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Abstract—Because the Radon transform is a smoothing
transform, any noise in the Radon data becomes magni-
fied when the inverse Radon transform is applied. Among
the methods used to deal with this problem is the Wavelet-
Vaguelette Decomposition (WVD) coupled with Wavelet
Shrinkage, as introduced by David L. Donoho. We extend
several results of Donoho and others here. First, we in-
troduce a new sufficient condition on wavelets to generate
a WVD. For a general homogeneous operator, which class
includes the Radon transform, we show that a variant of
Donoho’s method for solving inverse problems can be de-
rived as the exact minimizer of a variational problem that
uses a Besov norm as the smoothing functional. We give a
new proof of the rate of convergence of wavelet shrinkage

that allows us to estimate rather sharply the best shrinkage
parameter needed to recover an image from noise-corrupted
data. We conduct tomographic reconstruction computations
that support the hypothesis that near-optimal shrinkage pa-
rameters can be derived if one can estimate only two Besov-
space parameters about an image f . Both theoretical and
experimental results indicate that our choice of shrinkage
parameters yields uniformly better results than Kolaczyk’s
variant of Donoho’s method and the classical filtered back-
projection method.

Index Terms—Wavelets, Radon transform, positron emis-
sion tomography, variational problems, wavelet shrinkage.

I. Introduction

Inverting the Radon transform is tremendously impor-
tant in many fields, especially Medical Imaging, where it is
the mathematical basis of Computer Tomography, Positron
Emission Tomography, etc. The difficulty in inverting the
Radon transform A is that it is a smoothing transform,
i.e., applying A to an image f results in data Af that
has, roughly speaking, one-half derivative more smooth-
ness than the original image. Thus, A−1, the inverse Radon
transform, has properties like one-half of a derivative, i.e., it
is unbounded.
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One can view the Radon transform as the special case
with α = 1/2 of the following abstract problem: Assume
that a linear operator A maps the Hilbert space L2(Rd) to
another Hilbert space Y and satisfies

(1) Â∗Af(ξ) = |ξ|−2α
f̂(ξ)

for some α ≥ 0, where A∗ is the adjoint of A and ĝ denotes
the Fourier transform of g. We wish to recover f ∈ L2(Rd)
from Af . In practice we are only able to observe noisy data
of the form

(2) Y = Af + Z,

where Z represents a perturbation error in our observation
procedure. Here we assume that Z is mean-zero Gaussian
noise.

Such linear inverse problems arise in various scientific
fields. The noise removal problem in image processing takes
the form Y = f+Z. In this case the underlying operator is
the identity operator, which obviously satisfies (1) with α =
0. As already mentioned, the Radon transform satisfies
(1) with α = 1/2. Additionally, the 2π multiple of the
one-dimensional integration operator also satisfies (1) with
α = 1.

Despite the simple characterization (1) of A via the
Fourier transform, linear filtering methods based on (1)
such as filtered backprojection (FBP) often exhibit degrada-
tion in recovering f from noisy data. The Fourier transform
diagonalizes any convolution-type operator, and this prop-
erty has been an advantage of Fourier transform methods
in deconvolution problems such as (2). However, poor rep-
resentation of nonsmooth functions via the Fourier trans-
form often yields an unacceptable decision rule, which con-
siders any low-frequency structure to be information and
any high-frequency structure, no matter how strong, to be
noise, in recovering f from (2).

Very recently, there has been great interest in the use of
wavelet bases to represent functions, and many important
advantages of wavelet bases have been discovered. One of
the key features of wavelet bases is the smoothness char-
acterization of various function spaces in terms of wavelet
coefficients. This property has been used in several image
processing and statistical applications, such as data com-
pression [15], [16], [33], noise removal [5], [18], and non-
parametric estimation in statistics [4], [22], [24], [25], etc.

Even though convolution-type operators, in general, are
not diagonalizable with respect to wavelet bases, the op-
erator satisfying (1) can be diagonalized with the help of



a wavelet-vaguelette system (WVS). In [21] Donoho proved

that there exists a WVS {ψλ, Uλ, Ũλ} such that {ψλ} is

an orthogonal wavelet basis of L2(Rd), {Uλ} and {Ũλ} are
biorthogonal Riesz bases of Y, and for any f ∈ L2(Rd),

(3) f =
∑
λ

cλ[Af,Uλ]ψλ

for known scalars {cλ}, where [·, ·] is the inner product of
Y. (The definitions of a Riesz basis, biothogonal wavelets,
etc., are given in the next sections.) In [21] Donoho called
(3) a wavelet-vaguelette decomposition (WVD) of f .

Applying the WVD (3) in solving (2), Donoho suggested
the wavelet shrinkage method (see, e.g., [21], [22], and [30]),
which shrinks the observed coefficients cλ[Y, Uλ] towards
zero by a certain amount, and proved that if the true so-
lution f is known to lie in the Besov smoothness space
Bβq,p(Rd) (for the definition, see [17] and Section IV of this
paper), where β > (2α + d)(1/p − 1/2), then the solution
of his method converges to f with the optimal rate if one
uses the optimal shrinkage parameters (although Donoho
did not give a method for finding these parameters). For
details, see [21].

In this paper we consider a family of variational pro-
blems for solving (2) that are related to Donoho’s method.
These variational problems take the form: Given a posi-
tive parameter γ and a function smoothness space B, find

a function f̃ that minimizes over all possible functions g in
B the functional

(4) ‖Y −Ag‖2Y + 2γ|g|B,

where ‖ · ‖Y is the norm defined by the inner product [·, ·]
of Y and | · |B is the semi-norm of the function space B.

The function space B differs from usual smoothness sub-
spaces in regularization techniques (see, e.g., [43]), because
B could be a function space which is not embedded in
L2(Rd). The parameter γ balances the importance between

the difference ‖Y −Ag‖2Y in Y and the smoothness |g|B of
g in B.

A fast way of solving (4) is required for practical algo-
rithms. We suggest using vaguelettes and wavelets in (4),
to characterize ‖Y −Ag‖Y and |g|B, respectively. Using

the L2-stability of vaguelettes and the smoothness char-
acterization properties of wavelets, we derive an expres-
sion involving wavelet coefficients that is equivalent to (4),
and that can be minimized quickly (in a time proportional
to the number of unknowns). In particular, if we choose

B = Bβ0

1,1(Rd) in (4), then the exact minimizer, denoted

by f̃∗γ,β0
, of the resulting equivalent sequence minimiza-

tion problem has the same form as the wavelet shrinkage
method proposed by Donoho [21] with possibly different
shrinkage parameters.

We give a new proof of the rate of convergence of f̃∗γ,β0

to f that allows us to estimate rather sharply the best
wavelet shrinkage parameter for solving (2) in the presence
of Gaussian noise. Our analysis reveals that only one pa-
rameter β0 allows finite error for all levels of resolution;

this β∗0 = d/2 − α, which depends only on the parame-
ter α (which determines the ill-posedness of A) and the
dimension d of the domain, which will be 1 (for signals)
or 2 (for images), of f . For any β0 the wavelet shrinkage
amount for terms cλ[Y, Uλ] at a dyadic scale 2k is given by
γ2k(β0−d/2+2α); for the optimal β∗0 , we should shrink terms
cλ[Y, Uλ] by γ2kα.

It remains only to choose the parameter γ. We give
an upper bound on the expected value of the error that
depends on γ and two smoothness parameters of f (both
of which can be estimated by a wavelet compression tech-
nique, and which are roughly invariant for images of fixed
types). We suggest that one should choose γ by minimizing
the upper bound on the error.

We have implemented this method and present the re-
sults of several experiments. In these experiments, we
use a WVS that uses less-smooth wavelets than previously
thought possible. To substantiate this, we rely on a suffi-
cient condition, which is proved in Chapter 6 of [32], on reg-
ularity and vanishing moments (for the definition, see Sec-
tion IV) of functions to have a WVS. This sufficient condi-
tion is weaker than in [21] (see Section VI), and allows more
wavelets such as less smooth examples of Daubechies’s com-
pactly supported orthogonal wavelets [10] and symmetric
biorthogonal wavelets [6] to be used for solving (2). These
compactly supported wavelets are generated from scaling
functions by refinement equations (for the definition, see
Section III); thus vaguelette coefficients can be obtained in
a recursive manner as wavelet coefficients can be.

We show through tomographic reconstruction experi-
ments that with a translation-rotation averaging technique

(see Section X) the wavelet shrinkage method f̃∗γ,β0
, where

parameters γ and β0 are determined from our analy-
sis, leads to a better reconstruction in the presence of
Gaussian noise than the traditional filtered backprojection
method. As compared with the shrinkage parameter sug-
gested by Kolaczyk [30], which is motivated by the Visu-
Shrink method by Donoho and Johnstone, our shrinkage
parameter leads to a better reconstruction, which removes
less noise, but keeps more image features.

