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Abstract. We bound the difference between the solution to the continuous Rudin–Osher–Fatemi
(ROF) image smoothing model and the solutions to various finite-difference approximations to this
model. These bounds apply to “typical” images, i.e., images with edges or with fractal structure.
These are the first bounds on the error in numerical methods for ROF smoothing.
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1. Introduction. Image noise removal based on total variation smoothing was
introduced by Rudin, Osher, and Fatemi in [13]. Under this Rudin–Osher–Fatemi
(ROF) model, one supposes a “true” image f defined on Ω = [0, 1]2 and a “corrupted”
image g derived from f (by adding noise, etc.) with ‖f−g‖2L2(Ω) = σ2. In an attempt
to reconstruct f from g, one calculates a “smoothed” image u that minimizes

|v|BV(Ω) =

∫

Ω
|Dv| subject to the constraint ‖v − g‖2L2(Ω) ≤ σ2.(1.1)

(Precise definitions are given later.) We deal with the equivalent problem: If we
calculate ḡ, the average of g on Ω, then for any σ with

σ2 < ‖g − ḡ‖2L2(Ω)

there exists a unique λ > 0 such that the minimizer of (1.1) is the minimizer u of the
functional

E(v) =
1

2λ
‖v − g‖2L2(Ω) + |v|BV(Ω).(1.2)

Here λ is a positive parameter that balances the relative importance of the smooth-
ness of the minimizer (important when λ is large) and the L2(Ω) distance between
the minimizer and the initial data (important when λ is small). About the same
time, Bouman and Sauer [1] proposed a discrete version of (1.2) in the context of
tomography.

Practically, one discretizes E(·) to compute the minimizer of the discrete func-
tional Eh(·). We assume the discrete corrupted image gh of resolution N × N
(N = 1/h) is simply the piecewise constant projection of the continuous corrupted
image g, and define the discrete functional

Eh(v
h) =

1

2λ

∑

i

|vhi − ghi |2 h2 + Jh(v
h),(1.3)
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where Jh is a discretized total variation. The most commonly used Jh is the discrete
variation J++ used in [13],

J++(v
h) =

∑

i

√(vhi+(1,0) − vhi
h

)2

+

(vhi+(0,1) − vhi
h

)2

h2.(1.4)

Efficient algorithms have been developed to compute the discrete minimizer [2], [6],
[3], [5].

In this paper, we study the relationship between the minimizer u of E(·) and the
discrete minimizer uh of Eh(·). It is well known that Eh Γ-converges to E in L1.
As a direct consequence uh tends to u in L1. Assuming the discrete variation Jh
satisfies certain conditions that we explain later, we give a bound of the L2 norm of
the difference between u and uh in Theorem 4.2.

Because the ROF model is often applied to images, an analysis of the error be-
tween the solutions of discrete approximations and the solution of the continuous
model itself should apply to functions modeling images. “Typical” natural images
have little smoothness, because of intensity discontinuities at the edges of objects and
the fractal structure of many objects themselves (leaves in a tree, hair, etc.). Our
results apply to functions in the Lipschitz spaces Lip(α, L2(Ω)), which contain func-
tions with, roughly speaking, α “derivatives” in L2(Ω). Here 0 < α ≤ 1/2 for “images
with edges”: f ∈ BV(Ω) ∩ L∞(Ω) implies f ∈ Lip(1/2, L2(Ω)), while functions with
fractal structure usually have α < 1/2; see [7].

Our convergence results in section 4 are proved for (1.3) with Jh = J∗, a discrete
variation obtained by symmetrizing J++. Nonetheless, our approach is quite general,
and in section 5 we obtain the same results for JU , an “upwind” discrete variation
formulated in [12]. We remark that an iterative method for minimizing (1.3) with
Jh = JU was given in [5].

While the ROF model has proved to be tremendously influential, and has been
the basis of further algorithms in image processing, we know of no other results that
bound the difference between the solution of the continuous problem and its finite-
difference approximations. A finite element method applied to the time-dependent
gradient descent problem associated with (1.2) was studied in [10]; we note that their
Theorem 4 requires the initial data u0 to have two continuous derivatives on Ω so it
does not apply to “typical” natural images with edges.

The rest of this section introduces notation and our main results. In section 2 we
compare discrete and continuous variational functionals. In section 3 we note some
properties of the minimizers of E(·) and Eh(·) that we use in section 4 to first bound
the difference between the discrete and continuous functionals at their respective
minimizers and then to bound the L2 difference between the discrete and continuous
minimizers themselves. In section 5, we prove a number of lemmas for the “upwind”
discretization of the bounded variation (BV) semi-norm that allow us to prove similar
error bounds for the discrete minimizer of the “upwind” scheme. Section 6 summarizes
our results and points to variations that appear elsewhere.

Finally, we note that we present here a sequence of lemmas, the proofs of which
are often omitted as “a tedious calculation,” or “standard” given the previous lemmas.
We found when developing these results, however, that dividing the argument into
these smaller steps led to much greater clarity, and we preserve that structure in this
paper.
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1.1. Summary of main results. The major difficulty to overcome in our anal-
ysis is to compare Jh(uh), the discrete variation of the minimizer of the discrete
functional (1.3), with |u|BV(Ω), the variation of the minimizer of the continuous func-
tional (1.2). Indeed, if we consider Phui, the discrete function that is computed as
the average of u on subsquares Ωi = h(i + Ω), then, for general u, no matter which
Jh we choose, we have that

lim
h→0

Jh(Phu) '= |u|BV(Ω).

