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1. Introduction

The subject of “wavelets” is expanding at such a tremendous rate that it is
impossible to give, within these few pages, a complete introduction to all aspects of
its theory. We hope, however, to allow the reader to become sufficiently acquainted
with the subject to understand, in part, the enthusiasm of its proponents toward
its potential application to various numerical problems. Furthermore, we hope that
our exposition can guide the reader who wishes to make more serious excursions into
the subject. Our viewpoint is biased by our experience in approximation theory and
data compression; we warn the reader that there are other viewpoints that are either
not represented here or discussed only briefly. For example, orthogonal wavelets
were developed primarily in the context of signal processing, an application which
we touch on only indirectly. However, there are several good expositions (e.g.,
[Da1] and [RV]) of this application. A discussion of wavelet decompositions in
the context of Littlewood-Paley theory can be found in the monograph of Frazier,
Jawerth, and Weiss [FJW]. We shall also not attempt to give a complete discussion
of the history of wavelets. Historical accounts can be found in the book of Meyer
[Me] and the introduction of the article of Daubechies [Da1]. We shall try to give
enough historical commentary in the course of our presentation to provide some
feeling for the subject’s development.

The term “wavelet” (originally called wavelet of constant shape) was introduced
by J. Morlet. It denotes a univariate function ψ (multivariate wavelets exist as well
and will be discussed subsequently), defined on R, which, when subjected to the
fundamental operations of shifts (i.e., translation by integers) and dyadic dilation,
yields an orthogonal basis of L2(R). That is, the functions ψj,k := 2k/2ψ(2k· − j),
j, k ∈ Z, form a complete orthonormal system for L2(R). In this work, we
shall call such a function an orthogonal wavelet, since there are many general-
izations of wavelets that drop the requirement of orthogonality. The Haar function
H := χ[0,1/2) − χ[1/2,1), which will be discussed in more detail in the section that
follows, is the simplest example of an orthogonal wavelet. Orthogonal wavelets with
higher smoothness (and even compact support) can also be constructed. But before
considering that and other questions, we wish first to motivate the desire for such
wavelets.
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Figure 1. An example of functions φ and φ(2k· − j).

We view a wavelet ψ as a “bump” (and think of it as having compact support,
though it need not). Dilation squeezes or expands the bump and translation shifts
it (see Figure 1). Thus, ψj,k is a scaled version of ψ centered at the dyadic integer
j2−k. If k is large positive, then ψj,k is a bump with small support; if k is large
negative, the support of ψj,k is large.

The requirement that the set {ψj,k}j,k∈Z forms an orthonormal system means
that any function f ∈ L2(R) can be represented as a series

(1.1) f =
∑

j,k∈Z

〈f, ψj,k〉ψj,k

with 〈f, g〉 :=
∫
R
fg dx the usual inner product of two L2(R) functions. We view

(1.1) as building up the function f from the bumps ψj,k. Bumps corresponding to
small values of k contribute to the broad resolution of f ; those corresponding to
large values of k give finer detail.

The decomposition (1.1) is analogous to the Fourier decomposition of a function
f ∈ L2(T) in terms of the exponential functions ek := eik · , but there are important
differences. The exponential functions ek have global support. Thus, all terms
in the Fourier decomposition contribute to the value of f at a point x. On the
other hand, wavelets are usually either of compact support or fall off exponentially
at infinity. Thus, only the terms in (1.1) corresponding to ψj,k with j2−k near x
make a large contribution at x. The representation (1.1) is in this sense local. Of
course, exponential functions have other important properties; for example, they
are eigenfunctions for differentiation. Many wavelets have a corresponding property
captured in the “refinement equation” for the function φ from which the wavelet ψ
is derived, as discussed in §3.1.

Another important property of wavelet decompositions not present directly in
the Fourier decomposition is that the coefficients in wavelet decompositions usually
encode all information needed to tell whether f is in a smoothness space, such as
the Sobolev and Besov spaces. For example, if ψ is smooth enough, then a function
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f is in the Lipschitz space Lip(α, L∞(R)), 0 < α < 1, if and only if

(1.2) sup
j,k

2k(α+
1
2
)|〈f, ψj,k〉|

is finite, and (1.2) is an equivalent seminorm for Lip(α, L∞(R)).
All this would be of little more than theoretical interest if it were not for the

fact that one can efficiently compute wavelet coefficients and reconstruct functions
from these coefficients. Such algorithms, known as “fast wavelet transforms” are
the analogue of the Fast Fourier Transform and follow simply from the refinement
equation mentioned above.

In many numerical applications, the orthogonality of the translated dilates ψj,k
is not vital. There are many variants of wavelets, such as the prewavelets proposed
by Battle [Ba] and the φ-transform of Frazier and Jawerth [FJ], that do not require
orthogonality. Typically, for a given function ψ, one wants the translated dilates
ψj,k, j, k ∈ Z, to form a stable basis (also called a Riesz basis) for L2(R). This
means that each f ∈ L2(R) has a unique series decomposition in terms of the ψj,k,
and that the ℓ2 norm of the coefficients in this series is equivalent to ‖f‖L2(R) (this
will be discussed in more detail in §3.1). In other applications, when approximating
in L1(R), for example, one must abandon the requirement that ψj,k, j, k ∈ Z, form
a stable basis of L1(R), because none exists. (The Haar system is a Schauder basis
for L1([0, 1]), for example, but the representation is not L1([0, 1])-stable.) For such
applications, one can use redundant representations of f , with ψ a box spline, for
example.

We have, to this point, restricted our discussion to univariate wavelets. There
are several constructions of multivariate wavelets but the final form of this theory
is yet to be decided. We shall discuss two methods for constructing multivariate
wavelets; one is based on tensor products while the other is truly multivariate.

The plan of the paper is as follows. Section 2 is meant to introduce the topic
of wavelets by studying the simplest orthogonal wavelets, which are the Haar func-
tions. We discuss the decomposition of Lp(R) using the Haar expansion, the char-
acterization of certain smoothness spaces in terms of the coefficients in the Haar
expansion, the fast Haar transform, and multivariate Haar functions. Section 3
concerns itself with the construction of wavelets. It begins with a discussion of
the properties of shift-invariant spaces, and then gives an overview of the construc-
tion of univariate wavelets and prewavelets within the framework of multiresolution.
Later, mention is made of Daubechies’ specific construction of orthonormal wavelets
of compact support. We finish with a discussion of wavelets in several dimensions.

Section 4 examines how to calculate the coefficients of wavelet expansions via
the so-called Fast Wavelet Transform. Section 5 is concerned with the characteri-
zation of functions in certain smoothness classes called Besov spaces in terms of the
size of wavelet coefficients. Section 6 turns to numerical applications. We briefly
mention some uses of wavelets in nonlinear approximation, data compression (and,
more specifically, image compression), and numerical methods for partial differen-
tial equations.

2. The Haar Wavelets

2.1. Overview. The Haar functions are the most elementary wavelets. While
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they have many drawbacks, chiefly their lack of smoothness, they still illustrate in
the most direct way some of the main features of wavelet decompositions. For this
reason, we shall consider in some detail the properties that make them suitable for
numerical applications. We hope that the detail we provide at this stage will render
more convincing some of the later statements we make, without proof, about more
general wavelets.

We consider first the univariate case. Let H := χ[0,1/2) − χ[1/2,1) be the Haar
function that takes the value 1 on the left half of [0, 1] and the value −1 on the
right half. By translation and dilation, we form the functions

(2.1.1) Hj,k := 2k/2H(2k· − j), j, k ∈ Z.

Then, Hj,k is supported on the dyadic interval Ij,k := [j2−k, (j + 1)2−k).
It is easy to see that these functions form an orthonormal system. In fact,

given two of these functions Hj,k, Hj′,k′ , k
′ ≥ k and (j, k) 6= (j′, k′), we have

two possibilities. The first is that the dyadic intervals Ij,k and Ij′,k′ are disjoint,
in which case

∫
R
Hj,kHj′,k′ = 0 (because the integrand is identically zero). The

second possibility is that k′ > k and Ij′,k′ is contained in one of the halves J of Ij,k.
In this case Hj,k is constant on J while Hj′,k′ takes the values ±1 equally often on
its support. Hence, again

∫
R
Hj,kHj′,k′ = 0.

We want next to show that {Hj,k | j, k ∈ Z} is complete in L2(R). The following
development gives us a chance to introduce the concept of multiresolution, which
is the main vehicle for constructing wavelets and which will be discussed in more
detail in the section that follows. Let S := S0 denote the subspace of L2(R) that
consists of all piecewise-constant functions with integer breakpoints; i.e., functions
in S are constant on each interval [j, j+1), j ∈ Z. Then S is a shift-invariant space:
if S ∈ S, each of its shifts, S( · + k), k ∈ Z, is also in S. A simple orthonormal
basis for S is given by the shifts of the function φ := χ[0,1]. Namely, each S ∈ S
has a unique representation

(2.1.2) S =
∑

j∈Z

c(j)φ( · − j), (c(j)) ∈ ℓ2(Z).

By dilation, we can form a scale of spaces

Sk := {S(2k · ) | S ∈ S}, k ∈ Z.

Thus, Sk is the space of piecewise-constant L2(R) functions with breakpoints at
the dyadic integers j2−k. The normalized dyadic shifts φj,k := 2k/2φ(2k· − j) =

2k/2φ(2k( · − j2−k)) with step j2−k, j ∈ Z, of the function φ(2k · ), form an or-
thonormal basis for Sk. However, to avoid possible confusion, we note that the
totality of all such functions φj,k is not a basis for the space L2(R) because there

is redundancy. For example, φ = (φ0,1 + φ1,1)/
√
2.

Clearly, we have Sk ⊂ Sk+1, k ∈ Z, so the spaces Sk get “thicker” as k gets
larger and “thinner” as k gets smaller. We are interested in the limiting spaces

(2.1.3) S∞ :=
⋃

Sk and S−∞ :=
⋂

Sk,
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since these spaces hold the key to showing that the Haar basis is complete. We
claim that

(2.1.4) S∞ = L2(R) and S−∞ = {0}.

The first of these claims is equivalent to the fact that any function in L2(R) can
be approximated arbitrarily well (in the L2(R) norm) by the piecewise-constant
functions from Sk provided k is large enough. For example, it is enough to ap-
proximate f by its best L2(R) approximation from Sk. This best approximation is
given by the orthogonal projector Pk from L2(R) onto Sk. It is easy to see that

Pkf(x) =
1

|Ij,k|

∫

Ij,k

f, x ∈ Ij,k, j ∈ Z.

To verify the second claim in (2.1.4), we suppose that f ∈ ⋂Sk. Then, f is
constant on each of (−∞, 0) and [0,∞), and since f ∈ L2(R), we must have f = 0
a.e. on each of these intervals.

Now, consider again the projector Pk from L2(R) onto Sk. By (2.1.4), Pkf → f ,
k → ∞. We also claim that Pkf → 0, k → −∞. Indeed, if this were false, then we
could find a C > 0 and a subsequence mj → −∞ for which ‖Pmj

f‖L2(R) ≥ C for
all mj . By the weak-∗ compactness of L2(R), we can also assume that Pmj

f → g,
weak-∗, for some g ∈ L2(R). Now, for any m ∈ Z, all Pmj

f are in Sm for mj

sufficiently large and negative. Since Sm is weak-∗ closed, g ∈ Sm. Hence g ∈ ⋂Sm
implies g = 0 a.e. This gives a contradiction because by orthogonality

∫

R

|Pmj
f |2 dx =

∫

R

fPmj
f dx→

∫

R

fg dx = 0.

It follows that each f ∈ L2(R) can be represented by the series

(2.1.5) f =
∑

k∈Z

(Pkf − Pk−1f) =
∑

k∈Z

Qkf, Qk−1 := Pk − Pk−1

because the partial sums, Pnf − P−nf , of this series tend to f as n→ ∞.
To complete the construction of the Haar wavelets, we need the following simple

remarks about projections. If Y ⊂ X are two closed subspaces of L2(R) and PX
and PY are the orthogonal projectors onto these spaces, then Q := PX − PY is the
orthogonal projector from L2(R) onto X⊖Y , the orthogonal complement of Y in X
(this follows from the identity PY PX = PY ). Thus, the operator Qk−1 := Pk−Pk−1

appearing in (2.1.5) is the orthogonal projector onto W k−1 := Sk ⊖ Sk−1. The
spaces W k are the dilates of the wavelet space

(2.1.6) W := S1 ⊖ S0.

Since the spaces W k, k ∈ Z, are mutually orthogonal, we have W k ⊥ W j, j 6= k,
and (2.1.5) shows that L2(R) is the orthogonal direct sum of the W k:

(2.1.7) L2(R) =
⊕

k∈Z

W k.
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How does the Haar function fit into all this? Well, the main point is that
H and its translates H( · − k) form an orthonormal basis for W . Indeed, H =
2φ(2 · )− P0(2φ(2 · )), which shows that H is in S1 ⊖ S0 =W . On the other hand,
the identities H + φ = 2φ(2 · ) and φ − H = 2φ(2 · − 1) show that the shifts of φ
together with the shifts of H will generate all the half-shifts of η := φ(2 · ). Since

the half-shifts of
√
2 η form an orthonormal basis for S1, the shifts of H must be

complete in W .
By dilation, the functions Hj,k, j ∈ Z, form a complete orthonormal system for

W k. Hence, we can represent the orthogonal projector Qk onto W k by

Qkf =
∑

j∈Z

〈f,Hj,k〉Hj,k.

Using this in (2.1.5), we have for any f ∈ L2(R) the decomposition

(2.1.8) f =
∑

k∈Z

∑

j∈Z

〈f,Hj,k〉Hj,k.

In other words, the functions Hj,k, j, k ∈ Z, form an orthonormal basis for L2(R).

2.2. The Haar decomposition in Lp(R). While the Haar decomposition is
initially defined only for functions in L2(R), it is worth noting that Haar decom-
positions also hold for other spaces of functions. In this section, we shall discuss
the Haar representation for functions in Lp(R), 1 ≤ p <∞. A similar analysis can
be given when p = ∞ if L∞(R) is replaced by the space of uniformly continuous
functions that vanish at ∞, equipped with the L∞(R) norm.

If f ∈ Lp(R), the Haar coefficients 〈f,Hj,k〉 are well defined and we can ask
whether the Haar series (2.1.8) converges in Lp(R) to f . To answer this question, we
fix a value of 1 ≤ p <∞ and a k ∈ Z and examine the projector Pk, which is initially
defined only on L2(R). For any f ∈ L2(R), we have Pkf =

∑
I∈Dk

fIχI where Dk
denotes the collection of dyadic intervals of length 2−k, and where fI :=

1
|I|

∫
I
f dx,

I ∈ Dk, is the average of f over I. In this form, the projector Pk has a natural
extension to Lp(R) and takes values in the space Sk(χ, Lp(R)) of all functions in
Lp(R) that are piecewise-constant functions with breakpoints at the dyadic integers
j2−k, j ∈ Z.

In representing Pk on Lp(R), it is useful to change our normalization slightly.
We fix a value of p and consider the Lp(R)-normalized characteristic functions

φj,k,p := 2k/pφ(2k· − j), φ := χ[0,1], which satisfy
∫
R
|φj,k,p|p dx = 1. Then,

Pkf =
∑

j∈Z

〈f, φj,k,p′〉φj,k,p,
1

p
+

1

p′
= 1.

From Hölder’s inequality, we find |〈f, φj,k,p′〉|p ≤
∫
Ij,k

|f |p dx and so

‖Pkf‖pLp(R)
=

∑

j∈Z

|〈f, φj,k,p′〉|p ≤
∑

j∈Z

∫

Ij,k

|f |p dx =

∫

R

|f |p dx.
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Therefore, Pk is a bounded operator with norm 1 on the space Lp(R).
If f ∈ Lp(R), then since Pk is a projector of norm one,

(2.2.1) ‖f − Pkf‖Lp(R) = inf
S∈Sk

‖(I − Pk)(f − S)‖Lp(R) ≤ 2 dist(f,Sk)Lp(R).