Other researchers have introduced wavelet methods for
tomographic problems. Methods based on one-dimensional
wavelet decomposition of the projection data followed by
linear filtered backprojection were introduced in [40], [38],
[39], [45], and [47]; local reconstruction is a concern of all
these authors. Bhatia, Karl, and Willsky [2] first intro-
duce a method based on similar principles, then use a MAP
model with a linear filter based on L2 regularization of each
one-dimensional projection data. In a later paper [1], they
again use a one-dimensional wavelet decomposition of the
projection data, which is back-projected to find a different
basis for the so-called “Natural Pixel” formulation of the
image reconstruction problem, which yields a sparse ma-
trix problem to solve rather than a full matrix problem,
again with a MAP model of the image. Sahiner and Yagle
[41] also use a one-dimensional transform of the projection
data, but they threshold the wavelet coefficients before ap-
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plying filtered back projection of the data. Thresholding
is related to wavelet shrinkage as a means of noise removal
(see, e.g., [5]), but the authors do not provide an analy-
sis of the reduction in error due to thresholding and, to
our eyes, their method results in significant artifacts. The
authors add additional image constraints which do reduce
these artifacts somewhat.

Other authors have used two-dimensional wavelet de-
compositions in the image domain, as we do. Delaney and
Bresler [14] use wavelet transforms of the image as a tool to
make a standard filtered backprojection algorithm more ef-
ficient numerically, and to provide a method of local recon-
struction. Dobson [20] provides a two-dimensional wave-
let method for electrical impedance tomography based on
Tikhonov regularization with the Sobolev space Hs

0(I) ≈
Bs2(L2(I); this is similar in spirit to our method (we use

the space Bβ0

1 (L1(I)) instead), but results in linear filter-
ing that has worse error bounds than wavelet shrinkage.
Zhu et al. [48] employ Tikhonov regularization with the
space L2(I) as the regularizing space. For a somewhat dif-
ferent problem, Miller, Nicolaides and Mandelis [36] use a
variational penalty approach similar to ours, incorporating
penalties in a norm that is roughly Bβp (Lp) for p = 2 and
p = 1.2; they find that p = 1.2 offers somewhat better
results than p = 2 (we use p = 1), but it is difficult to
tell from their paper what β is. Finally, Zhao, Wang, and
Hsieh [46] claim to apply wavelet shrinkage to a problem
in fan-beam tomography, but do not give enough details to
compare their method to ours.

II. Preliminaries

In this section we review some notations and definitions
for the future use.

The translation operator Th: For h ∈ Rd, Thf(x) =
f(x− h).

The dilation operator Da: For a > 0, Daf(x) = f(x/a).
The rotation operator Qθ: For a function f defined on

R2, Qθf(r, ϕ) = f(r, ϕ−θ), where f is represented in polar
coordinates.

The shrinkage operator Sµ : R −→ R: For µ ≥ 0,
Sµ(x) = sign(x)(|x| − µ)+.

Let H be a separable Hilbert space. For real-valued
functions S1 and S2 defined onH, we denote S1(f) � S2(f)
if there are positive constants C1 and C2 such that for
all f ∈ H, C1S1(f) ≤ S2(f) ≤ C2S1(f). A collection of
functions {ϕn} in H is said to be L2-stable if for all ϕ in

H, ‖ϕ‖2H �
∑

n |〈ϕ,ϕn〉|
2
. An L2-stable basis of H is also

called a Riesz basis.
Let X1 and X2 be normed vector spaces. The spaceX1 is

said to be embedded in the space X2, denoted by X1 ↪→ X2,
if for each f in X1, f is in X2 and there is a constant C
such that for all f ∈ X1, ‖f‖X2

≤ C‖f‖X1
.

We denote by S(Rd) the space of rapidly decreasing C∞

functions on Rd and by S′(Rd) its topological dual, the

space of tempered distributions. The Fourier transform f̂

of a function f ∈ S(Rd) is defined by

f̂(ξ) =

∫
Rd
e−2πiξ·xf(x) dx,

while the inverse Fourier transform gives f back from f̂ by

f(x) =

∫
Rd
e2πix·ξf̂(ξ) dξ.

One extends the Fourier transform and its inverse from
S(Rd) to S′(Rd) by duality.

III. Wavelets

In this section we briefly review basic wavelet the-
ory. Throughout this paper we consider only compactly
supported wavelets such as Daubechies’ orthogonal wave-
lets [10], symmetric biorthogonal wavelets by Cohen,
Daubechies, and Feauveau [6] and Herley and Vetterli [27],
and modified wavelets [7] and [29], which are designed to
deal with functions defined on a bounded domain.

We begin with orthogonal wavelets on R. Let ψ be a
bounded and compactly supported function on R. We de-
fine ψk,j(x) = 2k/2ψ(2kx− j) for all integers k and j. The
collection of functions {ψk,j}k∈Z,j∈Z is called an orthonor-
mal wavelet basis for L2(R) if for any f ∈ L2(R),

(5) f =
∑
k∈Z

∑
j∈Z
〈f, ψk,j〉ψk,j

and

‖f‖2L2 =
∑
k∈Z

∑
j∈Z
|〈f, ψk,j〉|2.

Associated with ψ is a scaling function φ, from which one
generates the functions φk,j(x) = 2k/2φ(2kx − j). The set
{φk,j}j∈Z is orthonormal for each k. With these functions
φk,j , we have

(6) f =
∑
k≥k0

∑
j∈Z
〈f, ψk,j〉ψk,j +

∑
l∈Z
〈f, φk0,l〉φk0,l

and

‖f‖2L2 =
∑
k≥k0

∑
j∈Z
|〈f, ψk,j〉|2 +

∑
l∈Z
|〈f, φk0,l〉|

2

for each integer k0.
We assume that for a given scaling function φ, there

exist finite sequence (hn) such that φ =
∑
n hnφ1,n and

ψ =
∑

n gnφ1,n, where gn = (−1)n+1h−n+1. We call the
above equations refinement equations. These equations
are closely related to the so-called fast wavelet transfrom
(FWT) and inverse FWT. For details, see, e.g., [10].

For orthogonal wavelets on L2(Rd) with d > 1, we use
the tensor product of φ and ψ. We make 2d functions
defined on Rd by ϕ1(x1)×· · ·×ϕd(xd), where either ϕi = φ
or ϕi = ψ. Among them, we denote φ(x1) × · · · × φ(xd)
by Φ, and the remaining 2d − 1 functions by ψ(i) with
i = 1, 2, · · · , 2d − 1. (It is convenient to fix that ϕ(xj) is
ψ(xj) if the jth binary digit of i from the left is one, and
ϕ(xj) is φ(xj) if the jth binary digit of i is zero.) We define
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Φk,j = 2kd/2Φ(2k · −j) for k ∈ Z and j ∈ Zd, and similarly

for ψ
(i)
k,j . Then any f ∈ L2(Rd) can be written as

f =
∑
k≥k0

∑
j∈Zd

∑
i

〈f, ψ(i)
k,j〉ψ

(i)
k,j +

∑
l∈Zd
〈f,Φk0,l〉Φk0,l,

and, moreover,

‖f‖2L2 =
∑
k≥k0

∑
j∈Zd

∑
i

|〈f, ψ(i)
k,j〉|

2
+
∑
l∈Zd
|〈f,Φk0,l〉|

2
,

where the index i in above two equations ranges over
1, 2, . . . , 2d − 1.

When one is concerned with a bounded domain, for ex-
ample, the unit cube Ω in Rd, then one does not consider

all shifts j ∈ Zd, but only those shifts for which ψ
(i)
k,j in-

tersects Ω nontrivially. Moreover, one must adapt wavelets
that overlap the boundary of Ω to preserve L2-stability on
the domain. For details, see, e.g., [7] and [29]. To ignore
all complication of this sort, we shall use indices without
precisely specifying the domains of the indices of the sums
whenever this abbreviation does not cause any confusion.

Before we close this section, we state the two-dimensional

FWT and its inverse FWT associated with {ψ(i)
k,j} for future

use.
Fast wavelet transform:

〈f,Φk,j〉 =
∑
n1,n2

hn1−2j1hn2−2j2〈f,Φk+1,n〉,

〈f, ψ(1)
k,j〉 =

∑
n1,n2

hn1−2j1gn2−2j2〈f,Φk+1,n〉,

〈f, ψ(2)
k,j〉 =

∑
n1,n2

gn1−2j1hn2−2j2〈f,Φk+1,n〉, and

〈f, ψ(3)
k,j〉 =

∑
n1,n2

gn1−2j1gn2−2j2〈f,Φk+1,n〉.

Inverse fast wavelet transform:

〈f,Φk+1,j〉 =
∑
n1

hj1−2n1

∑
n2

hj2−2n2〈f,Φk,n〉

+
∑
n1

hj1−2n1

∑
n2

gj2−2n2〈f, ψ
(1)
k,n〉

+
∑
n1

gj1−2n1

∑
n2

hj2−2n2〈f, ψ
(2)
k,n〉

+
∑
n1

gj1−2n1

∑
n2

gj2−2n2〈f, ψ
(3)
k,n〉.