So Eh(Phu) does not, in general, converge to E(u) (since ‖Phu − Phg‖L2(Ωh) →
‖u − g‖L2(Ω) as h → 0), and the question of whether Eh(uh) does converge to E(u)
requires a more subtle analysis.

We note that J++ defined by (1.4) is a consistent approximation to |u|BV(Ω) for
continuously differentiable u: limh→0 J++(Phu) = |u|BV(Ω) for smooth u. So, for
general u ∈ BV(Ω), we first mollify u, computing Sεu = ηε ∗ u, where ηε is a mollifier
and ε is a positive parameter tending to zero in a controlled way that depends on h,
and compare Eh(PhSεu) to E(u). Mollifying u introduces an error in the L2(Ω) term
of (1.2), but it reduces the Jh term, making it closer to |u|BV(Ω).

That is how we compare the continuous u to the discrete uh; we also have to go
the other way. To do that we require Jh to have a certain symmetry, so we consider
first a symmetrized version J∗ of J++ and then later an upwind discrete variation JU .
In more-or-less complete analogy with the continuous argument, we first compute
SLuh

i , a discrete average of uh
i on (2L + 1) × (2L + 1) squares (with the point i in

the middle of the square), and then compute a piecewise linear interpolant IntSLuh

(1.19) of SLuh
i , comparing E(IntSLuh) to Eh(uh). Now L is a positive parameter,

depending on h, that tends to infinity as h → 0.
We prove the following two theorems.
Theorem 1.1 (functional difference). Let g ∈ Lip(α, L2(Ω)) and assume u is the

minimizer of E(v) from (3.3) and uh is the minimizer of Eh(vh) from (3.1).
Then there is a constant C such that if ε = h1/(α+1), we have

Eh(PhSεu) ≤ E(u) +
C

λ
‖g‖2Lip(α,L2(Ω))h

α/(α+1),

and if L is set to the integer part of h−α/(α+1), then

E(IntSLu
h) ≤ Eh(u

h) +
C

λ
‖g‖2Lip(α,L2(Ω))h

α/(α+1).

Finally,

|E(u)− Eh(u
h)| ≤ C

λ
‖g‖2Lip(α,L2(Ω))h

α/(α+1).

Theorem 1.2 (minimizer difference). Let g ∈ Lip(α, L2(Ω)) and assume that u
is the minimizer of E(v) from (3.3) and uh is the minimizer of Eh(vh) from (3.1).
Then there is a constant C such that

‖Ihuh − u‖2L2(Ω) ≤ C‖g‖2Lip(α,L2(Ω))h
α/(α+1),

where (Ihuh)(x) = uh
i for x ∈ Ωi.
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1.2. Basic notations. We consider the usual Lp(Ω) spaces on Ω := [0, 1]2 ⊂ R2,

with ‖v‖Lp(Ω) :=
(∫

Ω |v|p
) 1

p for 1 ≤ p < ∞. (We assume the usual change for p = ∞.)
We consider the discrete set Ωh to be the set of all pairs i = (i1, i2) ∈ Z2, Z the
integers, with 0 ≤ i1, i2 < N , h = 1/N , and we refer to functions defined on Ωh as
discrete functions . So for discrete functions vh = vhi , we define the discrete Lp(Ωh)
norms

‖vh‖Lp(Ωh) :=

(∑

i∈Ωh

|vhi |p h2

) 1
p

for 1 ≤ p < ∞.

We define the translation operator for discrete functions by

(T#(v
h))i := vhi+# for any & = (&1, &2) ∈ Z2.

To measure the size of a translation, we introduce |&| = max(|&1|, |&2|). Similarly,

(Tτv)(x) = v(x+ τ) for any τ = (τ1, τ2) ∈ R2

and, for translations, we set |τ | = max(|τ1|, |τ2|).
We often need to extend v ∈ Lp(Ω) and vh ∈ Lp(Ωh) to all of R2 and Z2,

respectively; we denote the extensions by Ext v and Exth vh. For v ∈ Lp(Ω), we use
the following procedure. First, Ext v(x) = v(x), x ∈ Ω. We then reflect across the
line x1 = 1,

Ext v(x1, x2) = Ext v(2− x1, x2), 1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1,

and reflect again across the line x2 = 1,

Ext v(x1, x2) = Ext v(x1, 2− x2), 0 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 2.

Having defined Ext v on 2Ω, we then extend Ext v periodically on all of R2.
We use the analogous construction of Exth vh for discrete functions vh. Note that

the value of Exth vh at any point immediately “outside” Ωh is the same as the value
of vh at the closest point “inside” Ωh.

For v ∈ Lp(Ω) we define the (first-order) Lp(Ω) modulus of smoothness by

ω(v, t)Lp(Ω) = sup
τ∈R2, |τ |<t

(∫

x,x+τ∈Ω
|v(x+ τ)− v(x)|p dx

) 1
p

.

We also define

ω(Ext v, t)Lp(2Ω) := sup
τ∈R2, |τ |<t

‖Tτ Ext v − Ext v‖Lp(2Ω).

The Lipschitz spaces Lip(α, Lp(Ω)) consist of all functions v for which

|v|Lip(α,Lp(Ω)) := sup
t>0

t−αω(v, t)Lp(Ω) < ∞;

we set ‖v‖Lip(α,Lp(Ω)) := ‖v‖Lp(Ω) + |v|Lip(α,Lp(Ω)).
We also need a discrete modulus of smoothness. The discrete Lp(Ωh) modulus of

smoothness is

ω(vh,m)Lp(Ωh) := sup
#∈Z2, |#|≤m

( ∑

i,i+#∈Ωh

|vhi+# − vhi |p h2

) 1
p

.
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For Exth vh we similarly define

ω(Exth v
h,m)Lp(2Ωh) = sup

#∈Z2, |#|≤m
‖T# Exth v

h − Exth v
h‖Lp(2Ωh).