It follows that Pkf → f in Lp(R) for each f ∈ Lp(R).
On the other hand, consider Pkf as k → −∞. If f is continuous and of compact

support then at most 2 terms in Pkf are nonzero for k large negative and each
coefficient is ≤ C2k/p

′

. Hence ‖Pkf‖Lp(R) → 0 provided p′ < ∞, i.e., p > 1. This
shows that

(2.2.2) f =
∑

k∈Z

(Pkf − Pk−1f) =
∑

k∈Z

∑

j∈Z

〈f,Hj,k〉Hj,k.

in the sense of Lp(R) convergence. We see that the Haar representation holds for
functions in Lp(R) provided p > 1.

But what happens when p = 1? Well, as is typical for orthogonal decompositions,
the expansion (2.2.2) cannot be valid. Indeed, each of the functions appearing on
the right in (2.2.2) has mean value zero. If g ∈ L1(R) has mean value zero and f is
an arbitrary function from L1(R), then

∫

R

|f − g| dx ≥ |
∫

R

f dx−
∫

R

g dx| = |
∫

R

f dx|.

This means that the sum in (2.2.2) cannot possibly converge in L1(R) to f unless
f has mean value zero.

The above phenomenon is typical of decompositions for orthogonal wavelets ψ:
They cannot represent all functions in L1(R). However, if ψ is smooth enough, the
representation (2.2.2) will hold for the Hardy space H1(R) used in place of L1(R),
and in fact this representation will then hold for functions in the Hardy spaces
Hp(R) for a certain range of 0 < p < 1 that depends on the smoothness of ψ. We
shall not discuss further the behavior of orthogonal wavelets in Hp spaces but the
interested reader can consult Frazier and Jawerth [FJ] for a corresponding theory
in a slightly different setting.

2.3. Smoothness spaces. We noted earlier the important fact that wavelet de-
compositions provide a description of smoothness spaces in terms of the wavelet
coefficients. We wish to illustrate this point with the Haar wavelets and the Lip-
schitz spaces in Lp(R), 1 < p <∞.

The Lipschitz spaces Lip(α, Lp(R)) of Lp(R), 0 < α ≤ 1, 1 ≤ p ≤ ∞, consist of
all functions f ∈ Lp(R) for which

‖f − f( · + h)‖Lp(R) = O(hα), h→ 0.

A seminorm for this space is provided by

|f |Lip(α,Lp(R)) := sup
0<h<∞

h−α‖f − f( · + h)‖Lp(R).
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The relationship between the smoothness of f and the size of its Haar coefficients
rests on three fundamental inequalities. The first of these says that for a fixed k ∈ Z,
the Haar functions Hj,k, j ∈ Z, are Lp(R)-stable. Because of the disjoint support
of the Hj,k, j ∈ Z, stability takes the following particularly simple form: for any
sequence (c(j)) ∈ ℓp(Z) and S =

∑
j∈Z

c(j)Hj,k, we have

(2.3.1) ‖S‖Lp(R) =

(∑

j∈Z

|c(j)|p2kp(1/2−1/p)

)1/p

.

This follows by integrating the identity

|S|p =
∑

j∈Z

|c(j)|p|Hj,k|p.

The other two inequalities are related to the approximation properties of Sk and
the projectors Pk:
(2.3.2)

(J) ‖f − Pkf‖Lp(R) ≤ 2 · 2−kα|f |Lip(α,Lp(R)), 0 < α ≤ 1, 1 ≤ p ≤ ∞.

(B) |S|Lip(1/p,Lp(R)) ≤ 2 · 2k/p‖S‖Lp(R), S ∈ Sk(χ, Lp(R)), 1 ≤ p ≤ ∞.

The first of these, often called a Jackson inequality (after similar inequalities estab-
lished by D. Jackson for polynomial approximation), tells how well functions from
Lip(α, Lp(R)) can be approximated by the elements of Sk. The second inequal-
ity is known as a Bernstein inequality because of its similarity with the classical
Bernstein inequalities for polynomials, established by S. Bernstein.

We shall prove (2.3.2) (J) and (B) for 1 ≤ p <∞. If I ∈ Dk and h := |I| = 2−k,
then, for all x ∈ I, we obtain

|f(x)− fI | ≤
1

|I|

∫

I

|f(x)− f(y)| dy

≤
(

1

|I|

∫

I

|f(x)− f(y)|p dy
)1/p

≤
(

1

|I|

∫ h

−h

|f(x)− f(x+ s)|p ds
)1/p

.

If we raise these last inequalities to the power p, integrate over I, and then sum
over all I ∈ Dk, we obtain

‖f − Pkf‖pLp(R)
≤ 1

h

∫ h

−h

∫

R

|f(x)− f(x+ s)|p dx ds ≤ 2|h|αp|f |pLip(α,Lp(R))
,

which implies the Jackson inequality.
The Jackson inequality can also be proved from more general principles. Since

the Pk have norm 1 on Lp(R) and are projectors, we have

(2.3.3) ‖f − Pkf‖Lp(R) ≤ (1 + ‖Pk‖) dist(f,Sk)Lp(R) ≤ 2 dist(f,Sk)Lp(R).

Thus, the Jackson inequality follows from the fact that functions in Lip(α, Lp(R))
can be approximated by the elements of Sk with an error not exceeding the right
side of (2.3.2)(J).
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To prove the Bernstein inequality, we note that any S =
∑
j∈Z

c(j)χIj,k in

Sk(χ, Lp(R)) has norm:

(2.3.4) ‖S‖pLp(R)
=

∑

j∈Z

|c(j)|p|Ij,k| =
∑

j∈Z

|c(j)|p2−k.

We fix an h > 0. If h ≥ 2−k (i.e., h−1/p ≤ 2k/p), then

h−1/p‖S( · + h) − S‖Lp(R) ≤ 2k/p(‖S( · + h)‖Lp(R) + ‖S‖Lp(R)) = 2 · 2k/p‖S‖Lp(R).

If h < 2−k then

|S(x+ h)− S(x)| =
{

0, x ∈ [j2−k, (j + 1)2−k − h),

|c(j + 1)− c(j)|, x ∈ [(j + 1)2−k − h, (j + 1)2−k).

Therefore

h−1/p‖S( · + h) − S‖Lp(R) = h−1/p

(∑

j∈Z

|c(j + 1)− c(j)|ph
)1/p

= 2k/p
(∑

j∈Z

|c(j + 1)− c(j)|p2−k
)1/p

= 2k/p‖S( · + 2−k)− S‖Lp(R) ≤ 2 · 2k/p‖S‖Lp(R).

With the Jackson and Bernstein inequalities in hand, it is now easy to show that

(2.3.5) |f |Lip(α,Lp(R)) ≈ sup
k∈Z

2k(α+1/2−1/p)

(∑

j∈Z

|〈f,Hj,k〉|p
)1/p

, 0 < α < 1/p.

(It will be convenient to use the notation A ≈ B to mean that the two ratios A/B
and B/A of the functions A and B are bounded from above independently of the
variables; in (2.3.5), independently of f .) First, from the Jackson inequality,

‖Pkf −Pk−1f‖Lp(R) ≤ ‖f −Pkf‖Lp(R) + ‖f −Pk−1f‖Lp(R) ≤ C 2−kα|f |Lip(α,Lp(R)).

If we write Pkf−Pk−1f =
∑
j∈Z

〈f,Hj,k−1〉Hj,k−1 and replace ‖Pkf−Pk−1f‖Lp(R)

by the sum in (2.3.1) (with c(j) = 〈f,Hj,k−1〉), we obtain that the right side of
(2.3.5) does not exceed a multiple of the left.

To reverse this inequality, we fix a value of h and choose n ∈ Z so that 2−n ≤
h ≤ 2−n+1. We write f =

∑
k∈Z

wk with wk := (Pk+1f − Pkf) and estimate

(2.3.6) ‖f( · + h) − f‖Lp(R)

≤
∑

k≥n

‖wk( · + h)− wk‖Lp(R) +
∑

k<n

‖wk( · + h)− wk‖Lp(R).
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The first sum does not exceed
(
sup
k≥n

2kα‖wk‖Lp(R)

)(∑

k≥n

2−kα
)

≤ Chα sup
k≥n

2kα‖wk‖Lp(R).

Similarly, using the Bernstein inequality, the second sum does not exceed

h1/p
∑

k<n

|wk|Lip(1/p,Lp(R)) ≤ C h1/p
∑

k<n

2k/p‖wk‖Lp(R)

≤ C h1/p
(
sup
k<n

2kα‖wk‖Lp(R)

)(∑

k<n

2k(1/p−α)
)

≤ C hα sup
k<n

2kα‖wk‖Lp(R).

If we write wk =
∑
j∈Z

〈f,Hj,k〉Hj,k and use (2.3.1) to replace ‖wk‖Lp(R) by

2k(1/2−1/p)

(∑

j∈Z

|〈f,Hj,k〉|p
)1/p

in each of these expressions, and then use the resulting expression in (2.3.6), we
obtain

‖f( · + h)− f‖Lp(R) ≤ Chα sup
k∈Z

2k(α+1/2−1/p)

(∑

j∈Z

|〈f,Hj,k〉|p
)1/p

,

which shows that the left side of (2.3.5) does not exceed a multiple of the right.
The restriction α < 1/p arises because the Haar function is not smooth; for

smoother wavelets, the range of α can be increased.

2.4. The fast Haar transform. In numerical applications of the Haar decompo-
sition, one must work with only a finite number of the functions Hj,k. The choice
of which functions to use is often made as follows. Given a function f ∈ L2(R), we
choose a large value of n, compatible with the accuracy we wish to achieve, and
we replace f by Pnf with Pn, as before, the L2(R) projector onto Sn, the space
of piecewise-constant functions in L2(R) with breakpoints at the dyadic integers
j2−n, j ∈ Z. If f has compact support then Pnf is a finite linear combination of
the characteristic functions χI , I ∈ Dn. If f does not have compact support, it
is necessary to truncate this sum (which is justified because

∫
R\[−a,a]

|f |2 dx → 0,

a→ ∞).
We can now write

(2.4.1) Pnf = (Pnf − Pn−1f) + · · ·+ (P1f − P0f) + P0f = P0f +

n−1∑

k=0

Qkf,

which is a finite Haar decomposition. We have started this decomposition with P0f
but we could have equally well started at any other dyadic level.
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The fast Haar transform gives an efficient method for finding the coefficients in
the expansions

(2.4.2) Qkf =
∑

j∈Z

d(j, k)Hj,k, d(j, k) := 〈f,Hj,k, 〉

and

(2.4.3) Pkf =
∑

j∈Z

c(j, k)φj,k, c(j, k) := 〈f, φj,k〉.

These coefficients are related to the integrals of f over the intervals Ij,k :=
[j2−k, (j + 1)2−k):

c(j, k) = 2k/2
∫

Ij,k

f dx,

d(j, k) = 2k/2
[ ∫

I2j,k+1

f dx−
∫

I2j+1,k+1

f dx

]
.

Therefore, if the coefficients c(j, k + 1), j ∈ Z, are known, then

(2.4.4)

c(j, k) =
1√
2
(c(2j, k + 1) + c(2j + 1, k + 1)),

d(j, k) =
1√
2
(c(2j, k + 1)− c(2j + 1, k + 1)).

In other words, starting with the known values of c(j, n) at level n, we can iter-
atively compute all values d(j, k) and c(j, k) needed for (2.4.1) from (2.4.4). The
computation of the c(j, k) at dyadic levels k 6= 0 is necessary for the recurrence
even though we are in the end not interested in their values.

There is a similar formula for reconstructing a function from its Haar coefficients.
Now, suppose that we know the coefficients appearing in (2.4.1), i.e., the values
c(j, 0), j ∈ Z, and d(j, k), j ∈ Z, k = 1, . . . , n, and we wish to find c(j, n), i.e., to
reconstruct f . For this we need only use the recursive formulas

c(2j, k + 1) =
1√
2
(c(j, k) + d(j, k)),

c(2j + 1, k + 1) =
1√
2
(c(j, k)− d(j, k)).

More information on the structure of the fast Haar transform can be found in §5.
2.5. Multivariate Haar functions. There is a simple method to construct
multivariate wavelets from a given univariate wavelet, which, for the Haar wavelets,
takes the following form. Let φ0 := φ = χ[0,1] and φ1 := ψ = H and let V

denote the set of vertices of the cube Ω := [0, 1]d. For each v = (v1, . . . , vd) in

V and x = (x1, . . . , xd) from Rd, we let ψv(x) :=
∏d
i=1 φvi(xi). The functions

ψv are piecewise constant, taking the values ±1 on the d-tants of Ω. The set
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Ψ := {ψv | v ∈ V, v 6= 0} is the set of multidimensional Haar functions; there are
2d − 1 of them. They generate by dilation and translation an orthonormal basis
for L2(R

d). That is, the collection of functions 2kd/2ψv(2
k· − j), j ∈ Zd, k ∈ Z,

v ∈ V \ {0}, forms a complete orthonormal basis for L2(R
d).

Another way to view the multidimensional Haar functions is to consider the
shift-invariant space S of piecewise-constant functions on the dyadic cubes of unit
length in Rd. A basis for S is provided by the shifts of χ[0,1]d. Note that the space S
is the tensor product of the univariate spaces of piecewise-constant functions with
integer breakpoints. The collection of all shifts of the Haar functions ψv ∈ Ψ forms
an orthonormal basis for the space W := S1 ⊖ S0. Properties of the multivariate
Haar wavelets follow from the univariate Haar function. For example, there is a
fast Haar transform and a characterization of smoothness spaces in terms of Haar
coefficients. We leave the formulation of these properties to the reader.

3. The Construction of Wavelets

3.1. Overview. We turn now to the construction of smoother orthogonal wave-
lets. Almost all constructions of orthogonal wavelets begin by using multiresolu-
tion, which was introduced by Mallat [Ma] (an interesting exception, presented by
Strömberg [St], apparently gave the first smooth orthogonal wavelets). We begin
with a brief overview of multiresolution that we will expand on in later sections.

Let φ ∈ L2(R
d) and let S := S(φ) be the shift-invariant subspace of L2(R

d)
generated by φ. That is, S(φ) is the L2(R

d) closure of finite linear combinations of
φ and its shifts φ( · + j), j ∈ Zd. By dilation, we form the scale of spaces

(3.1.1) Sk := {S(2k · ) | S ∈ S}.

Then Sk is invariant under dyadic shifts j2−k, j ∈ Zd. In the construction of Haar
functions, we had d = 1, and S was the space of piecewise-constant functions with
integer breakpoints. That is, S = S(φ) with φ := χ := χ[0,1]. Other examples for
the reader to keep in mind, which result in smoother wavelets, are to take for S the
space of cardinal spline functions of order r in L2(R). A cardinal spline is a piecewise
polynomial function defined on R, of local degree < r, that has breakpoints at the
integers and has global smoothness Cr−2. Then S = S(Nr) with Nr the (nonzero)
cardinal B-spline that has knots at 0, 1, . . . , r. These B-splines are easiest to define
recursively: N1 := χ and Nr := Nr−1 ∗N1, with the usual operation of convolution

f ∗ g(x) :=
∫

R

f(x− y)g(y) dy.

For example, N2 is a hat function, N3 a C1 piecewise quadratic, and so on. In the
multivariate case, the primary examples to keep in mind are the tensor product
of univariate B-splines: N(x) := N(x1, . . . , xd) := N(x1) · · ·N(xd), and the box
splines, which will be introduced and discussed later.

Multiresolution begins with certain assumptions on the scale of spaces Sk and
shows under these assumptions how to construct an orthogonal wavelet ψ from the
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generating function φ. The usual assumptions are:

(3.1.2)

(i) Sk ⊂ Sk+1, k ∈ Z;

(ii)
⋃

Sk = L2(R
d);

(iii)
⋂

Sk = {0};
(iv) {φ( · − j)}j∈Zd forms an L2(R

d)-stable basis for S.

We have already seen the role of (ii) and (iii) in the context of Haar decompositions.
The assumption (iv) means that there exist positive constants C1 and C2 such that
each S ∈ S has a unique representation

(3.1.3)

(i) S =
∑

j∈Zd

c(j)φ( · − j), and

(ii) C1‖S‖L2(Rd) ≤
( ∑

j∈Zd

|c(j)|2
)1/2

≤ C2‖S‖L2(Rd).

