.

The performance of this MCR approach was rst evaluated
using a mixture of fructose and glucose powders. Full spectra
were taken from four arbitrarily selected locations within the
mixed pure powder. These spectra and the background were
decomposed into pure spectral estimates using the entropy
minimization MCR algorithm (as described in Section 2.4). The
resulting MCR spectral estimates of the pure fructose and
glucose spectra (dashed curves in Fig. 5) were found to be in
excellent agreement with the corresponding pure spectra (solid
curves in Fig. 5). The visually evident similarity of the com-
ponent spectra obtained using both methods is quantitatively
conrmed by the correlation coefficient of 0.99 for the two
fructose spectra and 0.97 for two glucose spectra.

Fig. 7 shows a comparison of two sets of sugar powder
images obtained using OB lters generated using either spectra
of the two pure sugars (le) or using the corresponding MCR-
derived component spectra (right). Clearly, both methods
produce similar images. The correlation coefficient of the two
upper images is 0.93 for fructose and 0.90 for glucose while that
for the two lower images is 0.95 for fructose and 0.92 for
glucose, indicating there is little systematic or random (noise)
differences between the sets of images.

The compressive detection and MCR strategies can also be
applied to more difficult chemical imaging problems. Fig. 8
Analyst, 2013, 138, 4982–4990 | 4987



Fig. 6 The “white light” image of a side-by-side mixture of fructose and glucose (far left) was measured by turning all of the DMDmirrors to the “on” position at each
pixel. When using OB filters, the chemical information is clearly segregated in the middle image, measured with 1 ms per pixel (with fructose in yellow and glucose in
cyan). The same chemical information is still discernible in the image on the far right, which wasmeasuredwith 100 ms per pixel. This latter integration time corresponds
to an average of �10 measured photons per filter, or �30 photons per image pixel.

Fig. 7 Image comparison of fructose (yellow) and glucose (cyan) obtained using
two different methods for finding OB compressive detection filters. The two left-
hand images were obtained using filters derived from directly measured (and
background-subtracted) pure component spectra. The two right-hand images
were obtained using MCR-derived component spectra. The latter method does
not require that pure samples are available, as pure component spectra are
extracted from spectra obtained from a small number of randomly selected points
within the sample of interest. All of the above images were acquired with an
integration time of 1 ms per pixel.

Analyst Paper
shows a case where the Raman spectra of two chemical
components, glucose and sucrose, have many component
bands that are nearly coincident but differ in relative intensities
(the correlation coefficient of these two spectra is 0.96). The OB
lters generated from the training spectra are shown in Fig. 8,
where the fractional times were 0.29, 0.44, and 0.27 for panels
(a)–(c). Due to the high degree of spectral similarity, it was
4988 | Analyst, 2013, 138, 4982–4990
necessary to precisely align the optical components in order to
successfully implement the OB lters on this system (we
performed classication experiments on the pure glucose or
pure sucrose powders to ensure the spectrometer was optimally
aligned). This is in contrast to the previously demonstrated
cases with a lower degree of spectral overlap (Fig. 2, 3 and 5), for
which the compressive quantitation results were relatively
insensitive to small misalignments of the system.

A chemical image of a mixture of glucose and sucrose
obtained using OB lters is shown in Fig. 9. Here, the upper le
panel was acquired at 10 ms per pixel, while the lower le panel
was obtained with 1 ms per pixel. A longer total integration time
is required to obtain images of comparable quality for the
glucose and sucrose (top le panel of Fig. 9) than is required for
fructose and glucose (top and bottom le panels of Fig. 7) due to
the increased spectral overlap.

The dashed traces in Fig. 8 show the MCR decomposition
spectra of glucose and sucrose obtained from eight mixture
spectra taken at arbitrary locations in a mixture of glucose and
sucrose powders. Note that the number of mixture spectra was
increased to ensure that the highly overlapping spectra were
accurately resolved. The entropy minimization results
produced spectra resembling the known sugar spectra, with a
correlation coefficient of 0.98 for the two glucose spectra and
0.99 for the two sucrose spectra. These MCR spectra were used
to generate OB lters, and the resulting chemical images shown
in the two right-hand panels Fig. 9 are again comparable with
the OB lters derived from the training on the pure powders
(shown in the two le-hand panels of Fig. 9). The correlation
coefficient of the glucose and sucrose images at 10 ms per pixel
is 0.95 and 0.98, respectively, indicating there is little system-
atic difference between the images. At the shorter integration
time of 1 ms per pixel, the inuence of increasing noise
decreases the correlation coefficient of the glucose images to
0.74 and sucrose to 0.94. These sugar results demonstrate that
compressive detection combined with MCR works equally
well in imaging both moderately and heavily overlapped com-
ponents in a mixture.
This journal is ª The Royal Society of Chemistry 2013



Fig. 9 Image comparison of glucose (cyan) and sucrose (yellow) obtained using
two different methods for finding OB compressive detection filters and pixel
integration time. The images in the left panels were obtained using filters derived
from background-subtracted spectra measured from pure powders. The two
right-hand images were obtained using MCR-derived component spectra. The
top panels were measured with an integration time of 10 ms per pixel, while the
bottom were measured with 1 ms per pixel.

Fig. 8 Comparison of the Raman spectra and OB filters of pure glucose (a), pure
sucrose (b), and the background. The solid and dashed curves compare the cor-
responding directly measured (background-subtracted) spectra and MCR-derived
spectra, respectively. The gray bars indicate the OB filters obtained from the
directly measured pure component spectra (solid curves).
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4 Conclusion

We have demonstrated that the OB compressive detection
strategy can be used to rapidly quantify binary and tertiary
liquid mixtures, as well as to obtain chemical images of mixed
powders. The results of this work demonstrate that in general
there is a trade off between the degree of spectral similarity
and the time required to obtain accurate results. In other
words, we have found that it is possible to quantify or image
mixtures containing components that are highly spectrally
overlapped, but doing so requires longer integration times
than mixtures with less overlapped spectra. We have further
demonstrated that the OB compressive detection strategy can
be combined with multivariate curve resolution to facilitate
high speed chemical imaging of samples for which pure
components spectra are not available. Thus, our results imply
that OB compressive detection is likely to be broadly appli-
cable to chemical quantitation and imaging, either using pure
components for training or using component spectra
obtained from the liquid or solid mixtures of interest for
training.
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