We have the following relationship between moduli of smoothness and our exten-
sion operators; the lemma can be proved as in [8, page 182].

Lemma 1.1 (Whitney extension). For all 1 ≤ p ≤ ∞ there exists a constant C
such that for all v ∈ Lp(Ω) and vh ∈ Lp(Ωh)

‖Tτ Ext v − Ext v‖Lp(2Ω) ≤ Cω(v, |τ |)Lp(Ω), τ ∈ R2,(1.5)

and

‖T# Exth v
h − Exth v

h‖Lp(2Ωh) ≤ Cω(vh, |&|)Lp(Ωh), & ∈ Z2.(1.6)

Moreover, for all positive t ∈ R,m ∈ Z we have

ω(Ext v, t)Lp(2Ω) ≤ Cω(v, t)Lp(Ω)(1.7)

and

ω(Exth v
h,m)Lp(2Ωh) ≤ Cω(vh,m)Lp(Ωh).(1.8)

1.3. Variation functionals. The variation of a function v ∈ L1(Ω) is defined
as follows. We consider functions φ in the space of C1 functions from Ω to R2 with
compact support, i.e., [C1

0 (Ω)]
2. The variation of a function v ∈ L1(Ω) is then defined

to be

|v|BV(Ω) :=

∫

Ω
|Dv| := sup

φ∈[C1
0(Ω)]2, |φ|≤1 pointwise

∫

Ω
v∇ · φ.

We note that if v is in the Sobolev space W 1,1(Ω), so that its first distributional
derivatives are in L1(Ω), then

|v|BV(Ω) =

∫

Ω
|∇v|.

We need discrete analogues of the variation of a function. For ⊕ and . indepen-
dently taking values in the set {+,−} and any discrete function vh, we define

J⊕)(v
h) :=

∑

i∈Ωh

√(Exth vhi⊕(1,0) − Exth vhi
h

)2

+

(Exth vhi)(0,1) − Exth vhi
h

)2

h2.

(1.9)

We note that the sum is over i ∈ Ωh, and Exth vhi = vhi for all i ∈ Ωh.
Having defined J++(vh), J+−(vh), J−+(vh), and J−−(vh), for any nonnegative

a, b, c, and d with a+ b + c+ d = 1, we define

Jh(v
h) = a J++(v

h) + b J+−(v
h) + c J−+(v

h) + d J−−(v
h),(1.10)

and define the special “isotropic” discrete variation

J∗(v
h) :=

1

4

(
J++(v

h) + J+−(v
h) + J−+(v

h) + J−−(v
h)
)
;
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J∗ is invariant under rotations of Ωh by 90 degrees, or under horizontal or vertical
reflections.

At times we consider discrete variational functionals for discrete functions defined
on 2Ωh; for these purposes we denote by JΩh

⊕)(v
h) the discrete variation defined in

(1.9) and by J2Ωh

⊕) (Exth vh) the corresponding sum over 2Ωh; similarly we write

JΩh

h (vh) = Jh(v
h) and JΩh

∗ (vh) = J∗(v
h),

and we use the notation J2Ωh

h (Exth vh) for

a J2Ωh

++ (Exth v
h) + b J2Ωh

+− (Exth v
h) + c J2Ωh

−+ (Exth v
h) + d J2Ωh

−− (Exth v
h)

and J2Ωh

∗ (Exth vh) for the corresponding sum with a = b = c = d = 1/4.
We have the following relationships between continuous and discrete variations

of functions and continuous and discrete extension operators; the lemma is proved
simply by considering the symmetries of JΩh

∗ and noticing that Ext v does not add
any variation along the lines of reflection.

Lemma 1.2 (TV symmetry). For any discrete function vh,

J2Ωh

⊕) (Exth v
h) = 4JΩh

∗ (vh).(1.11)

Thus, we have J2Ωh

∗ (Exth vh) = 4JΩh

∗ (vh) and, for any & ∈ Z2, J2Ωh

∗ (T# Exth vh) =

4JΩh

∗ (vh).
Similarly, for any v ∈ BV(Ω), we have |Ext v|BV(2Ω) = 4|v|BV(Ω).
We also define a discrete “anisotropic” variation that is analogous to the W 1,1(Ω)

Sobolev semi-norm:

|vh|W 1,1(Ωh) =
∑

i∈Ωh

{∣∣∣∣
Exth vhi+(1,0) − Exth vhi

h

∣∣∣∣+
∣∣∣∣
Exth vhi+(0,1) − Exth vhi

h

∣∣∣∣

}
h2.