If φ has L2(R
d)-stable shifts then it follows by a change of variables that for each

k ∈ Z, the function 2kd/2φ(2k · ) has L2(R
d)-stable 2−kZd shifts. We shall mention

later how the assumption (3.1.2)(iv) can be weakened.
Assumption (3.1.2)(i) is a severe restriction on the underlying function φ. Be-

cause each space Sk is obtained from S by dilation, we see that (3.1.2)(i) is satisfied
if and only if S ⊂ S1, or, equivalently, if φ is in the space S1. From the L2(R

d)-
stability of the set {φ( · − j)}j∈Zd , this is equivalent to

(3.1.4) φ(x) =
∑

j∈Zd

a(j)φ(2x− j)

for some sequence (a(j)) ∈ ℓ2(Z
d). Equation (3.1.4) is called the refinement equa-

tion for φ, since it says that φ can be expressed as a linear combination of the
scaled functions φ(2 · − j), which are at the finer dyadic level. We shall discuss
the refinement equation in more detail later and for now only point out that this
equation is well known for the B-spline of order r, for which it takes the form

(3.1.5) Nr(x) = 2−r+1
r∑

j=0

(
r

j

)
Nr(2x− j).

Because of (3.1.2)(i), the wavelet space

W := S1 ⊖ S0

is a subspace of S1. By dilation, we obtain the scaled wavelet spaces W k, k ∈ Z.
Then, W k is orthogonal to Sk and

(3.1.6) Sk+1 = Sk ⊕W k.
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Since W j ⊂ Sk for j < k, it follows that Wj and Wk are orthogonal. From this
and (3.1.2)(ii) and (iii), we obtain

(3.1.7) L2(R
d) =

⊕

k∈Z

W k.

We find wavelets by showing that W is shift invariant and finding its generators.
For example, when d = 1, W is a principal shift-invariant space, that is, it can
be generated by one element ψ, i.e. W = S(ψ). Of course, there are many such
generators ψ for W . In the multivariate case, the space W will be generated by
2d − 1 such functions.

We find an orthogonal wavelet in one dimension by determining a ψ whose shifts
form an orthonormal basis for W . Indeed, once such a function ψ is found, the
scaled functions ψj,k := 2k/2ψ(2k· − j) will then form an orthonormal basis for
L2(R).

Generators ψ for W whose shifts are not orthogonal are nonorthogonal wavelets.
For example, if ψ has shifts that are L2(R)-stable (but not orthonormal), the func-
tions ψj,k := 2k/2ψ(2k· − j) form an L2(R)-stable basis for L2(R). While they do
not form an orthonormal system, they still possess orthogonality between levels,

∫

R

ψj,kψj′,k′ dx = 0, k 6= k′,

which is enough for most applications. After Battle [Ba], we call such functions ψ
prewavelets.

The construction of (univariate) orthogonal wavelets introduced by Mallat [Ma],
begins with a function φ that has orthonormal shifts (rather than just L2(R)-
stability). Mallat shows that the function

(3.1.8) ψ :=
∑

j∈Z

(−1)ja(1− j)φ(2 · − j),

with (a(j)) the refinement coefficients of (3.1.4), is an orthogonal wavelet. (It
is easy to check that ψ is orthogonal to the shifts of φ by using the refinement
equation (3.1.4)). A construction similar to that of Mallat was used by Chui and
Wang [CW1] and Micchelli [Mi] to produce prewavelets. In the construction of
prewavelets, they begin with a function φ that has L2(R)-stable shifts (but not
necessarily orthonormal shifts). Then a formula similar to (3.1.8) gives a prewavelet
ψ (see (3.4.15)).

To find generators for the wavelet space W , we shall follow the construction of
de Boor, DeVore, and Ron [BDR1], which is somewhat different from that of Mallat.
We simply take suitable functions η in the space S1 and consider their orthogonal
projections Pη onto the space S. The error function w := η−Pη is then an element
of W . By choosing appropriate functions η, we obtain a set of generators for W .
In one dimension, only one function is needed to generate W and any reasonable
choice for η results in such a generator. The most obvious choices, η := φ(2 · ) or
η := φ(2 · − 1), lead to the wavelet (3.1.8) or its prewavelet analogue.
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If we begin with the orthonormalized shifts of the B-spline φ = Nr as the basis
for S, the construction of Mallat gives the spline wavelets ψ of Battle-Lemarié (see,
e.g., [Ba]), which have smoothness Cr−2. The support of ψ is all of R, although
ψ does decay exponentially at infinity. More details are given in §3.4. If we do
not orthonormalize the shifts, we obtain the spline prewavelets of Chui and Wang
[CW], which have compact support (in fact minimal support among all functions
in W ).

It is a more substantial problem to construct smooth orthogonal wavelets of
compact support and this was an outstanding achievement of Daubechies [Da] (see
§3.5). Daubechies’ construction depends on finding a compactly supported func-
tion φ ∈ Cr that satisfies the assumptions of multiresolution and has orthonormal

shifts. In this way, she is able to apply Mallat’s construction to obtain a compactly
supported orthogonal wavelet ψ in Cr.

The construction of multivariate wavelets by multiresolution is based on similar
ideas. We want now to find a set of generators Ψ = {ψ} for the wavelet space
W . There are typically 2d − 1 functions in Ψ. This is an orthogonal wavelet set
if the totality of functions ψj,k, j ∈ Zd, k ∈ Z, ψ ∈ Ψ, forms an orthonormal
basis for L2(R

d). For this to hold, it is sufficient to have orthogonality between

ψ( · − j) and ψ̃( · − j′), (j, ψ) 6= (j′, ψ̃). If the shifts of the functions ψ ∈ Ψ form
an L2(R

d)-stable basis for W , we say this is a prewavelet set. In this case, we shall

still have the orthogonality between levels: ψj,k ⊥ ψ̃j′,k′ if k 6= k′. Sometimes we

also require orthogonality between ψ̃ ∈ Ψ and all of the ψ( · − j), j ∈ Zd, ψ 6= ψ̃.
Because the construction of multivariate wavelets is significantly more complicated
and more poorly understood than the construction of wavelets of one variable, we
shall postpone the discussion of multivariate wavelets until §3.6.

In the following sections, we shall show how to construct wavelets and prewavelets
in the setting of multiresolution. These constructions depend on a good description
of the space S := S(φ) in terms of Fourier transforms, which is the topic of the
next section.

3.2. Shift-invariant spaces. Because multiresolution is based on a family of
shift-invariant spaces, it is useful to have in mind the structure of these spaces
before proceeding with the construction of wavelets and prewavelets. The struc-
ture of shift-invariant spaces and their application to approximation and wavelet
construction were developed in a series of papers by de Boor, DeVore, and Ron
[BDR], [BDR1], [BDR2]; much of the material in our presentation is taken from
these references.

We recall that a closed subspace S of L2(R
d) is shift invariant if S( · +j), j ∈ Zd,

is in S whenever S ∈ S. We have already encountered the space S(φ), which is
the L2(R

d)-closure of finite linear combinations of the shifts of φ. We say that
such a space is a principal shift-invariant space (in analogy with principal ideals).
More generally, if Φ is a finite set of L2(R

d) functions, then the space S(Φ) is the
L2(R

d)-closure of finite linear combinations of the shifts of the functions φ ∈ Φ. Of
course, a general shift-invariant subspace of L2(R

d) need not be finitely generated.

We are interested in describing the space S(Φ) in terms of its Fourier transforms.
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We let

f̂(x) :=

∫

Rd

f(y)e−ix·y dy

denote the Fourier transform of an L1(R
d) function f . The Fourier transform has a

natural extension from L1(R
d)∩L2(R

d) to L2(R
d) and more generally to tempered

distributions. We assume that the reader is familiar with the rudiments of Fourier
transform theory.

The Fourier transform of f( · + t), t ∈ Rd, is etf̂ ; we shall use the abbreviated
notation

et(x) := eix·t

for the exponential functions. Now, suppose that the shifts of φ form an L2(R
d)-

stable basis for S(φ). Then from (3.1.3), each S ∈ S(φ) can be written as S =∑
j∈Zd c(j)φ( · − j) with (c(j)) ∈ ℓ2(Z

d). Therefore,

(3.2.1) Ŝ(y) =
∑

j∈Zd

c(j)e−j(y)φ̂(y) = τ(y)φ̂(y), τ(y) :=
∑

j∈Zd

c(j)e−j(y).

Here τ is an L2(T
d) function (i.e., of period 2π in each of the variables y1, . . . , yd).

The L2(R
d)-stability of the shifts of φ can easily be seen to be equivalent to the

statement

(3.2.2) ‖τ‖L2(Td) ≈ ‖S‖L2(Rd).

The characterization (3.2.1) allows one to readily decide when a function is in
S(φ). Even when the shifts of φ are not L2(R

d)-stable, one can characterize S(φ)
by (see [BDR])

(3.2.3) Ŝ(φ) = {Ŝ = τ φ̂ ∈ L2(R
d) | τ is 2π-periodic}.

By dilation, (3.2.3) gives a characterization of the scaled spaces Sk, S = S(φ). For
example, the functions in S1 are characterized by Ŝ = τ η̂ ∈ L2(R

d), η := φ(2 · ),
with τ a 4π-periodic function.

A similar characterization holds for a finite set Φ of generators for a shift-
invariant space S(Φ). We say that this set provides L2(R

d)-stable shifts if the
totality of all functions φ( · − j), j ∈ Zd, φ ∈ Φ, forms an L2(R

d)-stable basis for
S(Φ). In this case, a function S ∈ S(Φ) is described by its Fourier transform

Ŝ =
∑

φ∈Φ

τφφ̂,

where the functions τφ, φ ∈ Φ, are in L2(T
d) and

‖S‖L2(Rd) ≈
∑

φ∈Φ

‖τφ‖L2(Td).

It is clear that the values at points congruent modulo 2π of the Fourier transform

of a function S in S(φ) are related. If we know φ̂(x) and Ŝ(x), then, because τ has
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period 2π, all other values Ŝ(x+α), α ∈ 2πZd, are determined. It is natural to try
to remove this redundancy. The following bracket product is useful for this purpose.
If f and g are in L2(R

d), we define

(3.2.4) [f, g] :=
∑

β∈2πZd

f( · + β)g( · + β).

Then [f, g] is a function in L1(T
d).

One particular use of the bracket product is to relate inner products on Rd to
inner products on Td. For example, if f, g ∈ L2(R

d) and j ∈ Zd, then

(3.2.5) (2π)d
∫

Rd

f(x)g(x− j) dx =

∫

Rd

ej(y)f̂(y)ĝ(y)dy =

∫

Td

ej(θ)[f̂ , ĝ](θ) dθ.

Thus, these inner products are the Fourier coefficients of [f̂ , ĝ]. In particular, a

function f is orthogonal to all the shifts of g if and only if [f̂ , ĝ] = 0 a.e., in which
case one obtains that all shifts of f are orthogonal to all the shifts of g (which also
follows directly by a simple change of variables).

Another application of the bracket product is to relate integrals over Rd to
integrals over Td. For example, if Ŝ = τ φ̂ with τ of period 2π, then

(3.2.6) (2π)d‖S‖L2(Rd) = ‖τ [φ̂, φ̂]1/2‖L2(Td).

Returning to L2(R
d)-stability for a moment, it follows from (3.2.6) and (3.2.2) that

the shifts of φ are L2(R
d)-stable if and only if C1 ≤ [φ̂, φ̂] ≤ C2, a.e., for constants

C1, C2 > 0. Also, the shifts of φ are orthonormal if and only if [φ̂, φ̂] = 1 a.e. For
example, if we begin with a function φ with L2(R

d)-stable shifts, then the function
φ∗ with Fourier transform

(3.2.7) φ̂∗ :=
φ̂

[φ̂, φ̂]1/2

has orthonormal shifts (this is the standard way to orthogonalize the shifts of

φ). Incidentally, this orthogonalization procedure applies whenever [φ̂, φ̂] vanishes
only on a set of measure zero in Td, in particular for any compactly supported φ.
That is, it is not necessary to assume that φ has L2(R

d)-stable shifts in order to
orthonormalize its shifts

The bracket product is useful in describing projections onto shift-invariant
spaces. Let φ be an arbitrary L2(R

d) function and let P := Pφ denote the L2(R
d)

projector onto the space S(φ). Then for each f ∈ L2(R
d), Pf is the best L2(R

d)
approximation to f from S(φ). It was shown in [BDR] that

(3.2.8) P̂ f =
[f̂ , φ̂]

[φ̂, φ̂]
φ̂.

Here and later, we use the convention that 0/0 = 0. We note some properties

of (3.2.8). First, [f̂ , φ̂] is 2π-periodic and therefore the form of P̂ f matches that
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required by (3.2.3). If φ has orthonormal shifts, then [φ̂, φ̂] = 1 a.e., and in view

of (3.2.5), the formula (3.2.8) is the usual one for the L2(R
d) projector. If φ̂/[φ̂, φ̂]

is the Fourier transform of an L2(R
d) function γ (this holds, for example, if φ has

L2(R
d)-stable shifts), then

(3.2.9) Pf =
∑

j∈Zd

γj(f)φ( · − j), γj(f) :=

∫

Rd

f(x)γ(x− j) dx,

as follows from (3.2.5). Whenever φ has compact support and L2(R
d)-stable shifts,

the function γ decays exponentially.
The bracket product is also useful in describing properties of shift-invariant

spaces S(Φ) that are generated by a finite set Φ of functions from L2(R
d). The

properties of the generating set Φ are contained in its Gramian

(3.2.10) G(Φ) :=
(
[φ̂, ψ̂]

)
φ,ψ∈Φ

.

This is a matrix of 2π-periodic functions from L1(T
d). For example, the shifts of

the functions in Φ form an orthonormal basis for S(Φ) if and only if G(Φ) is the
identity matrix a.e. on Td. The generating set Φ provides an L2(R

d)-stable basis
for S(Φ) if and only if G(Φ) and G(Φ)−1 exist and are a.e. bounded on Td with
respect to some (and then every) matrix norm. For proofs, see [BDR2].

3.3. The conditions of multiresolution. The question arises as to when the
conditions (3.1.2) of multiresolution are satisfied for a function φ ∈ L2(R

d). We
mention, without proof, two sufficient conditions on φ for (3.1.2)(ii) and (iii) to
hold. Jia and Micchelli [JM] have shown that if the shifts of φ are L2(R

d)-stable,
if φ satisfies the refinement equation (3.1.4) with coefficients (a(j)) in ℓ1(Z

d), and
if
∑
j∈Zd |φ(x+ j)| is in L2(T

d), then (3.1.2)(ii) and (iii) are satisfied.

On the other hand, in [BDR1] it is shown that (3.1.2)(ii) and (iii) are satisfied
whenever φ ∈ L2(R

d) satisfies the refinement condition (3.1.2)(i) and, in addition,

supp[φ̂, φ̂] = Td; by this we mean that [φ̂, φ̂] vanishes only on a set of measure
zero. In particular, these conditions are satisfied whenever φ has compact support
and satisfies the refinement condition. Since these conditions are satisfied for all
functions φ that we shall encounter (in fact for all functions φ that have been
considered in wavelet construction by multiresolution), it is not necessary to verify
separately (3.1.2)(ii) and (iii)—they automatically hold. We also note that in the
construction of wavelets and prewavelets in [BDR1] it is not necessary to assume
that φ has L2(R

d)-stable shifts.
We now discuss the refinement condition (3.1.2)(i). In view of the characteriza-

tion (3.2.3) of shift-invariant spaces, this condition is equivalent to

(3.3.1) φ̂ = Aη̂, η := φ(2 · )

for some 4π-periodic function A. If φ has L2(R
d)-stable shifts then this condition

becomes the refinement equation (3.1.4) and A(y) =
∑
j∈Zd a(j)e−j/2 in the sense

of L2(2T
d) convergence.
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It was shown in [BDR1] that one can construct generators for the wavelet space
W even when (3.1.2)(iv) does not hold. For example, this condition can be replaced

by the assumption that supp φ̂ = Rd. We also note that if [φ̂, φ̂] is nonzero a.e., then
we can always find a generator φ∗ for S with orthonormal shifts, so the condition
(3.1.2)(ii) is satisfied for this generator (and the other conditions of multiresolution
remain the same). However, the generator φ∗ does not satisfy the same refinement
equation as φ (for example, the refinement equation for φ∗ may be an infinite sum
even if the equation for φ is a finite sum) and φ∗ may not have compact support
even if φ has compact support, so the construction that gives φ∗ is not completely
satisfactory. Furthermore, we would like to describe the wavelets and prewavelets
directly in terms of the original φ. This is especially the case when φ does not
have L2(R

d)-stable shifts, since then we can say nothing about the decay of φ∗
even when φ has compact support. In the remainder of this presentation, we shall
assume that φ has L2(R

d)-stable shifts.