IV. Besov Spaces

One of the major advantages of wavelets is smoothness
characterization, which means that we can determine the
membership of a function in many different function spaces
by examining its wavelet coefficients. For details, see,
e.g., [17], [19], [26], [29], [31], and [34].

We are interested in Besov spaces Bβq (Lp(Rd)) for 1 <

p ≤ ∞ and Bβq (Hp(Rd)) for 0 < p ≤ 1, where Hp(Rd) is
the real Hardy space (for the definition, see, e.g., [44]). To
simplify our presentation, throughout this paper we shall

use the following convention:

Bβq,p(Rd) =

{
Bβq (Lp(Rd)), 1 < p ≤ ∞,
Bβq (Hp(Rd)), 0 < p ≤ 1.

With this convention, we get more familiar spaces for cer-

tain values of parameters. When p = q = 2, Bβ2,2(Rd) is

the Sobolev space W β(Rd), and when 0 < β < 1 and 1 ≤
p ≤ ∞, Bβ∞,p(Rd) is the Lipschitz space Lip(β, Lp(Rd)).

When 0 < p < 1 or 0 < q < 1, then Bβq,p(Rd) are no
longer normed spaces. However, they are always quasi-
normed spaces, and with a certain abuse of terminology,
we shall continue to call these quasi-norms norms.

We will not give the precise definition of Besov spaces
here. What is important to us is that one can determine
whether f is in Bβq,p(Rd) simply by examining its wave-
let coefficients. Let φ and ψ be bounded, compactly sup-
ported, and univariate functions as described in Section III.
Suppose φ has R continuous derivatives and ψ has van-
ishing moments of order M , i.e.,

∫
R x

mψ(x) dx = 0, for

m = 0, 1, . . . ,M . We assume that ψ(i) and Φ are functions
described in Section III by tensor products of φ and ψ.
Then as long as β < min(R,M), for any k0,

(7) |f |
Bβq,p
�
( ∑
k≥k0

2ksq
[∑
j,i

|〈f, ψ(i)
k,j〉|

p
] q
p
) 1
q

and

(8) ‖f‖Bβq,p � |f |Bβq,p + 2k0d( 1
2−

1
p )

(∑
l

|〈f,Φk0,l〉|
p

) 1
p

,

where s = β + d(1/2− 1/p).
The proof of (7) and (8) can be found in [31]. In this pa-

per we shall use the right hand side of (7) as the definition
of |f |Bβq,p and the right hand side of (8) as the definition of

‖f‖Bβq,p , where we assume that k0 is a fixed, nonnegative

small integer throughout this paper.
There are various embedding relations among the Besov

spaces Bβq,p(Rd). For example, for q′ > q, Bβq,p(Rd) ↪→
Bβq′,p(Rd); if β′ < β and (β − β′)/d = 1/p − 1/p′, then

Bβq,p(Rd) ↪→ Bβ
′

q,p′(Rd); and for any q1 and q2, Bβq1,p(R
d) ↪→

Bβ
′

q2,p
(Rd) as long as β′ < β. These relations show that

the parameter q in Bβq,p(Rd) is not as important as p or β.

Thus, we consider only Besov spaces of the form Bβp,p(Rd)
from now on.

Based on a standard argument from interpolation theory
(see, e.g., [5]), one can show that if L∞(Rd) ∩Bβp,p(Rd) ↪→
Bβ
′

p′,p′(Rd), where β′ < β and β′p′ = βp.
In analogy with the special case of Sobolev spaces

W β(Rd), the Besov space Bβp,p(Rd) with β < 0 is under-

stood as the dual space of Bβ
′

p′,p′(Rd), where β′ = −β and

1/p + 1/p′ = 1. (Here we assume that 1 ≤ p ≤ ∞.) For
details, see, e.g., [34] and [32].

4



V. Linear Homogeneous Equations

We now discuss three examples of linear homogeneous
equations—the identity transform, the Radon transform,
and 2π times the one-dimensional integral.

The identity operator on L2(Rd) satisfies (1) with α = 0.
In this case, we have Y = f + Z in (2). Recovering f can
be viewed as a noise removal problem.

The Radon transform R : L2(R2)→ L2([0, π), L2(R)) is
defined by

Rf(θ, u) =

∫
Lθ,u

f(x, y) ds(x, y),

where ds(x, y) is Euclidean measure on the line Lθ,u =
{(x, y) | x cos θ + y sin θ = u}. The inner product [·, ·] in
L2([0, π), L2(R)) is defined by

[F,G] =

∫ π

0

∫
R
F (θ, u)G(θ, u) du dθ.

The Fourier slice theorem states that

(9) Rf(θ, ·)∧(w) = f̂(w cos θ, w sin θ),

where Rf(θ, ·)∧(w) is the one-dimensional Fourier trans-

form of Rf(θ, u) as a function of u, and f̂ is the two-
dimensional Fourier transform of f . The proof of (9) can
be found in [37].

Using (9), one can show R̂∗Rf(ξ) = |ξ|−1
f̂(ξ); thus, the

Radon transform satisfies (1) with α = 1/2. Therefore,
the domain of R, denoted by D(R), is L2(R2)∩S−1/2(R2),
where

Sβ(Rd) =

{
f ∈ S′(Rd) |

∫
Rd
|ξ|2β |f̂(ξ)|

2
dξ <∞

}
.

Our third example, I : L2(R) −→ L2(R), is defined by

If(x) = 2π

∫ x

−∞
f(t) dt.

Since 2πf̂(ξ) = 2πiξ Îf(ξ), we have Îf(ξ) = −iξ−1f̂(ξ)

and D(I) = L2(R) ∩ S−1(R). Therefore, Î∗If(ξ) =

|ξ|−2
f̂(ξ). Hence the operator I on L2(R) satisfies (1) with

α = 1.
Since Â∗Af(ξ) = |ξ|−2α

f̂(ξ), one’s first attempt to solve
(2) might be

f̃(x) =

∫
Rd
e2πiξ·x|ξ|2αÂ∗Y (ξ) dξ.

For α > 0, however, this method generates an unacceptable
solution for (2) because the high frequency components of

A∗Y , whose size is determined by Â∗Y (ξ) for ξ large, are
multiplied by |ξ|2α, which is unbounded as ξ → ∞. To
avoid this phenomenon, one can consider a filtered solution

f̃w such that

(10) f̃w(x) =

∫
Rd
e2πiξ·xw(ξ)|ξ|2αÂ∗Y (ξ) dξ,

where the weight filter w(ξ) satisfies 0 ≤ w(ξ) ≤ 1 and
w(ξ) → 0 as |ξ| → ∞. For example, the famous fil-
tered backprojection (FBP) method for inverting the Radon
transform in medical image processing takes the form (10)
with α = 1/2.

Finding a proper weight filter w(ξ) is very important

for the performance of f̃w (10). We consider a family of
weight filters {wM} such that wM (ξ) = 1 if |ξ| ≤ M and
wM (ξ) = 0 otherwise.

A calculation (see, e.g., [32]) shows that with the optimal
value of

M ≈
(
|f |Wβ

σ

)1/(β+d/2+α)

we have

E‖f − f̃wM‖
2

L2 ≤ C|f |(2α+d)/(β+d/2+α)

Wβ σ2r,

with rate exponent

(11) r =
β

β + d/2 + α
,

when f is in the Sobolev space W β(Rd) = Bβ2,2(Rd).
It is known (see Theorem 4 of [21]) that the rate of con-

vergence of any method for recovering f ∈ W β(Rd) is at
most the r of (11). Thus no filtered backprojection method

can provide an asymptotically better solution than f̃wM
with the optimal M .

The filtered backprojection method f̃wM considers any
low-frequency structure to be signal, and any high-

frequency structure to be noise, no matter how large |f̂(ξ)|
might be. This is not acceptable when we wish to re-
cover functions that can be more meaningfully character-
ized by their discontinuities (e.g., an image with strong
edges and small extent), since such information lies in the
high-frequency domain. Even with a more general weight
filter w, we cannot avoid this kind of degradation in recov-
ering nonsmooth functions, since w(ξ)→ 0 as |ξ| → ∞.

VI. Wavelet-Vaguelette Decompositions

The terminology vaguelette was used by Meyer in [35]
to describe a collection of functions which are wavelet-
like. In [21] Donoho constructed a wavelet-vaguelette sys-
tem (WVS) for solving homogeneous equations described
in Section V and gave a sufficient condition on wavelets to
generate a WVS of A.