(1.12)

Because
√
a2 + b2 ≤ |a|+ |b| ≤

√
2
√
a2 + b2, there exist positive constants C1 and C2

such that for any discrete function vh and any discrete functional Jh,

C1|vh|W 1,1(Ωh) ≤ Jh(v
h) ≤ C2|vh|W 1,1(Ωh).(1.13)

For some intermediate estimates we need second-order continuous and discrete
semi-norms, so we define for v in the Sobolev space W 2,1(2Ω) with periodic boundary
conditions (i.e., treating 2Ω as a torus)

|v|W 2,1(2Ω) =

∫

2Ω
|D2

1v|+ |D2
2v|,

and for periodic discrete functions vh on 2Ωh we define |vh|W 2,1
h (2Ωh) as

∑

i∈2Ωh

{∣∣∣∣
vhi+(1,0) − 2vhi + vhi−(1,0)

h2

∣∣∣∣+
∣∣∣∣
vhi+(0,1) − 2vhi + vhi−(0,1)

h2

∣∣∣∣

}
h2.(1.14)

Note that these semi-norms do not include “cross” derivatives or differences, but we
do not need these in our estimates.
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Lemma 1.3 (TV difference). For any two discrete functionals J⊕) and J⊕′)′ ,
and any discrete function vh, we have

|J⊕)(v
h)− J⊕′)′(vh)| ≤ h|Exth vh|W 2,1

h (2Ωh).(1.15)

Proof. The quantities summed in (1.9) are the norms of two-vectors of divided
differences, which we choose to write in the following way:

|J++(v
h)− J+−(v

h)|

=

∣∣∣∣∣∣

∑

i∈Ωh

∣∣∣∣∣
1

h

(
Exth vhi+(1,0) − Exth vhi
Exth vhi+(0,1) − Exth vhi

)∣∣∣∣∣ h
2

−
∑

i∈Ωh

∣∣∣∣∣
1

h

(
Exth vhi+(1,0) − Exth vhi

(−1)(Exth vhi−(0,1) − Exth vhi )

)∣∣∣∣∣ h
2

∣∣∣∣∣∣

≤ 1

h

∑

i∈Ωh

∣∣∣∣∣

∣∣∣∣∣

(
Exth vhi+(1,0) − Exth vhi
Exth vhi+(0,1) − Exth vhi

)∣∣∣∣∣−

∣∣∣∣∣

(
Exth vhi+(1,0) − Exth vhi

(−1)(Exth vhi−(0,1) − Exth vhi )

)∣∣∣∣∣

∣∣∣∣∣ h
2

≤ 1

h

∑

i∈Ωh

∣∣∣∣∣

(
Exth vhi+(1,0) − Exth vhi
Exth vhi+(0,1) − Exth vhi

)
−

(
Exth vhi+(1,0) − Exth vhi

(−1)(Exth vhi−(0,1) − Exth vhi )

)∣∣∣∣∣ h
2

=
1

h

∑

i∈Ωh

∣∣∣∣

(
0

Exth vhi+(0,1) − 2Exth vhi + Exth vhi−(0,1)

)∣∣∣∣ h
2

≤ h|Exth vh|W 2,1
h (2Ωh).

Analogous arguments apply to other differences.

1.4. Projectors, injectors, and smoothing operators. We define the piece-
wise constant injector of discrete functions vh into Lp(Ω): (Ihvh)(x) = vhi for x ∈ Ωi,
where Ωi := h

(
Ω+ i

)
. Later we define an injector from discrete functions into a space

of continuous, piecewise linear functions.
We also consider the piecewise constant projector of v ∈ L1(Ω) onto the space of

discrete functions, defined by

(Phv)i =
1

|Ωi|

∫

Ωi

v, i ∈ Ωh,

where |Ωi| is the measure of Ωi.
Lemma 1.4 (injector and projector). There exists a constant C such that for all

v ∈ L2(Ω)

‖v − IhPhv‖L2(Ω) ≤ Cω(v, h)L2(Ω).(1.16)

We also have for any periodic v ∈ W 2,1(2Ω)

|Phv|W 2,1
h (2Ωh) ≤ |v|W 2,1(2Ω) .(1.17)

Proof. Relationship (1.16) is a special case of a general bound for the error in
spline approximation; see [8, Theorem 7.3, page 225].
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x1

x2x3

x4

x5 x6

1

1

Fig. 1.1. D, the support of φ.

To prove (1.17), we deal with the differences in the horizontal direction:

∑

i∈2Ωh

∣∣∣∣
(Phv)i+(1,0) − 2(Phv)i + (Ph)vi−(1,0)

h2

∣∣∣∣h
2

=
∑

i∈2Ωh

1

h

∣∣∣∣
(Phv)i+(1,0) − (Phv)i

h
−

(Phv)i − (Phv)i−(1,0)

h

∣∣∣∣h
2

=
∑

i∈2Ωh

1

h2

∣∣∣∣
∫

Ωi

[(v(x + h, y)− v(x, y)) − (v(x, y)− v(x− h, y))] dx dy

∣∣∣∣

=
∑

i∈2Ωh

1

h2

∣∣∣∣
∫

Ωi

∫ h

0
[D1v(x + t, y)−D1v(x+ t− h, y)] dt dx dy

∣∣∣∣

=
∑

i∈2Ω

1

h2

∣∣∣∣
∫

Ωi

∫ h

0

∫ 0

−h
D11v(x+ t+ s, y) ds dt dx dy

∣∣∣∣

≤
∫

2Ω
|D11v| dx dy (exchange the order of integration and sum over i).

Arguing similarly in the vertical direction, we see that (1.17) holds.
We need another map taking vh ∈ L2(Ωh) to L2(Ω), in the form of a piecewise

linear interpolant of the discrete values of vhi . To this end, let φ be the box spline
function whose support is the hexagon D in Figure 1.1 with φ being linear on each
triangle in Figure 1.1 and

φ(i) =

{
1, i = (0, 0),

0, i '= (0, 0), i ∈ Z2.

We dilate and translate φ to obtain the function

φh
i (x) := φ

(x
h
−

(
i+

(1
2
,
1

2

)))
.(1.18)

We see that suppφh
i is D dilated by h and translated by

(
i +

(
1
2 ,

1
2

))
h.