3.4. Constructions of univariate wavelets. In this section we restrict our
attention to wavelets in one variable, because multiresolution is simpler and better
understood for a single variable than for several variables. We suppose that φ
satisfies the assumptions (3.1.2) of multiresolution and follow the ideas presented
in [BDR1].

Fundamentally, the approach of [BDR1] is quite simple. We take a function
η ∈ S1 and consider its error w := η − Pη of best L2(R) approximation by the
elements of S0 = S = S(φ). Here P is the L2(R) projector onto S(φ) given by
(3.2.8). Clearly w ∈ W and we shall show that with any reasonable choice for
η, the function w is a generator of W , i.e., W = S(w). Thus, because of the
characterization (3.2.3) of principal shift-invariant spaces, we can obtain all other
generators for w by operations on the Fourier transform side. Here are the details.

We take η := φ(2 · ), which is clearly in S1. Then, w := η − Pη is in W and by
virtue of (3.2.8) has Fourier transform

(3.4.1) ŵ = η̂ − [η̂, φ̂]

[φ̂, φ̂]
φ̂.

It is convenient to introduce (for a function f ∈ L2(R
d)) the abbreviated notation

(3.4.2) f̃ := [f̂ , f̂ ]1/2,

since this expression occurs often in wavelet constructions. Another description of
f̃ is

f̃ =

( ∑

j∈2πZd

|f̂( · + j)|2
)1/2

.

We see that f̃ is a 2π-periodic function, and if f has compact support then f̃2 is
a trigonometric polynomial, because of (3.2.5). The analogue of this function for
half-shifts is

(3.4.3)
˜̃
f :=

( ∑

j∈4πZd

|f̂( · + j)|2
)1/2

,
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which is now a 4π-periodic function. In particular f has orthonormal half-shifts if

and only if
˜̃
f = 2−d/2 a.e., and L2(R

d)-stable half-shifts if and only if C1 ≤ ˜̃
f ≤ C2,

a.e., for constants C1, C2 > 0.
We return now to the construction of wavelets. We can multiply ŵ by any 2π-

periodic function, and as long as the resulting function is in L2(R), it will be the

Fourier transform of a function in W . We multiply (3.4.1) by φ̃2, which clears the
denominator. The result is the function w0 with Fourier transform

(3.4.4) ŵ0 := φ̃2η̂ − [η̂, φ̂]φ̂.

We note that w0 has compact support whenever φ does.
We can calculate the bracket products appearing in (3.4.4) by using the refine-

ment relation φ̂ = Aη̂ (see (3.3.1)) with A a 4π-periodic function. For example, to

calculate φ̃,

φ̃2 =
∑

j∈2πZ

|φ̂( · + j)|2

=
∑

j∈4πZ

(|A( · + j)|2|η̂( · + j)|2 + |A( · + j + 2π)|2|η̂( · + j + 2π)|2)

= |A|2 ˜̃η2 + |A( · + 2π)|2 ˜̃η2( · + 2π).

Similarly, [η̂, φ̂] = A˜̃η
2
+ A( · + 2π)˜̃η

2
( · + 2π). Therefore,

ŵ0 =
{
|A|2 ˜̃η2 + |A( · + 2π)|2 ˜̃η2( · + 2π)− AA˜̃η

2 − A( · + 2π)A˜̃η
2
( · + 2π)

}
η̂

= {A( · + 2π)−A}A( · + 2π)˜̃η
2
( · + 2π)η̂.

We can make one more simplification in the last representation for ŵ0. The
function 1

2e1/2{A−A( · +2π)} is 2π-periodic. Therefore, dividing by this function,
we obtain the function

(3.4.5) ψ̂ := 2e−1/2A( · + 2π)˜̃η
2
( · + 2π)η̂.

It is easy to see (and is shown in (3.4.14)) that ψ is in L2(R). It follows, therefore,
that ψ is in W and S(ψ) ⊂W . The following argument shows that we really have
S(ψ) =W .

If we replace η by η1 := η( · − 1/2) (which is also in S1) and repeat the above
construction, in place of w0 we obtain the function w1 whose Fourier transform is

ŵ1 = e−1/2 {A( · + 2π) + A}A( · + 2π)˜̃η
2
( · + 2π)η̂.

Hence, dividing by A( · + 2π) + A (which is 2π-periodic), we arrive at the same
function ψ. The importance of this fact is that we can reverse these two processes.

In other words, we can multiply ψ̂ by a 2π-periodic function and obtain η̂ − P̂ η

(respectively η̂1 − P̂ η1). Hence, both of these functions are in S(ψ). Since Pη is in
S(φ), η = Pη + (η − Pη) is in S(φ) + S(ψ). Similarly, η1 is in this space. Since
the full shifts of η and η1 generate S1(φ), we must have W = S(ψ). This confirms
our earlier remark that W is a principal shift-invariant space. Since we can obtain
ψ from w and w0 by multiplying by 2π-periodic functions, both w and w0 are also
generators of W .

We consider some examples that show that ψ is the (pre)wavelet constructed by
various authors.
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Orthogonal wavelets. To obtain orthogonal wavelets, Mallat [Ma] begins with a
function φ that satisfies the assumptions (3.1.2) of multiresolution and whose shifts

are orthonormal. This is equivalent to φ̃ = 1 a.e., and (by a change of variables) to

the half-shifts of
√
2 η being orthonormal, i.e., to ˜̃η = 1/2 a.e. When this is used in

(3.4.5), we obtain

(3.4.6) ψ̂ = e−1/2A( · + 2π)η̂,

which is the orthogonal wavelet of Mallat. To see that the shifts of ψ are orthonor-
mal, one simply computes

(3.4.7) ψ̃2 = |A( · + 2π)|2 ˜̃η2 + |A|2 ˜̃η2( · + 2π) =
1

4
{|A( · + 2π)|2 + |A|2} = 1,

where the last equality follows from the identity

(3.4.8)
1 = φ̃2 =

˜̃
φ
2
+

˜̃
φ
2
( · + 2π) = |A|2 ˜̃η2 + |A( · + 2π)|2 ˜̃η2( · + 2π)

=
1

4
{|A( · + 2π)|2 + |A|2}.

The Fourier transform identity (3.4.6) is equivalent to the identity (3.1.8).
We note that from the orthogonal wavelet ψ of (3.1.8) (respectively (3.4.6)),

we obtain all other orthogonal wavelets in W by multiplying ψ̂ by a 2π-periodic
function τ of unit modulus. Indeed, we know that any element w ∈ W satisfies
ŵ = τ ψ̂ with τ ∈ L2(T). To have [ŵ, ŵ] = 1 a.e., the function τ must satisfy
|τ(y)| = 1 a.e. in T.

As an example, we consider the cardinal B-spline Nr of order r. To obtain
orthogonal wavelets by Mallat’s construction, one need only manipulate various
Laurent series. First, one orthogonalizes the shifts of Nr. This gives the spline
φ = Nr whose Fourier transform is

(3.4.9) φ̂ = N̂r :=
N̂r

Ñr
.

It is easy to compute the coefficients in the expansion

(3.4.10) Ñ2
r =

∑

j∈Z

α(j)e−j .

In fact, we know from (3.2.5) that this is a trigonometric polynomial whose coeffi-
cients are

α(j) =

∫

R

Nr(x− j)Nr(x) dx =

∫

R

Nr(r + j − x)Nr(x) dx

= [Nr ∗Nr](j + r) = N2r(j + r), j ∈ Z,

because Nr is symmetric about its midpoint.
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The polynomial ρ2r(z) := zr
∑
j∈Z

α(j)z−j is the Euler-Frobenius polynomial of

order 2r, which plays a prominent role in cardinal spline interpolation (see [Sch1]).
It is well known that ρ2r has no zeros on |z| = 1. Hence, the reciprocal 1/ρ2r is
analytic in a nontrivial annulus that contains the unit circle in its interior. One
can easily find the coefficients of reciprocals and square roots of Laurent series

inductively. By finding the coefficients of ρ
−1/2
2r , we obtain the coefficients β(j)

appearing in the expansion

(3.4.11) φ(x) = Nr(x) =
∑

j∈Z

β(j)Nr(x− j).

Because ρ2r has no zeros on |z| = 1, we conclude that the coefficients β(j) decrease
exponentially. The spline Nr together with its shifts form an orthonormal basis for
the cardinal spline space S(Nr). They are sometimes referred to as the Franklin
basis for S(Nr).

Now that we have the spline φ := Nr in hand, we can obtain the spline wavelet
ψ = N ∗

r of Battle-Lemarié [Ba] from formula (3.1.8). For this, we need to find
the refinement equation for φ. We begin with the refinement equation (3.1.5) for

the B-spline Nr, which we write in terms of Fourier transforms as N̂r = A0η̂0
with η0 := Nr(2 · ) and A0 = 2−r+1

∑r
j=0

(
r
j

)
e−j/2 a 4π-periodic trigonometric

polynomial. It follows that

(3.4.12) φ̂ = Aη̂, η := Nr(2 · ), A(y) =
φ̂(y)

1
2 φ̂(y/2)

= Ñr(y/2)Ñ
−1
r (y)A0(y).

In terms of the B-spline Nr, this gives

(3.4.13) ψ̂(y) = e−1/2(y)A(y + 2π)η̂(y) =
1

2
e−1/2(y)A(y + 2π)Ñ−1

r (y/2)N̂r(y/2).

In other words, to find the orthogonal spline wavelet ψ of (3.4.13), we need to

multiply out the various Laurent expansions making up A( · + 2π)Ñ−1
r ( · /2). This

gives the coefficients γ(j), j ∈ Z, in the representation

ψ(x) =
∑

j∈Z

γ(j)Nr(2x− j).

We emphasize that each of the Laurent series converges in an annulus containing
the unit circle. This means that the coefficients γ(j) converge exponentially to zero
when j → ±∞.

Prewavelets. For the construction of prewavelets, we do not assume that the
shifts of φ are orthonormal, but only that they are L2(R)-stable, i.e., we assume
(3.1.2)(iv). Then, it is easy to see that the function ψ defined by (3.4.5) is a
prewavelet. Indeed, we already know that ψ is a generator for W and it is enough
to check that it has L2(R)-stable shifts. For this, we compute

(3.4.14)
ψ̃2

4
= |A( · + 2π)|2 ˜̃η4( · + 2π)˜̃η

2
+ |A|2 ˜̃η4 ˜̃η2( · + 2π).
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Since the shifts of φ are L2(R)-stable, so are the half-shifts of η. This means that

C1 ≤ ˜̃η ≤ C2 for constants C1, C2 > 0. Moreover, the formula

φ̃2 = |A|2 ˜̃η2 + |A( · + 2π)|2 ˜̃η2( · + 2π)

shows that C1 ≤ |A|2 + |A( · + 2π)|2 ≤ C2, again for positive constants C1, C2.

Combining this information with (3.4.14) shows that ψ̃ is bounded above and below
by positive constants, so that ψ has L2(R)-stable shifts. This also shows that
ψ is in L2(R). The prewavelet ψ was introduced by Chui and Wang [CW] and
independently by Micchelli [M].

We can also find a direct representation for ψ in terms of the shifts of φ(2 · ).
For this we need the Fourier coefficients µ(j) (of e−j/2) for the 4π-periodic function

2A˜̃η:

µ(j) :=
1

4π

∫ 2π

−2π

2A˜̃η
2
ej/2 =

1

4π

∫

R

2φ̂η̂ej/2 =

∫

R

φη( ·+j/2) =
∫

R

φ(x)φ(2x+j) dx.

Using this in (3.4.5), we find that

(3.4.15) ψ =
∑

j∈Z

(−1)j+1µ(j − 1)φ(2 · − j), µ(j) :=

∫

R

φ(x)φ(2x+ j) dx.

If φ has compact support, then clearly ψ also has compact support. Chui and
Wang [CW1] posed the interesting question whether ψ has the smallest support
among all the elements in W , to which they gave the following answer. We assume
that A is a polynomial, i.e., that φ satisfies a finite refinement equation. Next, we
note that because W ⊂ S1, any w ∈W is represented as

(3.4.16) ŵ(y) = e−1/2(y)B(y+ 2π)η̂(y)

with B of period 4π. If B =
∑M

j=m b(j)e−j/2 is a Laurent polynomial with

b(m)b(M) 6= 0, then w has compact support, and we define the length of B to
be M − m. We know that there are nonzero polynomials B that satisfy (3.4.16)

for some w because ˜̃η
2
is a polynomial (since η has compact support) and (3.4.5)

implies that for B0 := A˜̃η
2
, w is the prewavelet ψ ∈W .

B0 may not have minimal length among all such polynomials, however, because
it may be possible to cancel certain symmetric factors from B0. To see this, we write
B0(y) = eM (y/2)P (e−iy/2) with P an algebraic polynomial, and we let Q(z2) :=∏
λ(z−λ), with the product taken over all λ with λ and −λ both zeros of P . Then,

the factorization P (z) = Q(z2)P∗(z) gives the factorization B0(y) = τ(y)B∗(y)
with τ a trigonometric polynomial of period 2π that does not vanish. Therefore,
the function ψ∗ with Fourier transform

(3.4.17) ψ̂∗(y) = e−1/2(y)B∗(y + 2π)η̂(y), B∗(y) := τ−1(y)B0(y),

is inW and has smaller length than B0. A simple argument (which we do not give)
shows that B∗ has smallest length. For most prewavelets of interest, B∗ = B0.
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0 1

Figure 2. The Chui-Wang spline prewavelet for r = 4, which has
support [−3, 4]. The vertical scale is stretched by a factor of eight.

The problem of finding a wavelet w in the form (3.4.16) with B a polynomial
of minimal length, which is solved by w = ψ∗, is not always equivalent to finding
the wavelet with minimal support; here the word “support” means the interval of
smallest length outside of which w vanishes identically. In general, there may be
wavelets w of compact support that can be represented by (3.4.16) with B not
a polynomial. However, Ben-Artzi and Ron [B-AR] show that this is impossible
whenever the following property holds: The linear combination

∑
j∈Z

γ(j)φ( · − j)

(which converges pointwise, since φ has compact support) is identically zero if and
only if all the coefficients γ(j) are 0. Under these assumptions, the wavelet ψ∗ has
minimal support (see [BDR1] for details).

For a prewavelet ψ, we have the wavelet decomposition

(3.4.18) f =
∑

k∈Z

∑

j∈Zd

cj,k(f)ψj,k, cj,k(f) :=

∫

R

fγj,k

where γ has Fourier transform γ̂ = ψ̂/[ψ̂, ψ̂]. This follows from the representation
(3.2.9) for the projector P from L2(R) ontoW . It is useful to note that when ψ has
compact support, the function γ will generally not have compact support because
of the division by the bracket product [ψ̂, ψ̂]. Thus, there is in some sense a trade-
off between the simplicity of the prewavelet and the complexity of the coefficient
functional.

We consider the following important example. Let φ := Nr be the cardinal B-
spline of order r, which is known to have linearly independent shifts. Then, the
function ψ in (3.4.15) is a spline function with compact support. It is easy to see

that A˜̃η
2
has no symmetric zeros so that ψ has minimal support. We note also

that it is shown in [BDR1] that the shifts of ψ are themselves linearly independent.
From formula (3.4.15), we see that ψ is supported on [1− r, r]. Up to a shift, the
spline ψ is the minimally supported spline prewavelet of Chui and Wang [CW]; see
Figure 2.

3.5. Daubechies’ compactly supported wavelets. The orthogonal spline
wavelets of §3.4, which decay exponentially at infinity, can be chosen to have any
specified finite order of smoothness. It is natural to ask whether orthogonal wave-
lets can be constructed that have both any specified finite order of smoothness
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and compact support. A celebrated construction of Daubechies [Da] leads to such
wavelets, which are frequently used in numerical applications. Space prohibits us
from giving all the details of Daubechies’ construction, but the following discussion
will outline the basic ideas.