A collection of functions {ψ(i)
k,j , U

(i)
k,j , Ũ

(i)
k,j} is called a

WVS of A : L2(Rd) −→ Y, where Â∗Af(ξ) = |ξ|−2α
f̂(ξ),

if, first, {ψ(i)
k,j} forms an orthonormal wavelet basis of

L2(Rd); second, {U (i)
k,j} and {Ũ (i)

k,j} are biorthogonal Riesz
bases of Y, i.e., for any Y ∈ Y,∑

k,j,i

|[Y, U (i)
k,j ]|

2
�
∑
k,j,i

|[Y, Ũ (i)
k,j ]|

2
� ‖Y ‖2Y

and [U
(i)
k,j , Ũ

(i′)
k′,j′ ] = δ(k,j,i),(k′,j′,i′); finally,

(12) A∗U
(i)
k,j = 2−kαψ

(i)
k,j and Aψ

(i)
k,j = 2−kαŨ

(i)
k,j

5



for all k, j, i.
Once we have a WVS of A, we can determine wave-

let coefficients 〈f, ψ(i)
k,j〉 of f from vaguelette coefficients

[Af,U
(i)
k,j ] of Af . Notice that by (12),

(13) 〈f, ψ(i)
k,j〉 = 2kα〈f,A∗U (i)

k,j〉 = 2kα[Af,U
(i)
k,j ].

Plugging (13) into (5), we have the following reproducing

formula via the WVS {ψ(i)
k,j , U

(i)
k,j , Ũ

(i)
k,j} of A:

(14) f =
∑
k,j,i

2kα[Af,U
(i)
k,j ]ψ

(i)
k,j .

We call (14) a wavelet-vaguelette decomposition (WVD) of
f .

We now consider how to construct a WVS of A. We
first note that for any operator A satisfying Â∗Af(ξ) =

|ξ|−2α
f̂(ξ), A∗A is translation-invariant, i.e.,

(15) A∗ATh = ThA
∗A,

and homogeneous of order 2α, i.e.,

(16) A∗ADa = a2αDaA
∗A.

On the other hand, all elements of {ψ(i)
k,j} are gener-

ated by dilation and translation of basic 2d − 1 functions

{ψ(i)} as ψ
(i)
k,j = 2kd/2D2−kTjψ

(i). We define π(i) by

A∗Aπ(i) = ψ(i) or equivalently π̂(i)(ξ) = |ξ|2αψ̂(i)(ξ). Let

π
(i)
k,j = 2kd/2D2−kTjπ

(i). Then, using (15) and (16), it is

not difficult to show that A∗Aπ
(i)
k,j = 2−2kαψ

(i)
k,j . Hence

(17) A∗(2kαAπ
(i)
k,j) = 2−kαψ

(i)
k,j .

Furthermore,

[2kαAπ
(i)
k,j , Ũ

(i′)
k′,j′ ] = 2(k+k′)α〈Aπ(i)

k,j , Aψ
(i′)
k′,j′〉

= 2−(k−k′)α〈ψ(i)
k,j , ψ

(i′)
k′,j′〉 (by (17))

= δ(k,j,i),(k′,j′,i′).

This implies that if {2kαAπ(i)
k,j} and {Ũ (i)

k,j} form L2-stable
bases of Y simultaneously, then by setting

(18) U
(i)
k,j = 2kαAπ

(i)
k,j ,

we have a WVS {ψ(i)
k,j , U

(i)
k,j , Ũ

(i)
k,j} of A. It is obvious that

this construction is the only way of having a WVS of A for

given orthogonal wavelets {ψ(i)
k,j}. From now on we use the

right-hand side of (18) as the definition of U
(i)
k,j .

In [21] Donoho gave a sufficient condition for the ex-
istence of a WVS. He proved that if φ has R continu-
ous derivatives, and vanishing moments of order M , then

{ψ(i)
k,j , U

(i)
k,j , Ũ

(i)
k,j} forms a wavelet-vaguelette system of A as

long as

(19) α+ d+ 1 < min(R,M).

Condition (2) requires high regularity and large vanish-
ing moments for wavelets to be usable for a WVS. For
instance, one needs R ≥ 4 for the Radon transform in R2.

Notice that none of the first ten Daubechies’s compactly
supported orthogonal wavelets have this amount of regu-
larity. Many symmetric biorthogonal wavelets (the WVS
can be defined for biorthogonal wavelets with a slight mod-
ification; see [21] and [32]) with relatively small support do
not satisfy condition (2), either. See, e.g., [6], [12], and
[13].

There are several disadvantages in using smoother wave-
lets to approximate a function that is much less smooth
than the given wavelets. First, as long as (7) and (8)
hold, there is no gain in approximation order with smoother
wavelets. Second, since smoother wavelets have wider sup-
port, they are not as good as less smooth wavelets, which
can have smaller support, in approximating functions with
discontinuities.

As an alternative to (19), we can prove (see Theorem
6.3.1 of [32]) that if

(20)
|ψ̂(w)| ≤ C|w|a(1 + |w|2)

−(b+a)/2
and

|φ̂(w)| ≤ C(1 + |w|2)
−b/2

, a > α, b > α+ 1,

then {ψ(i)
k,j , U

(i)
k,j , Ũ

(i)
k,j} forms a WVS for A.

The conditions in (20) are weaker than (19) and allow
more wavelets to be used to construct a WVS for a given
operator A than condition (19) does. More importantly,
the sufficient conditions (20) do not depend on the dimen-
sion d.

VII. Vaguelette Coefficients

and Variational Problems

We begin with a recursive algorithm to compute vague-
lette coefficients. Here we shall only consider the case
d = 2. Higher-dimensional algorithms follow easily from
the 2-dimensional one. Throughout this section we assume
that A is onto, i.e., the range of A is Y.

We define ρ ∈ S′(R2) by ρ̂(ξ) = |ξ|2αΦ̂(ξ). Let ρk,j =
2kρ(2k · −j) and Vk,j = 2kαAρk,j . Then by following the

same argument used to show A∗Aπ
(i)
k,j = 2−2kαψ

(i)
k,j in (17),

one can show that A∗Aρk,j = 2−2kαΦk,j . Thus

2kα[Af, Vk,j ] = 22kα[Af,Aρk,j ]

= 22kα〈f,A∗Aρk,j〉 = 〈f,Φk,j〉.

With a similar argument, we can show that 2kα[Af,U
(i)
k,j ] =

〈f, ψ(i)
k,j〉 for i = 1, 2, 3. Therefore, by rewriting (6), we have

f =
∑
k≥k0

∑
j,i

2kα[Af,U
(i)
k,j ]ψ

(i)
k,j +

∑
l

2k0α[Af, Vk0,l]Φk0,l.
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Furthermore, since A is onto, for each Y ∈ Y we have

2(k−1)α[Y, Vk−1,j ] =
∑
n1,n2

hn1−2j1hn2−2j22kα[Y, Vk,n],

2(k−1)α[Y, U
(1)
k−1,j ] =

∑
n1,n2

hn1−2j1gn2−2j22kα[Y, Vk,n],

2(k−1)α[Y, U
(2)
k−1,j ] =

∑
n1,n2

gn1−2j1hn2−2j22kα[Y, Vk,n],

2(k−1)α[Y, U
(3)
k−1,j ] =

∑
n1,n2

gn1−2j1gn2−2j22kα[Y, Vk,n],

where we have used the FWT at the end of Section III.
Applying these four equations to {2kα[Y, Vk,j ]}, we can get

{2kα[Y, U
(i)
k,j ]}{k0≤k<m,j,i=1,2,3} and {2k0α[Y, Vk0,n]}n from

{2mα[Y, Vm,l]}l.
We now consider a family of variational problems that

naturally give rise to a parametrized solution class f̃γ,β0:

Given a positive parameter γ and Besov space Bβ0

1,1(Rd),
find a function f̃γ,β0 that minimizes over all possible

functions g in Bβ0

1,1(Rd) the functional

(21) ‖Y −Ag‖2Y + 2γ|g|
B
β0
1,1
.

Using the L2-stability of {U (i)
k,j} and the smoothness char-

acterization of {ψ(i)
k,j}, we have

‖Y −Ag‖2Y �
∑
k,j,i

|[Y −Ag,U (i)
k,j]|

2

=
∑
k,j,i

|[Y, U (i)
k,j ]− 2kα〈g,A∗Aπ(i)

k,j〉|
2
(by (18))

=
∑
k,j,i

|[Y, U (i)
k,j ]− 2−kα〈g, ψ(i)

k,j〉|
2

(by (17))

and

|g|
B
β0
1,1
�
∑
k≥k0

∑
j,i

2k(β0−d/2)|〈g, ψ(i)
k,j〉|.