We define the interpolant Int vh by

Int vh =
∑

i∈Z2

Exth v
h
i φi.(1.19)
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We then have the following lemma.
Lemma 1.5 (piecewise linear injector). For any vh in L2(Ωh) we have

| Int vh|BV(Ω) =
1

2
(J++(v

h) + J−−(v
h)).(1.20)

Additionally, there exists a constant C such that for all discrete functions vh

‖Ihvh − Int vh‖L2(Ω) ≤ Cω(vh, 1)L2(Ωh).(1.21)

Proof. The proofs of (1.20) and (1.21) are just calculations, which can be found
in [14]. For (1.20), the J++ terms come from triangles with the orientation of the
triangle in the upper right quadrant of Figure 1.1, and the J−− terms come from
triangles with the orientation of the triangle in the lower left quadrant.

We need both continuous and discrete smoothing operators, which we define as
follows. Assume that η(x) is a fixed nonnegative, rotationally symmetric function
with support in the unit disk; further, suppose that η is C∞ and has integral 1. For
ε > 0 we define the scaled function ηε(x) := ε−2η(x/ε), x ∈ R2; we smooth a function
v ∈ Lp(Ω), 1 ≤ p ≤ ∞, by computing

(Sεv)(x) := (ηε ∗ Ext v)(x) =
∫

R2

ηε(x− y) Ext v(y) dy, x ∈ R2.

Our discrete smoothing operator is defined simply as

SLv
h :=

1

(2L+ 1)2

∑

|#|≤L

T# Exth v
h.

It is clear from these definitions that

T#SL Exth v
h = SLT# Exth v

h and TτSε Ext v = SεTτ Ext v,(1.22)

and that for any 1 ≤ p ≤ ∞,

‖SLv
h‖Lp(Ωh) ≤ ‖SLv

h‖Lp(2Ωh) ≤ ‖Exth vh‖Lp(2Ωh) ≤ 4‖vh‖Lp(Ωh)(1.23)

and

‖Sεv‖Lp(Ω) ≤ ‖Sεv‖Lp(2Ω) ≤ ‖Extv‖Lp(2Ω) ≤ 4‖v‖Lp(Ω).(1.24)

For these continuous and discrete smoothing operators we have the following
results.

Lemma 1.6 (smoothing operators). For all v ∈ L2(Ω) and all discrete functions
vh, we have

J∗(SLv
h) ≤ J∗(v

h) and |Sεv|BV(Ω) ≤ |v|BV(Ω).(1.25)

There exists a constant C > 0 such that for all M, t > 0,

ω(SLv
h,M)L2(Ωh) ≤ Cω(vh,M)L2(Ωh) and ω(Sεv, t)L2(Ω) ≤ Cω(v, t)L2(Ω).

(1.26)

Furthermore,

‖SLv
h − vh‖L2(Ωh) ≤ Cω(vh, L)L2(Ωh) and ‖Sεv − v‖L2(Ω) ≤ Cω(v, ε)L2(Ω).

(1.27)
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We also have

|Sεv|W 2,1(2Ω) ≤
C

ε
|v|BV(Ω) and |SLv

h|W 2,1
h (2Ωh) ≤

C

Lh
|vh|W 1,1(Ωh).(1.28)

Proof. The first two inequalities follow simply because the BV semi-norm and J∗
are convex and symmetric on 2Ωh; see Lemma 1.2.

The two inequalities (1.26) follow from the definitions of SL and Sε and Lem-
mas 1.1 and 1.2.

The next two inequalities follow from the definitions of SL, Sε, and the properties
of the discrete and continuous moduli of smoothness; see also (1.5) of Lemma 1.1.

The bound on the discrete W 2,1
h (2Ωh) semi-norm is a typical inverse inequality;

to deal with the differences in the horizontal direction, we execute the following:

∑

i∈2Ωh

∣∣∣∣
SLvhi+(1,0) − 2SLvhi + SLvhi−(1,0)

h2

∣∣∣∣ h
2

=
∑

i∈2Ωh

∣∣∣∣∣
1

(2L+ 1)2

∑

|#|≤L

Exth vhi+(1,0)+# − 2Exth vhi+# + Exth vhi+#−(1,0)

h2

∣∣∣∣∣ h
2

=
∑

i∈2Ωh

1

(2L+ 1)2

∣∣∣∣∣
∑

|#2|≤L

Exth vhi+(L+1,#2)
− Exth vhi+(L,#2)

h2

−
Exth vhi−(L,#2)

− Exth vhi−(L+1,#2)

h2

∣∣∣∣∣ h
2 (sum over &1)

≤
∑

i∈2Ωh

1

(2L+ 1)2

∑

|#2|≤L

{∣∣∣∣
Exth vhi+(L+1,#2)

− Exth vhi+(L,#2)

h2

∣∣∣∣

+

∣∣∣∣
Exth vhi−(L,#2)

− Exth vhi−(L+1,#2)

h2

∣∣∣∣

}
h2

≤ C

(2L+ 1)h

∑

i∈2Ωh

∣∣∣∣
Exth vhi+(1,0) − Exth vhi

h

∣∣∣∣h
2

≤ C

Lh
|vh|W 1,1(Ωh).

For the bound on the W 2,1(2Ω) semi-norm, we again deal with derivatives in one
direction only. We prove

∫
2Ω |D2

1Sεv| ≤ C
ε

∫
Ω |Dv|.