To construct a compactly supported wavelet with a prescribed smoothness or-
der r and compact support, one finds a special finite sequence (a(j)) such that
the refinement equation (3.1.4) has a solution φ ∈ Cr with orthogonal shifts. The
orthogonal wavelet ψ of (3.4.5) will then obviously have compact support and the
same smoothness. Before we begin, it is necessary to understand which properties
of the sequence (a(j)) guarantee the existence of a function φ with the desired
properties, i.e., we need to understand the nature of solutions to the refinement
equation (3.1.4). This has been studied in another context, namely, in subdivi-
sion algorithms for computer aided geometric design (see, for example, the paper
of Cavaretta, Dahmen, and Micchelli [CDM] for a discussion of subdivision). As
was pointed out by Dahmen and Micchelli [DM], it is possible to derive part of
Daubechies’ construction from the subdivision approach. However, we shall de-
scribe Daubechies’ original construction.

Let r be a nonnegative integer that corresponds to the desired order of smooth-
ness, and let (a(j)) with a(j) = 0, |j| > m, and a(m) 6= 0, be the sequence of the
refinement equation (3.1.4) for the function φ we want to construct. The sequence
(a(j)) and the Fourier transform of φ are related by

(3.5.1) φ̂(y) = A(y/2)φ̂(y/2), A(y) :=
1

2

m∑

j=−m

a(j)e−ijy.

Here we use a slightly different normalization for the refinement function (A(y) =
1
2
A(2y)). If φ̂ is continuous at 0 and φ̂(0) = 1, we can, at least in a formal sense,

write

(3.5.2) φ̂(y) = lim
k→∞

Ak(y)

where

(3.5.3) Ak(y) :=
k∏

j=1

A(y/2j).

We note that A∗
k(y) := Ak(2

ky) is a trigonometric polynomial of degree (2k −
1)m. The key to Daubechies’ construction is to impose conditions on A (which are
therefore conditions on the sequence (a(j))) that not only make (3.5.2) rigorous but
also guarantee that the function φ defined by (3.5.2) has the desired smoothness
and has orthonormal shifts.

We first note that if the shifts of φ are orthonormal then, as was shown in (3.4.8),

(3.5.4) |A(y)|2 + |A(y + π)|2 = 1, y ∈ T.

The converse to this is almost true. Namely, Daubechies’ construction shows that
(3.5.4) together with some mild assumptions (related to the convergence in (3.5.3))
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imply the orthonormality of the shifts of φ. For this, the following identities, which
follow from (3.5.4) by induction, are useful:

(3.5.5)
2k−1∑

j=0

|A∗
k(y + j2−k2π)|2 = 1, k = 1, 2 . . . .

We next want to see what properties of A guarantee smoothness for φ. The
starting point is the following observation. If

∫
R
φ(x) dx 6= 0, then integrating the

refinement equation (3.1.4) gives
∑

j∈Z
a(j) = 2. Hence, A(0) = 1 and A(π) = 0.

We can therefore write

(3.5.6) A(y) = (1 + eiy)Nα(y), ‖α‖L∞(T) = 2−θ, α(0) = 2−N ,

for a suitable integer N > 0, a real number θ, and a function α.
By carefully estimating the partial products Ak, it can be shown that whenever

A satisfies (3.5.6) for some θ > 1/2, the product (3.5.2) converges to a function
in L2(R) that decays like |x|−θ as |x| → ∞. The limit function is the Fourier
transform of the solution φ to the refinement equation (3.5.1). We see that the
larger we can make θ in (3.5.6), the smoother φ is. For example, if θ > r + 1, then
φ is in Cr.

What is the role of the integer N in (3.5.6)? Practically, one must increase
N to find a function α(y) that satisfies (3.5.6) for large θ. In addition, the local
approximation properties of the spaces Sk(φ) are determined by N ; see §5.

Once it is shown that there is a function φ that satisfies the refinement equation
for the given sequence (a(j)), it remains to show that φ has compact support and
orthonormal shifts. Here the arguments have the same character as those used
to analyze subdivision algorithms for the graphical display of curves and surfaces.
Assume that A satisfies (3.5.4) and (3.5.6) for some θ > 1/2 and let χ denote the
characteristic function of [−1/2, 1/2]. Then χ̂(y) = (sin y/2)/(y/2). We define φk
to be the function whose Fourier transform is φ̂k(y) := Ak(y)χ̂(2

−ky). It can then
be shown that

(3.5.7)

∫

R

|φ(y)− φk(y)|2 dy → 0, k → ∞.

If A∗
k =

∑
j a

∗(j, k)e−j , then
∑
j a

∗(j, k)χ̂(x−j) has Fourier transform A∗
k(y)χ̂(y)

and φ̂k(y) = A∗
k(2

−ky)χ̂(2−ky). Therefore,

(3.5.8) φk(x) =
∑

j∈Z

a∗(j, k)2kχ(2kx− j).

Since the coefficients a∗(j, k) of A∗
k are 0 for |j| > (2k − 1)m, we obtain that

φk is supported in [−m,m]. Letting k → ∞, we obtain from (3.5.7) that φ is
also supported on [−m,m]. From (3.5.8), (3.5.5), and the orthonormality of the
functions 2k/2χ(2k· − j), j ∈ Z, we have

∫

R

φk(x)φk(x− ℓ) dx = 2k
∑

µ−ν=2kℓ

a∗(µ, k)a∗(ν, k) = δ(ℓ), ℓ ∈ Z.
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Here the last equality follows by expanding the identity (3.5.5). Letting k → ∞,
we obtain that {φ( · − j)}j∈Z is an orthonormal system.

The above outline shows that a Cr, compactly supported function φ with or-
thonormal shifts exists if (3.5.4) and (3.5.6) hold for a sequence (a(j)) and two
numbers N and θ > r + 1. The following arguments show that such sequences
exist.

We look for an A of the form (3.5.6) with α a trigonometric polynomial with

real coefficients. Then, |α(y)|2 = α(y)α(y) = α(y)α(−y) is an even trigonometric
polynomial, and

|α(y)|2 = T (cos y) = T (1− 2 sin2 y/2) = R(sin2 y/2)

with R an algebraic polynomial. The identity (3.5.4) now becomes

(cos2 y/2)NR(sin2 y/2) + (sin2 y/2)NR(cos2 y/2) = 2−2N .

With t := sin2 y/2, we have

(3.5.9) (1− t)NR(t) + tNR(1− t) = 2−2N .

Therefore, to find A, we must find an algebraic polynomial R that satisfies
(3.5.9). It is easy to see that the degree of R must be at least N − 1. We can find
R of this degree by writing R in the Bernstein form

R(t) =
N−1∑

k=0

λk

(
N − 1

k

)
tk(1− t)N−k−1.

Then, (3.5.9) becomes

(3.5.10)

(1− t)N
N−1∑

k=0

λk

(
N − 1

k

)
tk(1− t)N−k−1 + tN

N−1∑

k=0

λk

(
N − 1

k

)
(1− t)ktN−k−1

= 2−2N = 2−2N
2N−1∑

k=0

(
2N − 1

k

)
tk(1− t)2N−1−k.

We see that

λk := 2−2N

(
2N−1
k

)
(
N−1
k

) , k = 0, 1, . . . , N − 1,

satisfies (3.5.10), and we denote the polynomial with these coefficients by RN .
It is important to observe that RN (t) is nonnegative for 0 ≤ t ≤ 1, be-

cause we wish to show that there is a trigonometric polynomials α(y) such that
RN (sin

2 y/2) = |α(y)|2, i.e., we somehow have to take a “square root” of RN . For
this, we use the classical theorem of Fejer-Riesz (see for example Karlin and Studden
[KS, pg. 185]) that says that if R is nonnegative on [0, 1], then R(sin2 y/2) = |α(y)|2
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for some trigonometric polynomial α with real coefficients and of the same degree
as R. We let αN be the trigonometric polynomial corresponding to RN .

We now set AN (y) := (1+eiy)NαN (y) and note that AN satisfies (3.5.4) because
RN satisfies (3.5.9). Therefore, the function φ defined via the limit process (3.5.2)
has compact support and orthonormal shifts. The corresponding orthogonal wavelet
ψ =: D2N defined by (3.1.8) for the refinement coefficients (a(j)) is an orthogonal
wavelet with compact support. It is easy to show that D2N is supported in [−(N −
1), N ].

The question now is what is the smoothness of D2N . Here the matter can become
somewhat technical (see Daubechies [Da] and Meyer [Me1]). However, the following
“poor man’s” argument based on Stirling’s formula at least shows that given any
integer r, if we choose N sufficiently large, the orthogonal wavelet D2N will have
smoothness Cr.

Because the Bernstein coefficients of RN are monotone, it follows that RN is
increasing on [0, 1]. Therefore, max0≤t≤1RN (t) = RN (1) = λN−1 = 2−2N

(
2N−1
N

)
.

Therefore, ‖αN‖2L∞(T) is bounded by

2−2N

(
2N − 1

N

)
≤ 2−2N

√
2π(2N − 1)(2N − 1)2N−1e−(2N−1)

√
2πNNNe−N

√
2π(N − 1)(N − 1)N−1e−(N−1)

≤ C0N
−1/2,

by Stirling’s formula. We see that given any value of θ > 0, we can choose N
large enough so that (3.5.6) is satisfied for that θ, and the function φ̂ satisfies

|φ̂(x)| ≤ C(1 + |x|)−θ. Hence, for any r < θ − 1, φ, and hence D2N , is in C
r.

For N = 1, the Daubechies construction gives φ = χ[0,1] and D2 is the Haar
function. For N = 2, the polynomial R2(t) = (1 + 2t)/16 and

A2(y) = (1 + eiy)2(

√
3 + 1

8
−

√
3− 1

8
e−iy) = (1 + eiy)2α2(y).

Then α2(y) satisfies |α2(y)| ≤
√
3/4 < 2−1. Therefore, the function φ and the

wavelet D4 := ψ corresponding to this choice is continuous. (See Figure 3 for a
graph of φ and ψ.) A finer argument shows that D4 is in Lip(.55, L∞(R)). The
reader can consult Daubechies [Da] for a table of the refinement coefficients of D2N

for other values of N and a more precise discussion of the smoothness of D2N in
L∞(R).

3.6. Multivariate wavelets. There are two approaches to the construction of
multivariate wavelets for L2(R

d). The first, the tensor product approach, we now
briefly describe. In this section, V will denote the set of vertices of the cube [0, 1]d

and V ′ := V \{0}. Let φ be a univariate function satisfying the conditions (3.1.2) of
multiresolution and let ψ be an orthogonal wavelet obtained from φ. For φ0 := φ,
φ1 := ψ, the collection Ψ of functions

(3.6.1) ψv(x1, . . . , xd) := φv1(x1) · · ·φvd(xd), v ∈ V ′,

generates, by dilation and translation, a complete orthonormal system for L2(R
d).

More precisely, the collection of functions ψj,k,v := 2kd/2ψv(2
k· − j), j ∈ Zd, k ∈ Z,
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0 1 2 3

ψ

0 1 2 3

φ

Figure 3. The function φ and the Daubechies wavelet ψ = D2N when N = 2.

v ∈ V ′, forms a complete orthonormal system for L2(R
d): each f ∈ L2(R

d) has the
series representation

(3.6.2) f =
∑

v∈V ′

∑

k∈Z

∑

j∈Zd

〈f, ψj,k,v〉ψj,k,v

in the sense of convergence in L2(R
d). This construction also applies to prewavelets,

thereby yielding a stable basis for L2(R
d).

Another view of the tensor product wavelets is the following. We let S be the
space generated by the shifts of the function x 7−→ φ(x1) · · ·φ(xd). Then, the
wavelets ψv are generators for the wavelet space W := S1 ⊖ S0.

The second way to construct multivariate wavelets uses multiresolution in several
dimensions. We let φ be a function in L2(R

d) that satisfies the conditions (3.1.2)
of multiresolution for S := S(φ), and we seek a set Ψ of generators for the wavelet
space W := S1 ⊖ S0. For example, if we want an orthonormal wavelet basis for
L2(R

d), we would seek Ψ such that the totality of functions ψ( · − j), j ∈ Zd,
ψ ∈ Ψ, forms an orthonormal basis for W . By dilation and translation, we would
obtain the collection of functions ψj,k := 2kd/2ψ(2k· − j), ψ ∈ Ψ, j ∈ Zd, k ∈ Z,
which together form an orthonormal basis for L2(R

d). Each function f in L2(R
d)

has the representation

(3.6.3) f =
∑

ψ∈Ψ

∑

k∈Z

∑

j∈Zd

〈f, ψj,k〉ψj,k.

For a prewavelet set Ψ, we would require L2(R
d)-stability in place of orthogonality.

Sometimes, we might require additionally that the shifts of ψ and those of ψ̃ are
orthogonal whenever ψ and ψ̃ are different functions in Ψ.

Constructing orthogonal wavelets and prewavelets by this second approach is
complicated by the fact that there does not seem to be a straightforward way to
choose a canonical orthogonal wavelet set from the many possible wavelet sets Ψ.
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The book of Meyer [Me] contains first results on the construction of multivariate
wavelet sets by the second approach. This was expanded upon in the paper of Jia
and Micchelli [JM]. These treatments are not always constructive; for example, the
latter paper employs in some contexts the Quillen-Suslin theorem from commutative
algebra. Several papers [RS], [RS1], [CSW], and [LM] treat special cases, such as
the construction of orthogonal wavelet and prewavelet sets when φ is taken to be a
box spline. The paper of Riemenschneider and Shen [RS] is particularly important,
since it gives a constructive approach that applies in two and three dimensions to
a wide class of functions φ.

We shall follow the approach of [BDR1], which is based on the structure of shift-
invariant spaces. This approach immediately gives a generating set for W , which
can then be exploited to find orthogonal wavelet and prewavelet sets. de Boor,
DeVore, and Ron start with a function φ that satisfies the refinement relation
(3.1.2)(i) and whose Fourier transform satisfies supp φ̂ = Rd. It is not necessary in
this approach to assume (3.1.2) (ii) and (iii)—they follow automatically. It is also
not necessary to assume (3.1.2) (iv). In particular, this approach applies to any
compactly supported φ. To simplify our discussion, we shall assume in addition to
(3.1.2)(i) that φ has compact support and that the shifts of φ are L2(R

d)-stable;
we refer the reader to [BDR1] for a discussion of the more general theory.

The usual starting point for the construction of multivariate wavelets is the fact
that the dilated space S1 of S := S(φ) is generated by the half-shifts of η := φ(2 · ),
and therefore also by the full shifts of the functions ηv := η( · − v/2), v ∈ V .

The assumption that supp φ̂ = Rd is important because it implies that the set
Φ := {φv := φ(x − v/2) | v ∈ V } is also a generating set for S1, i.e., S1 = S(Φ).
Φ is more useful than {ηv | v ∈ V } as a generating set because Φ contains a
function that is in S0, namely φ. In analogy with the univariate construction, we
see that with P the L2(R

d) projector onto S, the functions φv − Pφv, v ∈ V ′,
form a generating set for W . From (3.2.8), we calculate the Fourier transforms of

these functions and multiply them by [φ̂, φ̂] to obtain the functions wv, with Fourier
transform

(3.6.4) ŵv := [φ̂, φ̂]φ̂v − [φ̂v, φ̂]φ̂, v ∈ V ′.

The set W := {wv | v ∈ V ′} is another generating set for W . We note that because
we assume φ has compact support, the two bracket products appearing in (3.6.4) are
trigonometric polynomials, and hence the functions wv also have compact support.

The set TW, with T = (τv,v′)v,v′∈V ′ a matrix of 2π-periodic functions, is another
generating set for W if det(T ) 6= 0 a.e.

It is easy to find an orthogonal wavelet set by this approach. Because the
functions in W have compact support, the Gramian matrix ([ŵv, ŵv′ ])v,v′∈V ′ has
trigonometric polynomials as its entries. Since this matrix is symmetric and pos-
itive semidefinite, its determinant is nonzero a.e. We can use Gauss elimination
(Cholesky factorization) without division or pivoting to diagonalize G(W). That
is, we can find a (symmetric) matrix T = (τv,v′)v,v′∈V ′ of trigonometric polynomi-
als such that W∗ := TW has Gramian G(TW∗) = TG(W)T ∗ that is a diagonal
matrix with trigonometric polynomial entries. If w∗

v are the functions in W∗, then
the functions w∗∗

v with Fourier transforms ŵ∗∗
v := ŵ∗

v/[ŵ
∗
v, ŵ

∗
v]

1/2, v ∈ V ′, have



WAVELETS 31

shifts that form an orthonormal basis for W . Indeed,

[ŵ∗∗
v , ŵ

∗∗
v′ ] =

[ŵ∗
v, ŵ

∗
v′ ]

[ŵ∗
v , ŵ

∗
v]

1/2[ŵ∗
v′ , ŵ

∗
v′ ]

1/2
,

which shows that the new set of generators W∗∗ has the identity matrix as its
Gramian.