Combining these sequence sums, we have following equiv-
alent sequence sums to the functional (21):

(22)
∑
k,j,i

2−2kα|2kα[Y, U
(i)
k,j ]− 〈g, ψ

(i)
k,j〉|

2

+ 2γ
∑
k≥k0

∑
j,i

2k(β0−d/2)|〈g, ψ(i)
k,j〉|,

which can be minimized by minimizing each term sepa-
rately. Notice that a|b− x|2 + 2c|x|, where a > 0, c > 0,
is minimized when x = sign(b)(|b| − c/a)+, i.e., when
x = Sc/a(b). We apply this to the case where a =

2−2kα, b = 2kα[Y, U
(i)
k,j ], and c = γ2k(β0−d/2) for k ≥ k0;

then (22) is minimized by choosing the function f̃∗γ,β0
such

that

(23) f̃∗γ,β0
=
∑
k,j,i

Sµk(2kα[Y, U
(i)
k,j ])ψ

(i)
k,j ,

where

(24) µk =

{
γ2k(β0−d/2+2α), for k ≥ k0,

0, for k < k0.

Since µk = 0 if k < k0, one can rewrite (23) as

(25)

f̃∗γ,β0
=
∑
k≥k0

∑
j,i

Sµk(2kα[Y, U
(i)
k,j ])ψ

(i)
k,j

+
∑
l

2k0α[Y, Vk0,l]Φk0,l.

With equivalence between function norm and wavelet se-

quence sums, we now suggest f̃∗γ,β0
as a solution method

for solving (2).

VIII. Discretization and Noise Model

We recall problem (2) of this paper: Y = Af +
Z. In practice we have only finitely many data points
{Yi}i=0,1,··· ,N−1 for Y . With this data, we wish to ap-
proximate the true solution f by

(26)

f̃∗γ,β0,m
=

m−1∑
k≥k0

∑
j,i

Sµk(2kα[Y, U
(i)
k,j ])ψ

(i)
k,j

+
∑
l

2k0α[Y, Vk0,l]Φk0,l.

In this approach, we have three different types of er-
rors. First, in approximating Y from {Yi}{i=0,1,··· ,N−1}

and computing [Y, U
(i)
k,j] and [Y, Vk0,l] from the approxi-

mation to Y , we cannot avoid a certain error. However,
we shall ignore this type of error in this paper by assum-
ing that we have sufficient observations {Yi}i=0,1,··· ,N−1

to approximate the underlying Y with a negligible er-
ror. Second, an error is introduced in having finite m in

f̃∗γ,β0,m
(26). Notice that the smallest mean-square error

we can have with f̃∗γ,β0,m
(26) is equal to the sequence sum∑

k≥m
∑

j,i |〈f, ψ
(i)
k,j〉|

2
. The integer m in (26) is closely re-

lated to N , the number of observations. Increasing m for
a fixed N does not necessarily give a better solution since

it may generate another error in computing [Y, U
(i)
k,j] and

[Y, Vk0,l]. We assume that we can take a positive integer
m in (26) such that 2md = N . Again, we ignore this type

of error in this paper. Third, the solution method f̃∗γ,β0,m

(26) itself makes an error in approximating

fm =

m−1∑
k≥k0

∑
j,i

〈f, ψ(i)
k,j〉ψ

(i)
k,j +

∑
l

〈f,Φk0,l〉Φk0,l.

Notice that ‖fm − f̃∗γ,β0,m
‖

2

L2
is

m−1∑
k=k0

∑
j,i

|〈f, ψ(i)
k,j〉 − Sµk(2kα[Y, U

(i)
k,j ])|

2

+
∑
l

|〈f,Φk0,l〉 − 2k0α[Y, Vk0,l]|
2
.

In this paper we are only interested in this type of error.
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We assume a white noise model for the observation error
Z in (2). Let

(27) Z = σW

for a constant σ > 0, where W is the white noise process
defined on the underlying space of functions in Y. This
assumption naturally impose a noise model for the discrete
data {Yi} such that Yi = (Af)i + Zi, where Zi are inde-
pendent and identically distributed as N(0, σ2

0) for some
σ0 > 0. Since the number of observations is N (= 2md), it
is reasonable to assume that σ2

0 = 2mdσ2.
We now examine the effect of this noise model (27) on

[Y, U
(i)
k,j ] and [Y, Vk0,l] in f̃∗γ,β0,m

. Notice that for the white

noise process W , [W,U
(i)
k,j ] are mean zero Gaussian ran-

dom variables for all k, j, i and Var[W,U
(i)
k,j ] = ‖U (i)

k,j‖
2

Y .

Using the definition of U
(i)
k,j (see (18)), one can compute

‖U (i)
k,j‖

2

Y =
∫
Rd |ξ|

2α|ψ̂(i)(ξ)|
2

dξ. Therefore, [Z,U
(i)
k,j ] are

mean zero Gaussian random variables with

Var[Z,U
(i)
k,j ] = σ2

∫
Rd
|ξ|2α|ψ̂(i)(ξ)|

2

dξ.

Similarly, we have mean zero Gaussian random variables
[Z, Vk0,l] such that

Var[Z, Vk0,l] = σ2

∫
Rd
|ξ|2α|Φ̂(ξ)|

2
dξ.

Notice that

2kα[Y, U
(i)
k,j ] = 2kα〈f,A∗U (i)

k,j〉+ 2kα[Z,U
(i)
k,j ]

= 〈f, ψ(i)
k,j〉+ 2kα[Z,U

(i)
k,j ].

With a similar argument, we have

2k0α[Y, Vk0,l] = 〈f,Φk0,l〉+ 2k0α[Z, Vk0,l].

Thus, the solution method f̃∗γ,β0,m
(26) can be rewritten as∑

k0≤k<m

∑
j,i

Sµk(〈f, ψ(i)
k,j〉+ 2kα[Z,U

(i)
k,j ])ψ

(i)
k,j

+
∑
l

(〈f,Φk0,l〉+ 2k0α[Z, Vk0,l])Φk0,l.

Before we close this section, for future use we define

ci =

∫
Rd
|ξ|2α|ψ̂(i)(ξ)|

2

dξ

for i = 1, · · · , 2d − 1, and

c0 =

∫
Rd
|ξ|2α|Φ̂(ξ)|

2
dξ.

IX. Error Estimates

Here we calculate an upper bound of E‖fm − f̃∗γ,β0,m
‖

2

L2
.

While doing that, we determine β0, which gives the main
effect on the wavelet shrinkage procedure, and then we
choose γ, which corresponds to a more subtle, but still
critical, part of the algorithm.

In [21] Donoho assumed the same white noise model as
in this paper, and suggested

(28)

f̃(ak,j,i) =
∑
k≥k0

∑
j,i

Sak,j,i(2
kα[Y, U

(i)
k,j ])ψ

(i)
k,j

+
∑
l

2k0α[Y, Vk0,l]φk0,l

as a solution method for solving (2). This is exactly the

same as f̃∗γ,β0
of (25) except for possibly different shrinkage

parameters. For the performance of f̃(ak,j,i), he proved that

inf
(ak,j,i)

sup
f∈F(C)

E‖f − f̃(ak,j,i)‖
2

L2 � σ2rM

as σ → 0, with rate exponent

(29) rM =
β

β + d/2 + α

for the true solution f , which is known to lie in a ball
F(C) = {f | ‖f‖

B
β
q,p
≤ C} of the Besov space Bβq,p(Rd)

with β > (2α + d)(1/p − 1/2). He also showed that this
wavelet shrinkage method attains the optimal rate of con-
vergence:

inf
(ak,j,i)

sup
f∈F(C)

E‖f − f̃(ak,j,i)‖
2

L2

≤ C inf
f̃

sup
f∈F(C)

E‖f − f̃‖
2

L2 ,

where f̃ ranges over all possible methods.
This asymptotical result implies that the wavelet shrink-

age method (28) with the optimal shrinkage parameters
(ak,j,i) is the best estimator in minimax sense. (For defi-
nitions of these statistical terms, see, e.g., [3].) However,
Donoho in [21] did not give a method for finding those
parameters.

In [30] Kolaczyk used the shrinkage parameters

(30) ak,j,i =
√

2 log(22k)2k/2σc
1/2
i ,

in (28) for tomographic reconstruction. For the definition
of ci, see Section VIII. This choice of shrinkage amount is
motivated by the VisuShrink method of Donoho and John-
stone [22]. For details, see, e.g., [22] and [30]. However,
Kolaczyk [30] did not give a proof that the shrinkage pa-
rameter (30) gives the optimal rate of convergence rM (29).

We propose to find an explicit shrinkage scheme that
provides the optimal rate of convergence rM (29). To do
so, we assume that the true solution f is in the Besov spaces
Bβp,p(Rd) with

p =
2α+ d

β + d/2 + α

for some positive β. (It will turn out that this one-
parameter family of spaces (depending on β) have minimal
smoothness for the inversion of A.) We also assume that
f is bounded and compactly supported in the unit cube

of Rd. Thus we need only j and l for which 〈f, ψ(i)
k,j〉 6= 0

and 〈f,Φk0,l〉 6= 0 in (26). Moreover, the number of such j
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≤ C2kd for fixed k and i, and that of such l ≤ C2k0d for
a constant C. Having these results in mind, we start to

estimate an upper bound of E‖fm − f̃∗γ,β0,m
‖

2

L2
.