In fact,
∫

2Ω
|D2

1Sεv| = sup
φ∈C1

0(2Ω), |φ|≤1

∫

R2

(D2
1Sεv)φ

= sup
φ∈C1

0(2Ω), |φ|≤1

∫

R2

(D1Sεv)D1(−φ)

= sup
φ∈C1

0(2Ω), |φ|≤1

∫

R2

D1(ηε ∗ Ext v)D1(−φ)

= sup
φ∈C1

0(2Ω), |φ|≤1

∫

R2

(Ext v)D1(D1ηε ∗ φ);
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note that all but the first of these integrals are over R2. Notice

|D1ηε ∗ φ| ≤ ‖D1ηε‖L1‖φ‖∞ ≤ C

ε
,

and D1ηε ∗ φ ∈ C∞
0 (2Ωε), where 2Ωε := {x | dist(x, 2Ω) ≤ ε}; therefore

∫

2Ω
|D2

1Sεv| ≤
C

ε

∫

2Ωε

|DExt v| ≤ C

ε

∫

Ω′
|DExt v| ≤ C

ε

∫

Ω
|Dv| ,

where Ω′ = {(x, y) | |x|, |y| ≤ 3}.

2. Relationships between discrete and continuous variation and func-
tionals. We need to compare continuous and discrete variation functionals, so we
have the following technical lemma, which is proved in the appendix.

Lemma 2.1 (TV bound). There exists a C > 0 such that for any Jh and any
v ∈ L1(Ω),

Jh(Phv) ≤ |v|BV(Ω) + Ch|Ext v|W 2,1(2Ω),(2.1)

and for any vh defined on Ωh,

| Int vh|BV(Ω) ≤ Jh(v
h) + Ch|Exth vh|W 2,1

h (2Ωh).(2.2)

Our goal is to bound the difference between various continuous and discrete convex
functionals defined on L2(Ω) and L2(Ωh). We fix λ > 0. Given g ∈ L2(Ω), we consider
the (unique) minimizer u of the functional

E(v) =
1

2λ
‖v − g‖2L2(Ω) + |v|BV(Ω)

and the (unique) minimizer uh of the functional

Eh(v
h) =

1

2λ
‖vh − Phg‖2L2(Ωh) + Jh(v

h),

where Jh is any of the discrete variational functionals defined above. Most of our
analysis concerns the special case Jh = J∗.

It is difficult to compare u and uh directly, because J∗(uh) and |u|BV(Ω) could be
far apart, in general, even if uh → u as h → 0. However, there are smoothed versions
of u and uh, close to u and uh, whose continuous and discrete variations are close, as
the following lemma shows.

Lemma 2.2 (TV consistency). There exists a constant C such that for any
discrete function vh ∈ L2(Ωh) and any positive integer L, we have

| IntSLv
h|BV(Ω) ≤ J∗(v

h) +
C

L
J∗(v

h).(2.3)

Furthermore, there is a constant C such that for any v ∈ BV(Ω) and any positive ε
and any discrete functional Jh, we have

Jh(PhSεv) ≤ |v|BV(Ω) +
Ch

ε
|v|BV(Ω).(2.4)
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Proof. For the first inequality, we have from (2.2) in Lemma 2.1 (with Jh = J∗)

| IntSLv
h|BV(Ω) ≤ J∗(SLv

h) + Ch|SLv
h|W 2,1

h (2Ωh),

while from (1.25) in Lemma 1.6, J∗(SLvh) ≤ J∗(vh), and from (1.28) in the same
lemma

|SLv
h|W 2,1

h (2Ωh) ≤
C

Lh
|vh|W 1,1(Ωh) ≤

C

Lh
J∗(v

h).

The second inequality follows from (1.13). Combining the previous inequalities gives
(2.3).

For (2.4), we have from (2.1) in Lemma 2.1

Jh(PhSεv) ≤ |Sεv|BV(Ω) + Ch|Sεv|W 2,1(2Ω),

while (1.25) yields |Sεv|BV(Ω) ≤ |v|BV(Ω) and (1.28) gives |Sεv|W 2,1(2Ω) ≤ C
ε |v|BV(Ω).

Combining these three inequalities yields (2.4).
Now we compare discrete and continuous energy functionals.
Lemma 2.3 (comparing discrete and continuous energies). There exists a con-

stant C > 0 such that for all Jh and for all v ∈ BV(Ω)

(2.5)

Eh(PhSεv) ≤ E(v) +
Ch

ε
|v|BV(Ω)

+
C

λ
‖v − g‖L2(Ω)

(
ω(v, h)L2(Ω) + ω(v, ε)L2(Ω) + ω(g, h)L2(Ω)

)

+
C

λ

(
ω(v, h)2L2(Ω) + ω(v, ε)2L2(Ω) + ω(g, h)2L2(Ω)

)
.

Furthermore, for all discrete functions vh

(2.6)

E(IntSLv
h) ≤ Eh(v

h) +
C

L
J∗(v

h)

+
C

λ
‖vh − Phg‖L2(Ωh)

(
ω(vh, L)L2(Ωh) + ω(g, h)L2(Ω)

)

+
C

λ

(
ω(vh, L)2L2(Ω) + ω(g, h)2L2(Ω)

)
.