The disadvantage of the orthogonal wavelet set W∗∗ is that usually we can say
nothing about the decay of the functions w∗∗

v , since the above construction may
involve division by trigonometric polynomials that have zeros. However, when φ
has L2(R

d)-stable half-shifts, the above construction can be modified to give an
orthogonal wavelet set whose elements decay exponentially (see [BDR1]).

While the assumption that the half-shifts of φ are L2(R
d)-stable is often not

realistic, we shall assume it a little longer in order to introduce some new ideas
that can later be modified to drop the stability assumption. Under the half-shift

stability assumption, we have that
˜̃
φ is a trigonometric polynomial of period 4π that

has no zeros. Therefore, φ̂∗ := φ̂/
˜̃
φ serves to define an L2(R

d) function in S1(φ)
that decays exponentially and has orthogonal half-shifts. Moreover, the function

w with Fourier transform ŵ := φ̂/
˜̃
φ
2
is also in S1(φ) and decays exponentially.

Therefore, with [ · , · ]1/2 the bracket product for half-shifts (which is defined as in

(3.2.4) except that the sum is taken over 4πZd), we have

(3.6.5) [φ̂, ŵ]1/2 = [φ̂∗, φ̂∗]1/2 = 1 a.e.

The Fourier coefficients (with respect to the e−j/2, j ∈ Zd) of [φ̂, ŵ]1/2 are the
inner products of φ with half-shifts of w. Hence, all nontrivial half-shifts of w are
orthogonal to φ. This means that the functions in W0 := {w( · + v/2) | v ∈ V ′}
are all in W . It is easy to see that they generate W , that is, W = S(W0).

Thus, in the special case we are considering, W is generated by the nontrivial
half-shifts of a single function w. It is natural to ask whether this holds in general
(i.e., when we do not assume stability of half-shifts). To see that this is indeed true,
we modify the argument in (3.6.5). If we multiply ŵ by the 2π-periodic function
∏
λ∈2πV

˜̃
φ( · +λ)2, the result is a compactly supported function w∗ ∈ L2(R

d), with
Fourier transform

(3.6.6) ŵ∗ := φ̂
∏

λ∈2πV ′

˜̃
φ( · + λ)2.

We find that

(3.6.7) [φ̂, ŵ∗]1/2 =
∏

λ∈2πV

˜̃
φ( · + λ)2.

Because the right side is 2π-periodic, we deduce that the inner product of φ with
w∗( · − j/2) is zero whenever j = v + 2k with v ∈ V ′ and k ∈ Zd. Hence, the
functions w∗( · + v/2), v ∈ V ′, are all in W and it is easy to see that they are also
a generating set for W .
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While the nontrivial half-shifts of w∗ are a generating set for W , they have
the drawback that they usually do not provide an L2(R

d)-stable basis. The usual
approach towards constructing an L2(R

d)-stable basis for W is to begin with the
generating set {ηv | v ∈ V }, η := φ(2 · ), for S1(φ). With this as a starting point,
Meyer [Me, III, §6] and Jia and Micchelli [JM] have shown the existence of a set of
generators for W consisting of compactly supported functions whose shifts provide
an L2(R

d)-stable basis for W . However, their proofs are not constructive. In one,
two, or three dimensions, and with an additional assumption on the symmetry of
φ, Riemenschneider and Shen [RS], [RS1] have given a constructive proof for the
existence of such a generating set, which we now describe.

We begin again with the function ŵ := φ̂/
˜̃
φ
2
. If τ =

∑
j∈Zd c(j)e−j/2 is a 4π-

periodic function whose Fourier coefficients c(j) = 0 whenever j ∈ 2Zd, then the
function with Fourier transform τŵ is inW provided it is in L2(R

d). The condition
on these Fourier coefficients is equivalent to requiring that

(3.6.8)
∑

v∈2πV

τ( · + v) = 0 a.e.

In particular, we can use this method to produce functions in W as follows.
We assume that φ is real valued, has L2(R

d)-stable shifts, and satisfies the re-
finement equation (3.3.1) for a real valued function A. This assumption on A is a
new ingredient; it will be fulfilled for example if φ(−x) = φ(x). (More generally,
one only needs symmetry about the center of the support of φ.) If α ∈ V ′ and
vα ∈ 2πV , then we claim that the function ψα with Fourier transform

(3.6.9) ψ̂α := 2eα/2 (A˜̃η
2
)( · + vα)η̂

is in W , provided eα/2(vα) = −1. Indeed, the refinement equation says that ŵ =

η̂/(A˜̃η
2
). We obtain ψ̂α from ŵ by multiplying by τα := 2eα/2A˜̃η

2
A( · + vα)˜̃η

2
( · +

vα). The vertices v and v + vα (modulo 2π) contribute values in (3.6.8) that are
negatives of one another. Hence, (3.6.8) is satisfied for τα and ψα ∈ W . The
functions ψα have compact support when A is a polynomial and φ has compact
support.

We are allowed to make any assignment of α 7−→ vα with eα/2(vα) = −1. To

obtain an L2(R
d)-stable basis forW , we need a special assignment with the property

that α−β (modulo 2) is assigned vα−vβ (modulo 2π). If such a special assignment

can be made, then a simple computation shows that with µ := 2A˜̃η
2
,

(3.6.10) [ψ̂α, ψ̂β] =
∑

v∈2πV

e(α−β)/2( · + v)µ( · + v + vα)µ( · + v + vβ) ˜̃η
2
( · + v).

For example, if the shifts of φ are orthonormal, then ˜̃η
2
= 1/2. In this case, for

α 6= β, the terms of the sum in (3.6.10) are negatives of one another for the two
values v and v+(vα+vβ) (this is where we need to assume that a special assignment
exists), and hence the sum in (3.6.10) is 0. When α = β, this sum is

∑

v∈2πV

A2( · + v)˜̃η
2
( · + v) =

∑

v∈2πV

˜̃
φ
2
( · + v) = φ̃2 = 1 a.e.
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Hence, the Gramian of Ψ := {ψα | α ∈ V ′} is the identity matrix. We obtain in
this way an orthonormal basis for W .

If we begin with a φ that has L2(R
d)-stable shifts then a slightly more compli-

cated argument shows that the functions ψα, α ∈ V ′, are an L2(R
d)-stable basis

for W .
This leaves the question of when we can make an assignment α 7−→ vα of this

special type. Such assignments are possible for d = 1, 2, 3 but not for d > 3. For
example, when d = 2, we can make the assignments as follows:

(0, 0) 7−→ 2π(0, 0), (0, 1) 7−→ 2π(0, 1),

(1, 0) 7−→ 2π(1, 1), (1, 1) 7−→ 2π(1, 0).

The above construction will give orthogonal wavelet and prewavelet sets for box
splines. To illustrate this, we consider briefly the following special box splines on
R2. Let ∆ be the triangulation of R2 obtained from grid lines x1 = k, x2 = k, and
x2 − x1 = k, k ∈ Z. Let M be the Courant element for this partition. Thus, M is
the piecewise linear function for this triangulation that takes the value 1 at (0, 0)
and the value 0 at all other vertices. The Fourier transform of M is

M̂(y1, y2) =

(
sin(y1/2)

y1/2

)(
sin(y2/2)

y2/2

)(
sin((y1 + y2)/2)

(y1 + y2)/2

)
.

By convolving M with itself, we obtain higher order box splines defined recursively
by M1 := M and Mr := M ∗Mr−1. Then Mr is a compactly supported piecewise
polynomial (with respect to ∆) of degree 3r − 2 and smoothness C2r−2. Since

M̂ is real, the box spline Mr satisfies the refinement identity (3.3.1) with A real.
Therefore, if we take φ :=Mr and S = S(Mr), the construction of Riemenschneider
and Shen applies to give a prewavelet set Ψ consisting of three compactly supported
piecewise polynomials for the partition ∆/2. The set Ψ provides an L2(R

d)-stable
basis for the wavelet space W .

4. Fast Wavelet Transforms

It is easy to compute the coefficients in wavelet decompositions iteratively with
a technique similar to the fast Haar transform. We shall limit our discussion to
Daubechies’ orthogonal wavelets with compact support in one dimension. How-
ever, the ideas presented here apply equally well to other orthogonal wavelets and
to prewavelets. We let φ be a real-valued, compactly-supported function with or-
thonormal shifts that satisfies the conditions of multiresolution and in particular
the refinement equation (3.1.4). The function φ is real and the refinement coeffi-
cients are real and finite in number. The orthogonal wavelet ψ is then obtained
from φ by (3.1.8).

A numerical application begins with a finite representation of a function f as a
wavelet sum. This is accomplished by choosing a large value of n, commensurate
with the numerical accuracy desired, and taking an approximation to f of the form

(4.1) Sn =
∑

j∈Z

fjφj,n,
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with only a finite number of nonzero coefficients fj . The coefficients fj are obtained
from f in some suitable way. For many applications, it suffices to take fj :=
f(j2−n). The point j2−n corresponds to the support of φj,n.

Since Sn ∈ Sn, we have

(4.2) Sn = PnSn = P0Sn+
n∑

k=1

(PkSn−Pk−1Sn) = P0Sn+
n−1∑

k=0

∑

j∈Z

c(j, k)ψ(2kx−j).

We will present an efficient algorithm for computing the coefficients c(j, k) from the
fj and an efficient method to recover Sn from the coefficients c(j, k).

The algorithm presented below has two main features. First, it computes the
coefficients c(j, k) using only fj and the coefficients (a(j)) of the refinement equation
(3.1.4) for φ. In other words, one never needs to find a concrete realization of the
functions φ and ψ. Second, the iterative computations are particularly simple to
program and run very quickly—the complexity of the fast wavelet transform of 2n

coefficients is O(2n); in contrast, the complexity of the Fast Fourier Transform is
O(n2n).

During one step of our algorithm, we wish to find the coefficients of Pk−1S when
S =

∑
j∈Z

s(j)φj,k is in Sk. The coefficients of Pk−1S =
∑
i∈Z

s′(i)φi,k−1 are the

inner product of S with the φi,k−1. We therefore compute, using (3.1.4),

s′(i) =

∫

R

[∑

j∈Z

s(j)φj,k

]
φi,k−1 =

∫

R

[∑

j∈Z

s(j)φj,k

][
1√
2

∑

ℓ∈Z

a(ℓ)φ2i+ℓ,k

]

=
1√
2

∑

j∈Z

a(j − 2i)s(j).

In other words, the sequence s′ := (s′(i)) is obtained from s := (s(i)) by matrix
multiplication:

(4.3) s′ = As, A := (αi,j), αi,j :=
1√
2
a(j − 2i), i, j ∈ Z.

Let Qk be the projector onto the wavelet space W k. A similar calculation
tells us how to compute the coefficients t = (t(i)) of the projection Qk−1S =∑
i∈Z

t(i)ψi,k−1 of S ∈ Sk onto Wk−1:

(4.4) t = Bs, B := (βi,j), βi,j :=
1√
2
b(j − 2i), i, j ∈ Z,

where bj := (−1)ja(1− j) are the coefficients of the wavelet ψ given in (3.1.8).
This gives the following schematic diagram for computing the wavelet coefficients

(c(j, k)):

A A A

Sn → Pn−1Sn → . . . → P0Sn

ց B ց B ց B(4.5)

Qn−1Sn . . . Q0Sn
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In other words, to compute the coefficients of Pk−1Sn we apply the matrix A to
the coefficients of PkSn, while to compute those of Qk−1Sn we apply the matrix
B to the coefficients of PkSn. The coefficients c(j, k), j ∈ Z, are the coefficients of
QkSn. This is valid because Qk−1PkSn = Qk−1Sn and Pk−1PkSn = Pk−1Sn.

Now suppose that we know the coefficients of P0Sn and QkSn, k = 0, . . . , n −
1. How do we reconstruct Sn? We need to rewrite an element S ∈ Sk, S =∑
j∈Z

s(j)φj,k as an element of Sk+1, S =
∑
i∈Z

s′(i)φi,k+1. From the refinement

equation (3.1.4), we find

S =
∑

j∈Z

s(j)

[
1√
2

∑

ℓ∈Z

a(ℓ)φℓ+2j,k+1

]
=

∑

i∈Z

[
1√
2

∑

j∈Z

a(i− 2j)s(j)

]
φi,k+1.

Therefore, we can express the computation of s′ from s as multiplication by the
transpose A∗ of A:

(4.6) s′ = A∗s, A∗ := (α∗
i,j), α∗

i,j :=
1√
2
a(i− 2j), i, j ∈ Z.

A similar calculation tells us how to rewrite a sum S =
∑

i∈Z
t(i)ψi,k as a sum

S =
∑

i∈Z
t′(i)φi,k+1:

(4.7) t′ = B∗t, B∗ := (β∗
i,j), β∗

i,j :=
1√
2
b(i− 2j), i, j ∈ Z.

The reconstruction of Sn from QkSn, k = 0, . . . , n − 1, and P0Sn is then given
schematically by:

A∗ A∗ A∗

P0Sn → P1Sn → . . . → Sn

ր B∗ ր B∗(4.8)

Q0Sn . . . Qn−1Sn

The matrices A, B, A∗, and B∗ have a small finite number of nonzero elements in
each row, so each of the operations in (4.5) and (4.6) has computational complexity
proportional to the number of unknowns.

The reconstruction algorithm can be used to display graphically a finite wavelet
sum S. We choose a large value of n, and use the reconstruction algorithm to write
S =

∑
j∈Z

s(j, n)φj,n. The piecewise linear function with values s(j, n) at j2−n is
an approximation to the graph of S. Such procedures for graphical displays are
known as subdivision algorithms in computer aided geometric design.

The matrices A and B have many remarkable properties summarized by:

(4.9)

BA∗ = 0,

AA∗ = I, BB∗ = I,

A∗A+B∗B = I.

The first equation represents the orthogonality between W and S0, the second
the fact that the shifts of φ and ψ are orthonormal, and the third the orthogonal
decomposition S1 = S0 ⊕W .
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5. Smoothness Spaces and Wavelet Coefficients

We have seen in §2 that one can determine when a function f ∈ Lp(R) is in
a Lipschitz space Lip(α, Lp(R)), 0 < α < 1/p, by examining the coefficients of
the Haar expansion of f . In fact, one can often characterize membership in general
smoothness spaces in terms of the size of coefficients in general wavelet or prewavelet
expansions. We do not have the space to explain in detail how such characteriza-
tions are proved, but we shall outline one approach, based on approximation, that
parallels the arguments in §2 about Haar wavelets. A more complete presentation,
much along the lines given here, can be found in the book of Meyer [Me]. The arti-
cle of Frazier and Jawerth [FJ] gives a much more general and extensive treatment
of wavelet-like decompositions from the viewpoint of Littlewood-Paley theory.

We shall suppose that φ satisfies the conditions (3.1.2) of multiresolution. We
also suppose that φ has compact support. This is not a necessary assumption
for the characterizations given below (it can be replaced by suitable polynomial
decay at infinity) but it will simplify our discussion. We shall also assume that
1 < p < ∞. The arguments that follow can be modified simply to apply when
p = ∞; the analysis for p ≤ 1 can also be developed as below, but then it must be
carried out in the setting of the Hardy spaces Hp(R

d).
We fix a value of p and let S := S(φ, Lp(Rd)) be the Lp(R

d) closure of the finite
linear combination of shifts of φ.

We assume that the shifts of φ form an Lp(R
d)-stable basis for S. For functions

with compact support, this holds whenever the shifts of φ form an L2(R
d)-stable

basis for S(φ, L2(R
d)) (see Jia and Micchelli [JM]). It follows that the dilated func-

tions φj,k,p := 2k/pφ(2k· − j), j ∈ Zd, form an Lp(R
d)-stable basis of Sk, for each

k ∈ Z. That is, there are constants C1, C2 > 0 such that each S ∈ Sk can be
represented as S =

∑
j∈Zd c(j, k, p)(S)φj,k,p with

(5.1) C1

( ∑

j∈Zd

|c(j, k, p)|p
)1/p

≤ ‖S‖Lp(Rd) ≤ C2

( ∑

j∈Zd

|c(j, k, p)|p
)1/p

.