Notice that E‖fm − f̃∗γ,β0,m
‖

2

L2
is

m−1∑
k=k0

∑
〈f,ψ(i)

k,j〉6=0

E|〈f, ψ(i)
k,j〉 − Sµk(〈f, ψ(i)

k,j〉+ 2kα[Z,U
(i)
k,j ])|

2

+
∑

〈f,Φk0,l
〉6=0

22k0αVar[Z, Vk0,l],

where we have used the expectation operatorE to deal with
the statistical noise model. We note (see Section VIII) that

Var[Z, Vk0,l] = c0σ
2 for all l. Thus E‖fm − f̃∗γ,β0,m

‖
2

L2
is

bounded by

m−1∑
k=k0

∑
〈f,ψ(i)

k,j〉6=0

E|〈f, ψ(i)
k,j〉 − Sµk(〈f, ψ(i)

k,j〉+ 2kα[Z,U
(i)
k,j ])|

2

+ Cc02k0(2α+d)σ2,

where we have used the fact that the number of l for which
〈f,Φk0,l〉 6= 0 is less than C2k0d for a constant C.

Let Λk = {(j, i) | |〈f, ψ(i)
k,j〉| > µk} and Λ̃k = {(j, i) |

|〈f, ψ(i)
k,j〉| ≤ µk}.

We now use the following inequality (see [5] and [23]): If
X ∼ N(0, τ2), then

E|t− Sµ(t+X)|2 ≤
{
µ2 + τ2, |t| > µ,

t2 + E|Sµ(X)|2, |t| ≤ µ,

where

E|Sµ(X)|2 = 2τ2

∫
y>µ

τ

(y − µ

τ
)
2
P (y) dy,

where P (y) = 1√
2π
e−y

2/2. We apply above inequality to the

case where t = 〈f, ψ(i)
k,j〉, X = 2kα[Z,U

(i)
k,j ], τ

2 = 22kασ2,

and µ = µk (see (24)). Then we have

(31) E‖fm − f̃∗γ,β0,m
‖

2

L2

≤ C
(
S0(f) + S1(f) + S2(f) + S3(f) + S4(f)

)
,

where

S0(f) = c02k0(2α+d)σ2,

S1(f) =

m−1∑
k=k0

∑
(j,i)∈Λk

µ2
k,

S2(f) =

m−1∑
k=k0

∑
(j,i)∈Λk

22kασ2,

S3(f) =

m−1∑
k=k0

∑
(j,i)∈Λ̃k

|〈f, ψ(i)
k,j〉|

2
, and

S4(f) =

m−1∑
k=k0

∑
(j,i)∈Λ̃k

22kα+1σ2

∫
t>tk

(t− tk)
2
P (t) dt,

where

tk = 2k(β0−d/2+α) γ

σ
.

For S1(f), notice that

S1(f) =

m−1∑
k=k0

∑
(j,i)∈Λk

µ2−p
k · µpk

=
m−1∑
k=k0

2−kspµ2−p
k 2ksp

∑
(j,i)∈Λk

µpk,

where s = β + d(1/2− 1/p). Let

(32) a =
γ

σ
.

Since µk = aσ2k(β0−d/2+2α) (see (24) and (32)), one has

(33) S1(f) ≤ a2−pσ2−pT (β0)

m−1∑
k=k0

2ksp
∑

(j,i)∈Λk

µpk,

where

(34) T (β0) = max
k0≤k<m

{
2k(β0(2−p)+4α−2αp−βp)

}
.

Thus we have

(35) S1(f) ≤ |f |p
Bβp,p

a2−pσ2−pT (β0),

because in (33),

m−1∑
k=k0

2ksp
∑

(j,i)∈Λk

µpk ≤
m−1∑
k=k0

2ksp
∑
j,i

|〈f, ψ(i)
k,j〉|

p

≤ |f |p
Bβp,p

.

For S2(f), since σ2 = a−22−2k(β0−d/2+2α)µ2
k (see (24)

and (32)), one has

S2(f) ≤
m−1∑
k0=k

∑
(j,i)∈Λk

22kαa−22−k(2β0−d+4α)µ2
k.

We use the same argument as for S1(f). Then we have

S2(f) ≤
m−1∑
k0=k

a−22−k(sp+2β0−d+2α)µ2−p
k 2ksp

∑
(j,i)∈Λk

µpk.

Moreover, since a−2µ2−p
k = a−pσ2−p2k(β0−d/2+2α)(2−p),

one has

S2(f) ≤ a−pσ2−pT ∗(β0)

m−1∑
k0=k

2ksp
∑

(j,i)∈Λk

µpk,

where

(36) T ∗(β0) = max
k0≤k<m

{
2−k(β0p+βp−2α−d+2αp)

}
.
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With a similar argument used for S1(f), we have

m−1∑
k=k0

2ksp
∑

(j,i)∈Λk

µpk ≤ |f |
p

Bβp,p
.

Thus

(37) S2(f) ≤ |f |p
Bβp,p

a−pσ2−pT ∗(β0).

For S3(f), we can bound them as follows:

S3(f) =
m−1∑
k0=k

∑
(j,i)∈Λ̃k

|〈f, ψ(i)
k,j〉|

2

≤
m−1∑
k0=k

∑
(j,i)∈Λ̃k

|〈f, ψ(i)
k,j〉|

p
· µ2−p

k

=

m−1∑
k0=k

2−kspµ2−p
k 2ksp

∑
(j,i)∈Λ̃k

|〈f, ψ(i)
k,j〉|p.

We now use the same argument used for S1(f). Then we
have

(38) S3(f) ≤ |f |p
Bβp,p

a2−pσ2−pT (β0).

Combining (35), (37), and (38), we can bound S1(f) +
S2(f) + S3(f) by

(49) |f |p
Bβp,p

σ2−p
(

2a2−pT (β0) + a−pT ∗(β0)

)
.

We now determine β0, which minimizes S1(f) +S2(f) +
S3(f) for a fixed a. To do so, we examine the exponents
of 2 in T (β0) and T ∗(β0). Obviously, to reduce the contri-
butions from S1(f) + S2(f) + S3(f), it is desirable if our
choice of β0 satisfies

β0(2− p) + 4α− 2αp− βp ≤ 0 and

β0p+ βp− 2α− d+ 2αp ≥ 0,

so that T (β0) (34) and T ∗(β0) (36) are bounded indepen-
dently of m. Simple computations reveal that it is only
possible when

β0 = β∗0 = d/2− α.

With this β∗0 , we have T (β∗0) = T ∗(β∗0 ) = 1. Therefore,
from (39), we have

(40) S1(f) + S2(f) + S3(f) ≤ |f |p
Bβp,p

σ2−p(2a2−p + a−p).

For S4(f), with β∗0 = d/2− α, tk ≤ a, we note that as a
function of x,

∫
t>x

(t − x)2P (t) dt is strictly decreasing for

x > 0. Thus by bounding |Λ̃k| by (2d − 1)2kd, we have

S4(f) ≤ C1

m−1∑
k=k0

2k(2α+d)σ2

∫
t>a

(t− a)
2
P (t) dt,

where C1 = 2(2d − 1). Finally, combining (31), (40), and

above inequality, we can bound E‖f − f̃∗γ,β∗0 ,m‖
2

L2
by

(41) |f |p
Bβp,p

σ2−p(2a2−p + a−p)

+ C2 · 2m(2α+d)σ2

∫
t>a

(t− a)2
P (t) dt,

where C2 = 2(2d − 1)/(22(d/2+α) − 1). Here we ignored the
contribution from S0(f), because it is small and indepen-
dent of m.

Formula (41) is our main bound of E‖fm − f̃∗γ,β∗0 ,m‖
2

L2
.

We emphasize that given only two parameters characteriz-
ing the smoothness of f (β and |f |Bβp,p), the known param-

eter α that determines the ill-posedness of the reconstruc-
tion procedure, and an estimate of the standard deviation
σ of the noise in the observation procedure, one can numer-
ically compute the minimum point a∗ of the equation (41)

as a function of a and use γ∗ = a∗σ to determine f̃∗γ∗,β∗0 ,m
that minimizes our upper bound on the error.

To have an asymptotic result for (41), we use following
inequality; for any x ≥ 0,

(42)

∫
t>x

(t− x)
2
P (t) dt ≤

√
2π

2
P (x).

This is rather rough estimation since one can replace the
right hand side of (42) by 2x−3P (x) for x ≥ 1 (see, e.g., [5]).
Using (42), we can bound the second term in (41) by a
constant multiple of

2m(2α+d)σ2e−a
2/2.