Proof. We have

Eh(PhSεv) = Jh(PhSεv) +
1

2λ
‖PhSεv − Phg‖2L2(Ωh).(2.7)

From (2.4), we see that the first term on the right is bounded by

|v|BV(Ω) +
Ch

ε
|v|BV(Ω).(2.8)

Now

‖PhSεv − Phg‖2L2(Ωh) = ‖IhPhSεv − IhPhg‖2L2(Ω),
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and the quantity on the right can be written as

‖(IhPhSεv − Sεv) + (Sεv − v) + (v − g) + (g − IhPhg)‖2L2(Ω)

≤ ‖v − g‖2L2(Ω) + 2‖v − g‖L2(Ω)

× ‖(IhPhSεv − Sεv) + (Sεv − v) + (g − IhPhg)‖L2(Ω)

+ ‖(IhPhSεv − Sεv) + (Sεv − v) + (g − IhPhg)‖2L2(Ω)

≤ ‖v − g‖2L2(Ω) + 2‖v − g‖L2(Ω)

×
(
‖IhPhSεv − Sεv‖L2(Ω) + ‖Sεv − v‖L2(Ω) + ‖g − IhPhg‖L2(Ω)

)

+ C
(
‖IhPhSεv − Sεv‖2L2(Ω) + ‖Sεv − v‖2L2(Ω) + ‖g − IhPhg‖2L2(Ω)

)
.

From (1.27) we can bound

‖Sεv − v‖L2(Ω) ≤ Cω(v, ε)L2(Ω)

and from (1.16) we know that

‖IhPhg − g‖L2(Ω) ≤ Cω(g, h)L2(Ω).

We also have from (1.16) and (1.26)

‖IhPhSεv − Sεv‖L2(Ω) ≤ Cω(Sεv, h)L2(Ω) ≤ Cω(v, h)L2(Ω).

Thus,

‖PhSεv − Phg‖2L2(Ωh) ≤‖v − g‖2L2(Ω) + C‖v − g‖L2(Ω)

×
(
ω(v, h)L2(Ω) + ω(v, ε)L2(Ω) + ω(g, h)L2(Ω)

)

+ C
(
ω(v, h)2L2(Ω) + ω(v, ε)2L2(Ω) + ω(g, h)2L2(Ω)

)
.

Using this inequality as well as (2.8) in (2.7) yields (2.5).
Now let vh be any discrete function. Then

E(IntSLv
h) = | IntSLv

h|BV(Ω) +
1

2λ
‖ IntSLv

h − g‖2L2(Ω).(2.9)

By (2.3), the first term on the right is bounded by

J∗(v
h) +

C

L
J∗(v

h).(2.10)

Now

‖ IntSLv
h − g‖2L2(Ω)

= ‖(IntSLv
h − IhSLv

h) + (IhSLv
h − Ihv

h) + (Ihv
h − IhPhg) + (IhPhg − g)‖2L2(Ω)

≤ ‖Ihvh − IhPhg‖2L2(Ω) + 2‖Ihvh − IhPhg‖L2(Ω)

× ‖(IntSLv
h − IhSLv

h) + (IhSLv
h − Ihv

h) + (IhPhg − g)‖L2(Ω)

+ ‖(IntSLv
h − IhSLv

h) + (IhSLv
h − Ihv

h) + (IhPhg − g)‖2L2(Ω)

≤ ‖Ihvh − IhPhg‖2L2(Ω) + 2‖Ihvh − IhPhg‖L2(Ω)

×
(
‖ IntSLv

h − IhSLv
h‖L2(Ω) + ‖IhSLv

h − Ihv
h‖L2(Ω) + ‖IhPhg − g‖L2(Ω)

)

+ C(‖ IntSLv
h − IhSLv

h‖2L2(Ω) + ‖IhSLv
h − Ihv

h‖2L2(Ω) + ‖IhPhg − g‖2L2(Ω)).
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Since, for all discrete vh, ‖Ihvh‖L2(Ω) = ‖vh‖L2(Ωh), the quantity above is bounded
by

‖vh − Phg‖2L2(Ωh) + 2‖vh − Phg‖L2(Ωh)

×
(
‖ IntSLv

h − IhSLv
h‖L2(Ω) + ‖SLv

h − vh‖L2(Ωh) + ‖IhPhg − g‖L2(Ω)

)

+ C
(
‖ IntSLv

h − IhSLv
h‖2L2(Ω) + ‖SLv

h − vh‖2L2(Ωh) + ‖IhPhg − g‖2L2(Ω)

)
.

From (1.27) we have

‖SLv
h − vh‖L2(Ωh) ≤ Cω(vh, L)L2(Ωh).

By (1.21) and (1.26) we have

‖ IntSLv
h − IhSLv

h‖L2(Ω) ≤ Cω(SLv
h, 1)L2(Ωh)

≤ Cω(vh, 1)L2(Ωh) ≤ Cω(vh, L)L2(Ωh).

Combining these inequalities, we have

‖ IntSLv
h − g‖2L2(Ω) ≤ ‖vh − Phg‖2L2(Ωh)

+ C‖vh − Phg‖L2(Ωh)

(
ω(vh, L)L2(Ωh) + ω(g, h)L2(Ω)

)

+ C
(
ω(vh, L)2L2(Ω) + ω(g, h)2L2(Ω)

)
.

Combining this inequality with (2.9) and (2.10) yields (2.6).

3. Properties of the continuous and discrete minimizers. We need to
discuss some properties of minimizers of the discrete and continuous functionals. We
begin by comparing functionals on Ω and Ωh and the corresponding functionals on
2Ω and 2Ωh. We remind the reader of the notations used in Lemma 1.2.