Next, we show that the orthogonal projector P from L2(R
d) onto S(φ, L2(R

d))
has a natural extension to a bounded operator from Lp(R

d) onto S. We can repre-
sent P as in (3.2.9):

(5.2) Pf =
∑

j∈Z

γj(f)φ( · − j), γj(f) :=

∫

Rd

f(x)γ(x− j) dx.

The function γ ∈ L∞(Rd) decays exponentially at infinity and hence is in Lq(R
d)

for 1 ≤ q ≤ ∞. In particular, γ ∈ Lp′(R
d), and (5.2) serves to define P on Lp(R

d).
The compact support of φ and the exponential decay of γ then combine to show
that P is bounded on Lp(R

d). By dilation, we find that the projectors Pk (which
map Lp(R

d) onto Sk) are bounded independently of k.
The projector Q from L2(R

d) onto the wavelet space W is also represented in
the form (5.2) and has an extension to a bounded operator on Lp(R

d) for the
same reasons as above. We can also derive the boundedness of Q from the formula
Q = P1 − P0.
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0 1 2 3 4

Figure 4. The function 0 · φ(x + 1) + 1 · φ(x) + 2 · φ(x − 1), with φ
given by Daubechies’ formula (3.5.1) with N = 2; see Figure 3. Note
the linear segment between x = 1 and x = 2.

Since the Pk are bounded projectors onto Sk, their approximation properties are
determined by the approximation properties of the spaces Sk. Consequently, we
want to bound the error of approximation by elements in Sk of functions in certain
smoothness classes. In particular, we are interested in determining for which spaces
Sk it is true that

(5.3) dist(f,Sk)Lp(Rd) ≤ C2−kr|f |W r(Lp(Rd));

here W r(Lp(R
d)) is the Sobolev space of functions with r (weak) derivatives in

Lp(R
d) with its usual norm and seminorm. This well-studied problem originated

with the work of Schoenberg [Sch], and was later developed by Strang and Fix [SF]
for application to finite elements. Strang and Fix show that when φ has compact
support, a sufficient condition for (5.3) to hold is that

(5.4) φ̂(0) 6= 0 and Dν φ̂(2πα) = 0, |ν| < r, α ∈ Zd, α 6= 0.

This condition is also necessary in a certain context; see [BDR] and [BR] for a
history of the Strang-Fix conditions.

Schoenberg [Sch] showed that (5.4) guarantees that algebraic polynomials of
(total) degree < r are contained locally in the space Sk. This means that for any
compact set Ω and any polynomial R with deg(R) < r, there is an S ∈ S that
agrees with R on Ω.

In summary, the approximation properties of Pk are determined by the largest
value of r for which (5.4) is valid. Because we usually know a lot about the Fourier
transform of φ, the best value of r is easy to determine. For this r, we have (5.3).

For example, for φ = Nr, the B-spline of order r, φ̂(y) = (1− e−iy)r/(iy)r satisfies
(5.4) for this value of r. Similarly, the Daubechies wavelets satisfy (5.4) for r = N ,
with N the integer appearing in the representation (3.5.6); see Figure 4.
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Assume now that there are positive integers r and s such that the following
Jackson and Bernstein inequalities hold:

(5.5)
(J) ‖f − Pkf‖Lp(Rd) ≤ C · 2−kr|f |W r(Lp(Rd)),

(B) |S|W s(Lp(Rd)) ≤ C · 2ks‖S‖Lp(Rd), S ∈ Sk(φ, Lp(Rd)), 1 ≤ p ≤ ∞.

(Actually, s need not be an integer.) The Jackson inequality is just a reformulation
of (5.3), and the largest value of r for which (J) holds is determined by (5.4).
The Bernstein inequality holds if φ ∈ W s(Lp(R

d)) and in particular (since φ has
compact support) whenever φ is in Cs. It is enough to verify (B) for k = 0,
since (B) would then follow for general k by rescaling. The left seminorm in (B) for
S =

∑
j∈Zd c(j)φ( · −j) is bounded by the ℓp(Z

d) norm of the coefficients (c(j))j∈Zd ,

which is bounded in turn by the right side of (B) by using the Lp(R
d)-stability of

the shifts of φ.

Once the Jackson and Bernstein inequalities have been established, we can in-
voke a general procedure to characterize smoothness spaces in terms of wavelet
coefficients. To describe these results, we introduce the Besov spaces, which are a
family of smoothness spaces that depend on three parameters. We introduce the
Besov spaces for only one reason: They are the spaces that are needed to describe
precisely the smoothness of functions that can be approximated to a given order
by wavelets. The following discussion is meant as a gentle introduction to Besov
spaces for the reader who instinctively dislikes any space that depends on so many
parameters.

The Besov space Bαq (Lp(R
d)), α > 0 and 0 < q, p ≤ ∞, is a smoothness subspace

of Lp(R
d). The parameter α gives the order of smoothness in Lp(R

d). The second
parameter q gives a finer scaling, which allows us to make subtle distinctions in
smoothness of fixed order α. This second parameter is necessary in many embedding
and approximation theorems.

To define these spaces, we introduce, for h ∈ Rd, the r-th difference in the
direction h:

∆r
h(f, x) :=

r∑

j=0

(−1)r+j
(
r

j

)
f(x+ jh).

Thus, ∆h(f, x) := f(x+h)−f(x) is the first difference of f and the other differences
are obtained inductively by a repeated application of ∆h. With these differences,
we can define the moduli of smoothness

ωr(f, t)p := sup
|h|≤t

‖∆r
h(f, · )‖Lp(Rd), t > 0,

for each r = 1, 2, . . . . The rate at which ωr(f, t)p tends to zero gives information
about the smoothness of f in Lp(R

d). For example, the spaces Lip(α, Lp(R
d)),

which we have discussed earlier, are characterized by the condition ω1(f, t)p =
O(tα), 0 < α ≤ 1.

The Besov spaces are defined for 0 < α < r and 0 < p, q ≤ ∞ as the set of all
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functions f ∈ Lp(R
d) for which

(5.6) |f |Bα
q (Lp(Rd)) :=





(∫ ∞

0

[
t−αωr(f, t)p

]q dt
t

) 1
q

, 0 < q <∞,

sup
t≥0

t−αωr(f, t)p, q = ∞,

is finite. We define the following “norm” for Bαq (Lp(R
d)):

‖f‖Bα
q (Lp(Rd)) := ‖f‖Lp(Rd) + |f |Bα

q (Lp(Rd)).

Because we allow values of p and q less than one, this “norm” does not always satisfy
the triangle inequality, but it is always a quasi-norm: There exists a constant C
such that for all f and g in Bαq (Lp(R

d)),

‖f + g‖Bα
q (Lp(Rd)) ≤ C(‖f‖Bα

q (Lp(Rd)) + ‖g‖Bα
q (Lp(Rd))).

Even though the definition of the Bαq (Lp(R
d)) norm depends on r through the

modulus of smoothness, we have not parametrized the spaces by r, for two rea-
sons. First, no one can stand spaces that are parametrized by more than three
parameters. Second, it can be shown that all values of r greater than α give rise to
equivalent norms, so the set of functions in Bαq (Lp(R

d)) does not depend on r as
long as r > α.

We note that the family of Besov spaces contains both the Lipschitz spaces
Lip(α, Lp(R

d)) = Bα∞(Lp(R
d)), 0 < α < 1, and the Sobolev spaces Wα(L2(R

d)) =
Bα2 (L2(R

d)), which are frequently denoted by Hα(Rd).
We have mentioned that once Jackson and Bernstein inequalities have been es-

tablished, there is a general theory for characterizing membership in Besov spaces
by the decay of wavelet coefficients. This is based on results from approximation
theory described (among other places) in the articles [DJP], [DP], and the forth-
coming book of DeVore and Lorentz [DeLo]. Among other things, this theory states
that whenever (5.5) holds, we have that

(5.7) |f |Bα
q (Lp(Rd)) ≈

(∑

k∈Z

[2kα‖Qk(f)‖Lp(Rd)]
q

)1/q

for 0 < α < min(r, s), 1 < p <∞, and 0 < q <∞.
If Ψ is a wavelet set associated with φ, then

Qk(f) =
∑

ψ∈Ψ

∑

j∈Zd

γj,k,ψ,p(f)ψj,k,p,

with ψj,k,p := 2kd/pψ(2k·−j) the Lp(Rd)-normalized (pre)wavelets, and the γj,k,ψ,p
the associated dual functionals. Using the Lp(R

d)-stability of Ψ, we can replace
‖Qk(f)‖pLp(Rd)

by
∑
j∈Zd |γj,k,ψ,p(f)|p and obtain

(5.8) |f |Bα
q (Lp(Rd)) ≈

(∑

k∈Z

[2kαp
∑

ψ∈Ψ

∑

j∈Zd

|γj,k,ψ,p(f)|p]q/p
)1/q

,
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with the usual change to a supremum when q = ∞. This is the characterization
of the Besov space in terms of wavelet coefficients. When q = p, (5.8) takes an
especially simple form:

(5.9) |f |p
Bα

p (Lp(Rd))
≈

∑

k∈Z

[2kα
∑

ψ∈Ψ

∑

j∈Zd

|γj,k,ψ,p(f)|p].

In particular, (5.9) gives an equivalent seminorm for the Sobolev space Hα(Rd) by
taking p = 2.

6. Applications

6.1. Wavelet compression. We shall present a few examples that indicate how
wavelets can be used in numerical applications. Wavelet techniques have had a
particularly significant impact on data compression. We begin by discussing a
problem in nonlinear approximation that is at the heart of compression algorithms.

Suppose that Ψ is a (pre)wavelet set and f ∈ Lp(R
d), 1 ≤ p ≤ ∞, has the

wavelet representation

(6.1.1) f =
∑

k∈Z

∑

ψ∈Ψ

∑

j∈Zd

cj,k,ψ,p(f)ψj,k,p.

with respect to the Lp(R
d)-normalized functions ψj,k,p := 2kd/pψ(2k· − j). In

numerical applications, we must replace the sum in (6.1.1) by a finite sum, and
the question arises as to the most efficient way to accomplish this. To make this
into a well defined mathematical problem, we fix an integer n, which represents the
number of terms we shall allow in the finite sum. Thus, we want to approximate f
in the Lp(R

d) norm by an element from the set

(6.1.2) Σn :=

{
S =

∑

(j,k,ψ)∈Λ

dj,k,ψψj,k,p | |Λ| ≤ n

}
,

where dj,k,ψ are arbitrary complex numbers. We have the error of approximation

(6.1.3) σn(f)p := inf
S∈Σn

‖f − S‖Lp(Rd).

In contrast to the usual problems in approximation, the set Σn is not a linear space
since adding two elements of Σn results in an element of Σ2n, but not generally an
element of Σn.

The approximation problem (6.1.3) has a particularly simple solution when p =
2 and Ψ is an orthogonal wavelet set. We order the coefficients cj,k,ψ,2(f) by
their absolute value. If Λn is the set of indices (j, k, ψ) corresponding to n largest
values (this set is not necessarily unique), then Sn =

∑
(j,k,ψ)∈Λn

cj,k,ψ,2(f)ψj,k,2
attains the infimum in (6.1.3). For prewavelet sets, this selection is optimal within
constants, as follows from the L2(R

d)-stability of the basis ψj,k,2.
It is somewhat surprising that the strategy of the preceding paragraph also is

optimal (in a sense to be made clear below) for approximation in Lp(R
d), p 6= 2.



WAVELETS 41

To describe this, we fix a value of 1 < p < ∞ (slightly weaker results than those
stated below are known when p = ∞) and for f ∈ Lp(R

d), we let Λn denote a
set of indices corresponding to n largest values of |cj,k,ψ,p(f)|. We define Sn :=∑

(j,k,ψ)∈Λn
cj,k,ψ,p(f)ψj,k,p and σ̃n(f)p := ‖f − Sn‖Lp(Rd). DeVore, Jawerth, and

Popov [DJP] have established various results that relate σn(f)p with σ̃n(f)p under
certain conditions on ψ and the generating function φ. For example, it follows from
their results that

(6.1.4) σ̃n(f)p = O(n−α/d) ⇐⇒ σn(f)p = O(n−α/d)

for 0 < α < r. Here, the integer r is related to properties of φ. Namely, the
generating function φ should satisfy the Strang-Fix conditions (5.4) of this order
and φ and ψ should have sufficient smoothness (for example, Cr is enough). It is also
necessary to assume decay for the functions φ and ψ; sufficiently fast polynomial
decay is enough. We caution the reader that the results in [DJP] are formulated
for one wavelet ψ and not a wavelet set Ψ. However, the same proofs apply in the
more general setting.

It is also of interest to characterize the functions f that satisfy (6.1.4). That is, we
would like to know when we can expect the order of approximation (6.1.4). This has
not been accomplished in exactly the form of (6.1.4), but the following variant has
been shown in [DJP]. The following are equivalent for τ := τ(α, p) := (α/d+1/p)−1:

(6.1.5)

(i)

∞∑

n=1

[nα/dσn(f)p]
τ 1

n
<∞,

(ii)

∞∑

n=1

[nα/dσ̃n(f)p]
τ 1

n
<∞,

(iii) f ∈ Bατ (Lτ (R
d)).

Several words of explanation regarding (6.1.5) are in order. First, (6.1.5)(i) is
very close to the condition in (6.1.4). For example, (6.1.5)(i) implies (6.1.4), and
if (6.1.4) holds for some β > α then (6.1.5)(i) is valid. So, roughly speaking, it
is the functions f ∈ Bατ (Lτ (R

d)) for which the order of approximation in (6.1.4)
holds. Secondly, the characterization (6.1.5) says that it is those functions with
smoothness of order α in Lτ (R

d), τ = (α/d+ 1/p)−1, that are approximated with
order O(n−α/d) in Lp(R

d). This should be contrasted with the usual results for
approximation from linear spaces (such as finite element methods), which charac-
terize functions with this approximation order as having smoothness of order α in
Lp(R

d). Since τ < p, the nonlinear approximation problem (6.1.3) provides the
approximation order (6.1.4) for functions with less smoothness than required by
linear methods.

The fact that functions with less smoothness can be approximated well by (6.1.3)
is at the essence of wavelet compression. This means that functions with singulari-
ties can be handled numerically. Intuitively this is accomplished by retaining in the
sum for Sn terms corresponding to functions ψj,k,p that make a large contribution
to f near the singularity. Here the situation is similar to adaptive methods for
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piecewise polynomial (finite element) approximation that have refined triangula-
tions near a singularity. However, we want to stress that in wavelet compression, it
is simple (almost trivial) to approximate optimaly without encountering problems
of triangulation. An overview of this approach to data compression using wavelets
can be found in [DJL2].

6.2. Image compression. We explain next how a typical algorithm for com-
pression is implemented from the theoretical results of the previous section. This
has been accomplished by DeVore, Jawerth, and Lucier for surface compression in
[DJL] and image compression in [DJL1]. We shall discuss only image compression.

A digitized grey-scale image consists of an array of picture elements (pixels)
represented by numbers that correspond to the brightness (grey scale) of each pixel,
with 0 ≡ black, say, and 255 ≡ white. A grey-scale image has, say, 1024 × 1024
such numbers taking integer values between 0 and 255. Thus, the image is given
by a matrix (pj)j∈{0,...,1023}2 with pj ∈ {0, . . . , 255}. It would take a data file of
about one million bytes to encode such an image. For purposes of transmission or
storage, it is desirable to compress this file.

To use wavelets for image compression, we proceed as follows. We think of the
pixel values as associated with the points j2−m, j ∈ [0, 2m)2, m = 10, of the unit
square [0, 1]2. In this way, we can think of the image as a discretization of a function
f defined on this square.

We choose a function φ satisfying the assumptions of multiresolution, and a
corresponding wavelet set Ψ that provides a stable basis for L2(R

2). Thus, Ψ
would consist of three functions, which we shall assume are of compact support.

We would like to represent the image as a wavelet sum. For this purpose, we
select coefficients γj and consider the function

(6.2.1) f =
∑

j∈Ω

γjφj,m

with Ω the set of indices for which φj,m does not vanish identically on [0, 1]2. We
think of f as the image and apply the results of the preceding section to compress
f .