We now compare two dominant terms |f |p
Bβp,p

σ2−p and

2m(2α+d)σ2e−a
2/2 to get a simple approximation to the crit-

ical a. If we assume that σ0 ≤ |f |Bβp,p , where σ2
0 = 2mdσ2,

and 2md is large enough that

|f |Bβp,p
σ0

≤ 2m(β+d+α),

then by setting

|f |p
Bβp,p

σ2−p = 2m(2α+d)σ2e−a
2/2,

we can get the critical point a such that

a =

√
D1 log 2md −D2 log

|f |
Bβp,p

σ0
,

where D1 = 4α
d

+ 2β
β+d/2+α and D2 = 2 2α+d

β+d/2+α . With this

a, we have

E‖fm − f̃∗γ,β∗0 ,m‖
2

L2
≤ C|f |p

B
β
p,p

(
σ2

0

2md

)β/(β+d/2+α)

×
([

(
4α

d
+

2β

β + d/2 + α
ln 2md

]R
+ 1

)
,

where

R =

{
β/(β + d/2 + α), if a ≥ 1,

(d/2 + α)/(β + d/2 + α), if a < 1.

10



Fig. 1. 512× 512 phantom image

X. Computations: Tomographic Reconstruction

We conducted tomographic reconstruction (α = 1/2)

experiments using f̃∗γ∗,β∗0 ,m in (26) with β∗0 = 1/2 and

γ∗ = a∗σ, where a∗ is chosen as the (numerical) minimum
point of (41). Our main conclusion is that this shrinkage
parameter leads to smaller errors and better reconstruc-
tion than using the parameter suggested by Kolaczyk [30].
The wavelet shrinkage method often exhibits certain arti-
facts, which do not appear in reconstructed images from
the filtered backprojection method. Those artifacts in the
wavelet shrinkage method are largely due to the fact that
the wavelet shrinkage method is neither translationally nor
rotationally invariant. However, a “translation-rotation av-
eraging technique” associated with the wavelet shrinkage
method reduces those artifacts dramatically, and outper-
forms not only the standard wavelet shrinkage method but
also the traditional filtered backprojection method in the
mean square error sense.

Our main computations are applied to the phantom im-
age f9 of 512 × 512 pixels in Figure 1. With the assump-
tion that the true intensity field f of the digital image f9

is bounded, we scaled f9 to have 255 as the brightest pixel
and 0 as the darkest one. We computed Radon projection
data, Rf , at 512 uniformly spaced angles, and at 512 uni-
formly spaced points for each angle. Thus, the number of

data values, N = 262,144, and m = 9 in f̃∗γ∗,β∗0 ,m
.

We added i.i.d. Gaussian noise with standard deviations
σ

(10)
0 = 22.6113, σ

(15)
0 = 12.7152, σ

(20)
0 = 7.1503, σ

(25)
0 =

4.0209, and σ
(30)
0 = 2.2611 to Rf . Here the superscripts

in standard deviations denote signal-to-noise ratio (SNR)
defined by

SNR = 10 log10

(∑511
i=0

∑511
j=0 |Rf(θi, uj)|2

262144× σ2
0

)
.

As we mentioned before, we can modify the definition
of a WVS to incorporate biorthogonal wavelets. We use

biorthogonal wavelets 3φ̃, 3,9ψ̃, 3,9φ, and 3,9ψ illustrated

on page 276 of [10]. These wavelets and dual wavelets
have the required regularity and zero-moment properties
to generate a WVS of the Radon transform in two dimen-
sion. For details, see Theorem 6.3.1 of [32]. We modified
the biorthogonal wavelets at the boundary in a way equiv-
alent to assuming that the phantom image is periodic, and
rescaled them to make ci = 1 for i = 1, 2, 3. We also choose
k0 = 5 in (26).

We assume that f ∈ Bβp,p(R2), where β > 0 and p =
3

β+3/2 . Notice that when |〈f, ψ(i)
k,j〉| < 2k/2γ,

|〈f, ψ(i)
k,j〉|

2
= |〈f, ψ(i)

k,j〉|
2−p
· |〈f, ψ(i)

k,j〉|
p

≤ γ2−p
∑
k≥5

2k(2−p)/2
∑
j,i

|〈f, ψ(i)
k,j〉|

p
.

Since (β + 2(1/2− 1/p))p = (2− p)/2, if we define

E(γ) =

(∑
k≥5

∑
|〈f,ψ(i)

k,j〉|<2k/2γ

|〈f, ψ(i)
k,j〉|

2
)1/2

,

then we have

(43) E(γ)2 ≤ γ2−p|f |p
Bβp,p

.

On the other hand, if we denote the number of (j, i) for

which |〈f, ψ(i)
k,j〉| ≥ 2k/2γ by Nk(γ), then we have

(44)
∑
k≥5

Nk(γ)(2k/2γ)p2k(β+2(1/2−1/p))p

≤
∑
k≥5

2k(β+2(1/2−1/p))p
∑
j,i

|〈f, ψ(i)
k,j〉|

p
= |f |p

Bβp,p
,

since 2k(β+2(1/2−1/p)+1/2)p = 2k. We define

N(γ) =
∑
k≥5

Nk(γ)2k.

Then from (44), we have

(45) γp ≤ N(γ)−1|f |p
Bβp,p

.

Combining (43) and (45), we have

(46) E(γ) ≤ N(γ)−β/3|f |
B
β
p,p
.

It is remarked in [8] that (46) is invertible, i.e., if we
observe

E(γ) ≤ CN(γ)−β/3

for some β and C, then one can conclude that f ∈ Bβp,p(R2),

p = 3
β+3/2 , and one can define an equivalent semi-norm on

Bβp,p(R2) such that in this semi-norm |f |Bβp,p = C. (This

statement is not correct, but is close enough to the truth
to be used in practice; see [8] for the precise statement.)
We use (46) in estimating the smoothness order β of f .

We computed E(γ) and N(γ) for several γ, and esti-
mated β and |f |Bβp,p from the log-log graph of E(γ) versus

N(γ). (Cf. the smoothness estimates in [5].) With this
approach, we estimated β ≈ 0.7745 and |f |Bβp,p ≈ 166.4654

with p = 1.3189.
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We compute the minimum point of (41) as a function of
a, with p = 1.3189, α = 1/2, and |f |p

Bβp,p
(≈ 850.5585), by

the bisection method for each σ = 2−9σ0. We denote the
resulting algorithm f̃∗γ∗,β∗0 ,m by fC , i.e.,

8∑
k≥5

∑
j,i

Saσ2k/2(2k/2[Y, U
(i)
k,j])ψ

(i)
k,j +

∑
l

22.5[Y, Vk0,l]Φ5,l,

where a is chosen as the numerical minimum point of (41)

for given σ = 2−9σ0, and we denote E‖f9 − fC‖2L2 by EC .

We also consider a rotational averaging version f
(R)
C of

fC , where superscript R refers to the rotation number. For
instance,

f
(2)
C =

1

2

[
Qπ

4

( 8∑
k≥5

∑
j,i

Saσ2k/2(2k/2[Y (θ − π

4
, ·), U (i)

k,j ])ψ
(i)
k,j

+
∑
l

22.5[Y (θ − π

4
, ·), Vk0,l]Φ4,l

)
+ fC

]
,

where Q π
4

denotes rotation by π
4 and a is, again, chosen

as the numerical minimum point of (41) for each σ with
same estimated values of α, p, and |f |p

Bβp,p
used in fC . The

mean square error E‖f9 − f (R)
C ‖

2

L2 is denoted by E
(R)
C . No-

tice that f
(1)
C = fC and E

(1)
C = EC , because the shrinkage

method associated with the wavelets constructed using ten-
sor products is invariant with respect to rotation by π/2.

We denote the translation averaging version of f
(R)
C

by f
(R)
T , where f

(R)
T uses the same rotational averaging

techniques as f
(R)
C , but the translation-invariant wavelet

shrinkage method introduced by Coifman and Donoho [9]

in the shrinkage step. The mean square error ‖f9 − f (R)
T ‖

2

L2

is denoted by E
(R)
T .

In [30] Kolaczyk used the shrinkage parameter (30) (with
ci = 1 for i = 1, 2, 3) in (28) for tomographic reconstruc-
tion. This choice of shrinkage parameter is motivated by
the VisuShrink method of Donoho and Johnstone [22]. For
comparison purposes, we define

fV =

8∑
k=7

∑
j,i

Sak,j,i(2
k/2[Y, U

(i)
k,j ])ψ

(i)
k,j +

∑
l

23.5[Y, V7,l]Φ7,l.

Notice that fV only shrinks the two highest levels of wavelet
coefficients. (In [30] Meyer’s wavelets are used for experi-

ments.) The mean square error ‖f9 − fV ‖2L2 is denoted by
EV .

We also consider the filtered backprojection method us-
ing the Hamming weight filter

wH(n) =

{
0.5 + 0.5 cos(nπ/Ns), n ∈ [−Ns, Ns],
0, otherwise,

where n is the frequency number. For details, see, e.g., [42].
We define fF by

(47) fF =

∫
R2

e2πiξ·xwH(ξ) |ξ| R̂∗Y (ξ) dξ.

We use EF to denote the mean square error of fF with
Ns = 512. Obviously, the algorithm fF depends on the
filter size Ns. With a similar argument used in Section V,
we expect that the filter size Ns should be decreased for a
fixed image as the amount of noise increases. We denote by

E#
F the mean square error of fF with an optimal filter size.

In our experiments, we computed numerically an optimal
filter size of fF for each noise level.

In order to compute vaguelette coefficients in f
(R)
C , f

(R)
T ,

and fV , we first compute 24.5[Y, V9,l] by

2−9

∫
R2

|ξ|R̂∗Y (ξ)e2πiξ·l2−9

Φ̂(2−9ξ) dξ,

and use the recursive algorithm described in Section VII to

get {2k/2[Y, U
(i)
k,j ]}{5≤k<9,j} and {22.5[Y, V5,l]}l.

For R∗Y , we note that

R̂∗Rf(w cos θ, w sin θ) = |w|−1
f̂(w cos θ, w sin θ)

= |w|−1Rf(θ, ·)∧(w),

where we have used the Fourier Slice Theorem (9). Thus
we can compute R∗Y by

R̂∗Y (w cos θ, w sin θ) = |w|−1
Y (θ, ·)∧(w).

In numerical computations involving the Fourier trans-
form, we used the fast Fourier transform (see, e.g., [28]).
To reduce the aliasing effect in the fast Fourier transform,
we zero-padded the projection data of 512 × 512 to 512 ×
1024 (see, e.g., [42]).

Table 1

Errors for Different Methods and Noise Levels

SNR 10 15 20 25 30

E 51874 18176 6747 2482 876
EV 2721 991 408 219 156
EF 7974 2942 1038 396 189

E#
F 555 365 249 180 139

E
(1)
C 1168 638 366 231 161

E
(2)
C 551 343 232 173 141

E
(4)
C 501 315 218 167 139

E
(1)
T 666 387 247 175 137

E
(2)
T 456 291 206 161 136

E
(4)
T 452 288 205 160 136

Table 1 contains the results of our tests. We calcu-
lated mean square errors EV , EF , E

(R)
C , and E

(R)
T with

R = 1, 2, and 4 for five different noise levels with SNR
= 10, 15, 20, 25, and 30. The first row in Table 1 shows the
mean square errors of the direct backprojection method
(with neither filtering nor wavelet shrinkage) for each noise

level. We also report that ‖f9‖2L2 = 9769.

The results in Table 1 shows that f
(R)
T outperforms fF ,

f#
F , fV , and f

(R)
C . The performance of f

(R)
C and f

(R)
T is

improved as the rotation number R increases. This im-
provement comes at the expense of greater computations.
Since the translation-invariant wavelet transform requires
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the same computational complexity as the fast Fourier

transform, f
(R)
T needs, roughly speaking, R + 1 times the

computations as fF does. On the other hand, the tradi-
tional wavelet transform can be performed in a time pro-
portional to the number of terms to be processed. Thus,
as long as the rotation number R is small, (for 512 ×512
phantom images, R ≤ 8), the number of computations in

f
(R)
C is less than twice of that in fF .
Figures 2, 3, 4, 5, and 6 show 512× 512 reconstructions

based on f
(R)
C , f

(R)
T , fF , f#

F , and fV , respectively, for noise

level with SNR 20. The algorithm f
(1)
C has certain arti-

facts in the reconstructed image Figure 2-a, where we can
see “square blocks”near edges. Such artifacts are largely
due to the fact that the wavelet shrinkage method is not
rotationally invariant. Thus by doing rotational averaging,
we can reduce those artifacts dramatically. See Figure 2-b
and 2-c.

As compared with the reconstructed images in Figure
3-a, 3-b, and 3-c, those in Figure 2-a, 2-b, and 2-c still
suffer from certain artifacts. Most of these artifacts dis-
appear in Figure 3 after applying the translation-invariant
wavelet shrinkage algorithm introduced by Coifman and

Donoho [9]. Notice that f
(R)
T is invariant with respect to

all translations (in pixel units). However, f
(R)
C and f

(R)
T

with R ≥ 2 are invariant only with respect to rotations of
integer multiple of π/(2R).

Table 2

Projected and Optimal Shrinkage Parameters

SNR 10 15 20 25 30

a∗ 1.4695 1.3589 1.2438 1.1251 1.0060

a
(1)
C 2.5000 2.2000 1.9000 1.7000 1.4000

a
(2)
C 1.9000 1.5000 1.3000 1.0000 0.8000

a
(4)
C 1.7000 1.4000 1.2000 1.0000 0.8000

a
(1)
T 2.1000 1.9000 1.7000 1.5000 1.4000

a
(2)
T 1.6000 1.4000 1.2000 1.0000 0.8000

a
(4)
T 1.6000 1.4000 1.2000 1.0000 0.8000

In Table 2, the first row contains the shrinkage parame-

ters a∗ used to compute f
(R)
C and f

(R)
T . As we mentioned

before, the shrinkage parameter a∗ is obtained by comput-
ing the minimum of (41) numerically as a function of a. For
comparison purpose, in Table 2 we also give a near-optimal
shrinkage parameter for each noise level and rotation num-

ber. For example, a
(R)
C is the best constant for f

(R)
C in

{a|a = n/10, n = 0, 1, · · · , 40} in the sense that it gives the
smallest mean square error for each given noise level. We

define a
(R)
T in a similar manner. The shrinkage parameters

suggested by this paper (the first row in Table 2) are closer
to the real optimal shrinkage parameters as the rotation
number increases.

Figures 4 and 5 show 512 × 512 reconstructions based
on the filtered backprojection method fF for noise level
SNR 20. The filter size Ns = 512 and Ns = 192 are used
in Figure 4 and 5, respectively. As one can see from the

Fig. 2-a. f
(1)
C .

Fig. 2-b. f
(2)
C .

Fig. 2-c. f
(4)
C .
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Fig. 3-a. f
(1)
T .

Fig. 3-b. f
(2)
T .

Fig. 3-c. f
(4)
T .

Fig. 4. fF with Ns = 512.

Fig. 5. fF with Ns = 192.

Fig. 6. fV .
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fourth row in Table 1 and Figure 4, the universal filter size,
which works for all noise levels, Ns = 512 does not remove
the noise effectively. By reducing the filter size Ns to 192
we have a better reconstructed image in Figure 5 than that
in Figure 4. In this case, however, we can not avoid certain
degradation in reconstruction by losing information from
the frequency number n with |n| > 192.

Notice that in (47), by choosing a radially symmetric
wH(ξ), which is commonly used in the practice of the fil-
tered backprojection, we have

wH(ξ) |ξ| R̂∗Y (ξ) = wH(w)Y (θ, ·)∧(w),

where ξ = (w cos θ, w sin θ). Therefore, unlike for f
(R)
C and

f
(R)
T , the translation-rotation averaging techniques do not

give an improved result in fF , since the Fourier basis itself
is translation-invariant and the same weight filter is applied
to the projection data Y (θ, u) for all θ.

Table 3

Optimal Filter Widths

SNR 10 15 20 25 30

σ × 103 44.1626 24.8343 13.9654 7.8533 4.4162
Ns 112 144 192 240 320

In Table 3 we give an optimal filter size of fF for each
noise level. We obtained those numbers experimentally.

Figure 5 shows a 512 × 512 reconstruction based on fV
for noise level SNR 20. The algorithm fV has fewer ar-
tifacts, but it is outperformed overall by most of other
algorithms. See Table 1. Since fV employs the wavelet
shrinkage method for the wavelet coefficients only in the
two highest levels, it can be viewed a combined method
of the filtered backprojection and wavelet shrinkage. By
shrinking the wavelet coefficients in more levels and ap-
plying translation and rotation averaging techniques, one
can improve the result of fV . However, since fV uses a
larger shrinkage parameter, even with translation and ro-
tation averaging, one can not avoid certain over-smoothing
in reconstruction.

We applied fF with Ns = 128 and f
(2)
T to a real positron

emission tomography (PET) data set, taken from a physi-
cal phantom, which contains the Radon projection data at
256 uniformly spaced angles, and at 256 uniformly spaced
points for each angle. For these reconstruction, we do not

have an original image. We believe that f
(2)
T removes as

much noise as fF does, while preserving more of the fine
structure of the image.

Bassed on these experiments, we believe that minimizing
our bound on the error (41) leads to near-optimal shrink-
age parameters for tomographic reconstruction with wave-
let shrinkage. Moreover, our technique for estimating the
smoothness of images leads to accurate estimates of the
true smoothness of images. We also can predict the perfor-
mance of the wavelet tomographic reconstruction algorithm
using only two smoothness parameters β and |f |Bβp,p . We

also believe that translation-rotation averaging techniques

Fig. 7. PET image by fF with Ns = 128.

Fig. 8. PET image with f
(2)
T .

remove most of the artifacts of wavelet shrinkage methods,
while removing a great amount of noise.
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