The coefficients γj are to be determined numerically from the pixel values; choos-
ing good values of γj is a nontrivial problem, which we do not discuss. A typical
choice is to take γj = pj for j2−m ∈ [0, 1]2 and some extension of these values for
other j.

Once the coefficients (γj) have been determined, we use a fast wavelet transform
to write f in its wavelet decomposition

(6.2.2) f = P0f +
∑

j,k,ψ

cj,k,ψ(f)ψj,k

with respect to the L2(R
2)-normalized ψj,k := 2kψ(2k· − j). We can find the

coefficients of f with respect to the Lp(R
2)-normalized ψ’s by the relation cj,k,ψ,p =

22k(1/p−1/2)cj,k,ψ. The projection P0f has very few terms, which we take intact into
the compressed representation at little cost.
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To apply the compression algorithm of the previous section, we need to decide on
a suitable norm in which to measure the error. The L2(R

2) norm is most commonly
used, but we argue in [DJL1] that the L1(R

2) is a better model for the human eye
for error with high spatial frequency.

If one decides to use the Lp(R
2) norm to measure compression error, then the

algorithm of the previous section orders the Lp(R
2)-normalized wavelet coefficients

cj,k,ψ,p and chooses the largest of these to keep. Optimally, one would send coeffi-
cients in decreasing order of size. Thus, we find a (small) set Λ of ordered triples
{(j, k, ψ)} that index the largest values of |cj,k,ψ,p| and use for our compressed
image

g :=
∑

(j,k,ψ)∈Λ

cj,k,ψ,pψj,k,p.

This sum has |Λ| terms.
This method of sending coefficients sequentially across a communications link to

allow gradual reconstruction of an image by the receiver is known as progressive

transmission. Our criterion provides a new ordering for the coefficients to be trans-
mitted that depends on the value of p. However, sorting the coefficients requires
O(m22m) operations, while the fast wavelet transform itself takes but O(22m) op-
erations. Thus, a faster compression method that does not rely on sorting is to be
preferred; we proceed to give one.

We discuss compression in L2(R
2) for a moment. As noted before, the optimal

algorithm is to keep the largest L2(R
2) coefficients and to discard the other co-

efficients. The coefficients to keep can be determined by fixing any the following
quantities:

(i) N := |Λ|,

(ii) ‖f − g‖L2(R2) =

( ∑

(j,k,ψ)/∈Λ

|cj,k,ψ|2
)1/2

,

(iii) ǫ := inf
(j,k,ψ)∈Λ

|cj,k,ψ|.

Setting any one of these quantities determines the other two, and by extension the
set Λ, for any function f . In other words, we can prescribe either the number of
nonzero coefficients N , the total error ‖f − g‖L2(R2), or ǫ, which we consider to be
a measure of the local error. If we determine which triples (j, k, ψ) to include in
Λ by the third criterion, then we do not need to sort the coefficients, for we can
sequentially examine each coefficient and put (j, k, ψ) into Λ whenever |cj,k,ψ| ≥ ǫ.
This is known as threshold coding to the engineers, because one keeps only those
coefficients that exceed a specified threshold.

Even more compression can be achieved by noting that we should keep only the
most significant bits of the coefficients cj,k,φ,p. Thus, we choose a tolerance ǫ > 0
and we take in the compressed approximation for each ψj,k,p a coefficient c̃j,k,ψ,p
such that

(6.2.3) |c̃j,k,ψ,p − cj,k,ψ,p| < ǫ.

with the proviso that c̃j,k,ψ,p = 0 whenever |cj,k,ψ,p| < ǫ. Then S̃ :=∑
j,k,ψ c̃j,k,ψ,pψj,k,p represents our compressed image, and (6.1.5) holds for this

approximation.
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This process of keeping only the most significant bits of cj,k,ψ,p is known in the
engineering literature as scalar quantization. The dependence on the dyadic level k
and the space Lp([0, 1]

2) in which the error is measured is brought out more clearly
when using L∞(R2)-normalized wavelets, i.e., when ψj,k = ψ(2k· − j). For these
wavelets, as the dyadic level increases, the number of bits of cj,k,ψ taken in c̃j,k,ψ
decreases. For example, if p = 2, we would take one less bit at each increment of
the dyadic level. On the other hand, if the compression is done in the L1([0, 1]

2)
norm, than we would take two fewer bits as we change dyadic levels. See [DJL1].

6.3. The numerical solution of partial differential equations. Wavelets are
currently being investigated for the numerical solution of differential and integral
equations (see, e.g., the papers of Beylkin, Coifman, and Rokhlin [BCR] and Jaffard
[Ja]). While these applications are only now being developed, we shall consider a
couple of simple examples to illustrate the potential of wavelets in this direction.

Elliptic equations. The Galerkin method applied to elliptic partial differential
equations gives rise to a matrix problem that involves a so-called stiffness matrix.
We present a simple example that illustrates the perhaps surprising fact that the
stiffness matrix derived from the wavelet basis can be preconditioned trivially to
have a uniformly bounded condition number. In general, this property allows one
to use iterative methods, such as the conjugate gradient method, to solve linear
systems with great efficiency. The linear systems that arise by discretizing elliptic
PDEs have a lot of structure and can in no way be considered general linear systems,
and there are many very efficient numerical methods, such as multigrid, that exploit
the special structure of these linear systems to solve these systems to high accuracy
with very low operation counts. We do not yet know of a complete analysis that
shows that computations with wavelets can be more efficient than existing multigrid
methods when applied to the linear systems that arise by discretizing elliptic PDEs
in the usual way.

Rather than consider Dirichlet and Neumann boundary value problems in several
space dimensions, as discussed in [Ja], we shall present only a simple, periodic,
second order ODE that illustrates the main points. We shall consider functions
defined on the one-dimensional torus T, which is equivalent to [0, 1] with the end-
points identified, and search for u = u(x), x ∈ T, that satisfies the equation

(6.3.1) −u′′(x) + u(x) = f(x), x ∈ T,

with f ∈ L2(T). In variational form, the solution u ∈W 1(L2(T)) of (6.3.1) satisfies

(6.3.2)

∫

T

(u′v′ + uv) =

∫

T

fv,

for all v ∈W 1(L2(T)). We remark that we can take

‖u‖2W 1(L2(T))
:=

∫

T

([u′]2 + u2).

To approximate u by Galerkin’s method, we must choose a finite-dimensional
subspace of W 1(L2(T)), which we shall choose to be a space spanned by wavelets
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defined on the circle T. We indicate briefly how to construct periodic wavelets on
T from wavelets on R.

For any f with compact support defined on R, the function

f◦ :=
∑

j∈Z

f(·+ j)

is a function of period one, which we call the periodization of f . To obtain wavelets
on T, we apply this periodization to wavelets on R. To be specific, we consider
only the Daubechies wavelets ψ := D2N with N > 2 because they are contained in
W 1(L2(T)). (The first nontrivial Daubechies wavelet, D4, is in W

α(L2(T)) for all
α < 1 (see [E]), but we do not know if it is in W 1(L2(T)).) Let φ be the function of
§3.5 that gives rise to ψ. For each k ∈ Z, we let φ◦j,k and ψ◦

j,k be the periodization

of the functions φj,k and ψj,k respectively. We define S̃k to be the linear span of the
functions φ◦j,k, j = 0, . . . , 2k − 1. The functions in this space are clearly of period
one. We also note that the φ◦j,k are orthogonal. Indeed, because they are periodic,

∫ 1

0

φ◦j,kφ
◦
j′,k =

∑

ℓ∈Z

∫ 1

0

φj,k( · + ℓ)φ◦j′,k =
∑

ℓ∈Z

∫ 1

0

φj,k( · + ℓ)φ◦j′,k( · + ℓ)

=

∫

R

φj,kφ
◦
j′,k =

∑

ℓ∈Z

∫

R

φj,kφj′,k( · + ℓ) =
∑

ℓ∈Z

∫

R

φj,kφj′+ℓ2k,k.

If j 6= j′, each integral in the last sum is zero, since we never have j = j′ + 2kℓ.
If j = j′, then exactly one integral in the last sum is nonzero and its value is one.
Similarly, we find that ψ◦

j,k, j = 0, . . . , 2k − 1, k ≥ 0, is an orthonormal system for

L2(T). It is easy to check that by adjoining φ◦0,0, which is identically one on T, this
orthonormal system is complete.

Returning to our construction of periodic wavelet spaces, we define W̃ k to be
the linear span of the functions ψ◦

j,k, j = 0, . . . , 2k − 1. Then S̃k+1 = S̃k ⊕ W̃ k. To
simplify our notation in this section, in which we refer to periodic wavelets only, we
drop the superscripts and tildes, and denote by φj,k, ψj,k, Sk, andW k, the periodic
wavelet bases and spaces.

Returning to the numerical solution of (6.3.1), we choose a positive value of m
and approximate u by an element um ∈ Sm that satisfies:

(6.3.3)

∫

T

(u′mv
′ + umv) =

∫

T

fv, v ∈ Sm.

We can write um and v as in (6.2.2). For example,

(6.3.4) um = P0um +

m−1∑

k=0

Qkum = γφ0,0 +

m−1∑

k=0

2k−1∑

j=0

β(j, k)ψj,k.

Because φ0,0 is identically one on the circle T, γ is just the average of um on T.
From (6.3.3) we see that with v ≡ 1, γ =

∫
T
f . Thus, we need to determine β(j, k).
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If we replace um in (6.3.3) by its representation (6.3.4), we arrive at a system of
equations

m−1∑

k=0

2k−1∑

j=0

β(j, k)

∫

T

(ψ′
j,kψ

′
j′,k′ + ψj,kψj′,k′) =

∫

T

fψj′,k′ ,

for j′ = 0, . . . , 2k
′ − 1 and k′ = 0, . . . , m− 1, or, more succinctly,

(6.3.5) Tβ = f

where the typical entry in T is
∫
T
(ψ′
j,kψ

′
j′,k′ + ψj,kψj′,k′) and f a vector with

components
∫
T
fψj′,k′ ; β = (β(j, k))j=0,...,2k−1, k=0,...,m−1 is the coefficient vector

of the unknown function.
The convergence rate of the conjugate gradient method, a popular iterative

method for the solution of systems like (6.3.5), depends on the condition number,
κ(T ) = ‖T‖‖T−1‖, of the symmetric, positive definite, stiffness matrix T . Now,

‖T‖ = sup
‖α‖

ℓ2
=1

α∗Tα and ‖T−1‖−1 = inf
‖α‖ℓ2=1

α∗Tα,

where α := (α(j, k))j=0,...,2k−1, k=0,...,m−1. For any vector α, we form the function
S := S(α) ∈ Sm by

S =

m−1∑

k=0

2k−1∑

j=0

α(j, k)ψj,k.

For example, um = γφ0,0 + S(β). It follows easily that

(6.3.6) |α∗Tα| =
∫ 1

0

([S′]2 + S2) = ‖S‖2W 1(L2(Rd)) ≈
m−1∑

k=0

2k−1∑

j=0

|2kα(j, k)|2.

The last equivalence in (6.3.6) is a variant of (5.9) (for q = p = 2). In (5.9), we
considered wavelet representations beginning at the dyadic level k = −∞; we could
just as easily have begun at the level k = 0 (by including P0) and arrived at the
equivalence in (6.3.6).

Equation (6.3.6) shows that the matrix DTD, where D has entries 2−kδjj′δ
k
k′ ,

satisfies

|α∗DTDα| ≈
m−1∑

k=0

2k−1∑

j=0

|α(j, k)|2;

i.e., the stiffness matrix T can be trivially preconditioned to have a condition num-
ber κ(DTD) := ‖DTD‖‖D−1T−1D−1‖ that is bounded independently of m.

Because the subspace Sm of L2(T) generated by the Daubechies wavelet D2N

locally contains all polynomials of degree < N , we have that

inf
v∈Sm

‖u− v‖W 1(L2(T)) ≤ C2−m(N−1)|u|WN (L2(T)).
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Because of the special form of (6.3.1), um is in fact the W 1(L2(T)) projection of u
onto Sm, so we have

‖u− um‖W 1(L2(T)) ≤ C2−m(N−1)|u|WN (L2(T)).

One can treat in an almost identical way the equation (6.3.1) defined on the
torus Td with the left side replaced by −∇ · (a∇u) + bu with a and b bounded,
smooth, positive functions on Td, and obtain the same uniform bound on the con-
dition number. Of course, ultimately, one would like to handle elliptic boundary
value problems for a domain Ω. First results in this direction have been obtained
by Jaffard [Ja] and in a slightly different (nonwavelet) setting by Oswald (see for
example [O]). For example, Jaffard’s approach to elliptic equations with Dirichlet
boundary conditions is to transform the equation to one with zero boundary con-
ditions by extending the boundary function into the interior of the domain Ω. He
then employs in a Galerkin method wavelets whose support is contained strictly
inside Ω. However, there has not yet been an analysis of the desired relationship
between the extension and the wavelets employed. Another approach is to develop
wavelets for the given domain (which do not vanish on the boundary) (see [JaMe]).

Employing wavelets for elliptic problems as outlined above is similar to the use
of hierarchical bases in the context of multigrid. However, two points suggest that
wavelet bases may be more useful than hierarchical bases. First, the wavelet bases
are L2(R

d)-stable, while the hierarchical basis are not. Second, one can choose
from a much greater variety of wavelet bases with various approximation properties
(values of N).

Finally, we mention the great potential for compression to be used in conjunction
with wavelets for elliptic problems in a similar way to adaptive finite elements (see
also [Ja]).

6.4. Time dependent problems. Wavelets have potential application for the nu-
merical solution of time-dependent parabolic and hyperbolic problems. We mention
one particular application where the potential of wavelets has at least theoretical
foundation.

We consider the solution u(x, t) of the scalar hyperbolic conservation law

(6.4.1)
ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

in one space dimension. It is well known that the solution to (6.4.1) develops
discontinuities (called “shocks”) even when the initial condition is smooth. This
makes the numerical treatment of (6.4.1), and even more so its analogue in several
space dimensions, somewhat subtle. The appearance of shocks calls for adaptive or
nonlinear methods.

Considering the appearance of discontinuities in the solution u to (6.4.1), the
following regularity result of the authors [DL], [DL1], is quite surprising. If the flux
f in (6.4.1) is strictly convex and suitably smooth, and u0 has bounded variation,
then it has been shown that for any α > 0 and τ := τ(α) := (α+ 1)−1,

(6.4.2) u0 ∈ Bατ (Lτ (R)) =⇒ u( · , t) ∈ Bατ (Lτ (R)),
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for all later time t > 0. That is, if u0 has smoothness of order α in Lτ (R) then so
will u( · , t) for all later time t > 0.

The regularity result (6.4.2) has an interpretation in terms of wavelet decom-
positions. We cannot use orthogonal wavelets in these decompositions because,
as we pointed out earlier, they do not provide stable representations of functions
in L1(R) because they have mean value zero. However, the characterization of
Besov spaces can be carried out using other, nonorthogonal, wavelets, such as B-
splines. With this caveat, (6.4.2) says that whenever u0 has a wavelet decomposition∑
j,k∈Z

γj,k(u0)ψj,k,1, with certain L1(R)-normalized wavelets ψ, whose coefficients
satisfy

(6.4.3)
∑

k∈Z

∑

j∈Z

|γj,k(u0)|τ <∞,

then u( · , t) has a similar wavelet decomposition with the same control (6.4.3) on the
coefficients. We want to stress that the results in [DL] and [DL1] do not describe
directly how to determine wavelet coefficients at later time t > 0 from those of
the initial function u0. That is, there is no direct, theoretically correct, numerical
method known to us that describes how to update coefficients with time so that
(6.4.3) holds. The regularity result (6.4.2) is proved by showing that whenever u0
can be approximated well in L1(R) by piecewise polynomials with free (variable)
knots, then u( · , t) can be approximated in the same norm by piecewise algebraic
functions (of a certain type) with free knots.

Finally, we mention that the authors have also shown that the analogue of regu-
larity result (6.4.3) does not hold in more than one space dimension. From the point
of view of wavelet decompositions, our results seem to indicate that the wavelets
described in this presentation are too symmetric to effectively handle the diverse
types of singularities that arise in the solution of conservation laws in several space
dimensions.
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