Lemma 3.1 (extending minimizers). If uh is the minimizer of the functional

EΩh

h (vh) = Eh(v
h) =

1

2λ
‖vh − gh‖2L2(Ωh) + JΩh

∗ (vh),(3.1)

then Exth uh is the minimizer over all discrete functions vh defined on 2Ωh of the
functional

E2Ωh

h (vh) =
1

2λ
‖vh − Exth g

h‖2L2(2Ωh) + J2Ωh

∗ (vh)(3.2)

with periodic boundary conditions.
Similarly, if u is the minimizer of

EΩ(v) = E(v) =
1

2λ
‖v − g‖2L2(Ω) + |v|BV(Ω),(3.3)

then Extu is the minimizer of

E2Ω(v) =
1

2λ
‖v − Ext g‖2L2(2Ω) + |v|BV(2Ω),(3.4)

again with periodic boundary conditions.
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Furthermore, if u and w are minimizers of (3.3) with data g and h, respectively,
then ‖u−w‖L2(Ω) ≤ ‖g−h‖L2(Ω); similarly for the discrete and continuous minimizers
of (3.1)–(3.4). Thus, for the two periodic problems (3.2) and (3.4) we have

‖Exth uh − T# Exth u
h‖L2(2Ωh) ≤ ‖Exth gh − T# Exth g

h‖L2(2Ωh)(3.5)

and

‖Extu− Tτ Extu‖L2(2Ω) ≤ ‖Ext g − Tτ Ext g‖L2(2Ω).(3.6)

Proof. Beginning with Lemma 1.2, the discrete extension result can be proved
with a tedious calculation, which can be found in [14]. The rest of the lemma is
standard.

The results of the next lemma follow quickly from the previous one and Lemma 1.1
and we present them without proof.

Lemma 3.2 (smoothness bounds). Assume u is the minimizer of E(v) from (3.3)
and uh is the minimizer of Eh(vh) from (3.1). Then

ω(u, ε)L2(Ω) ≤ Cω(g, ε)L2(Ω)(3.7)

and

ω(uh, L)L2(Ωh) ≤ Cω(Phg, L)L2(Ωh) ≤ Cω(g, Lh)L2(Ω).(3.8)

4. Proof of the main theorems. We now bound the difference between dis-
crete and continuous functionals at their respective minimizers.

Theorem 4.1 (functional difference). Assume u is the minimizer of E(v) from
(3.3) and uh is the minimizer of Eh(vh) from (3.1).

Then if ε = h1/(α+1), we have

Eh(PhSεu) ≤ E(u) +
C

λ
‖g‖2Lip(α,L2(Ω))h

α/(α+1),(4.1)

and if L is set to the integer part of h−α/(α+1), then

E(IntSLu
h) ≤ Eh(u

h) +
C

λ
‖g‖2Lip(α,L2(Ω))h

α/(α+1).(4.2)

Finally,

|E(u)− Eh(u
h)| ≤ C

λ
‖g‖2Lip(α,L2(Ω))h

α/(α+1).(4.3)

Proof. We mainly use Lemmas 2.3 and 3.2. By (2.5) of Lemma 2.3,

Eh(PhSεu) ≤E(u) +
Ch

ε
|u|BV(Ω)

+
C

λ
‖u− g‖L2(Ω)

(
ω(u, h)L2(Ω) + ω(u, ε)L2(Ω) + ω(g, h)L2(Ω)

)

+
C

λ

(
ω(u, h)2L2(Ω) + ω(u, ε)2L2(Ω) + ω(g, h)2L2(Ω)

)
.
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We then note ‖u− g‖L2(Ω) ≤ ‖g‖L2(Ω) and |u|BV(Ω) ≤ 1
2λ‖g‖

2
L2(Ω) and apply (3.7) to

obtain

Eh(PhSεu) ≤E(u) +
Ch

ελ
‖g‖2L2(Ω)

+
C

λ
‖g‖L2(Ω)

(
ω(g, ε)L2(Ω) + ω(g, h)L2(Ω)

)

+
C

λ

(
ω(g, h)2L2(Ω) + ω(g, ε)2L2(Ω)

)
.

Now, ω(g, t)L2(Ω) ≤ |g|Lip(α,L2(Ω))t
α, t > 0. Thus

Eh(PhSεu) ≤E(u) +
Ch

ελ
‖g‖2L2(Ω)

+
C

λ
‖g‖L2(Ω)|g|Lip(α,L2(Ω))(ε

α + hα)

+
C

λ
|g|2Lip(α,L2(Ω))(ε

2α + h2α)

≤ E(u) +
C

λ
‖g‖2Lip(α,L2(Ω))

(h
ε
+ εα + hα + ε2α + h2α

)
.

We know at a minimum that 1 > ε > h, so setting the largest error terms h/ε and εα

equal, i.e., setting ε = h1/(α+1), we have

Eh(PhSεu) ≤ E(u) +
C

λ
‖g‖2Lip(α,L2(Ω))

(
hα/(α+1) + hα + h2α + h2α/(α+1)

)
.

Thus we obtain (4.1).
We point out that (4.1) holds for any discrete variation Jh defined in (1.10). More

generally it holds for any discrete variation satisfying Lemma 2.2.
Similarly, if one begins with (2.6), notes that ‖uh − Phg‖L2(Ωh) ≤ ‖Phg‖L2(Ωh) ≤

‖g‖L2(Ω) and Jh(uh) ≤ 1
2λ‖Phg‖2L2(Ωh) ≤

1
2λ‖g‖

2
L2(Ω), and applies (3.8), one finds on

setting L to the integer part of h−α/(α+1) that

E(IntSLu
h) ≤ Eh(u

h) +
C

λ
‖g‖2Lip(α,L2(Ω))h

α/(α+1),

which is (4.2).
Because u and uh are minimizers of their respective functionals, we have

Eh(u
h) ≤ Eh(PhSεu) ≤ E(u) +

C

λ
‖g‖2Lip(α,L2(Ω))h

α/(α+1)(4.4)

and

E(u) ≤ E(IntSLu
h) ≤ Eh(u

h) +
C

λ
‖g‖2Lip(α,L2(Ω))h

α/(α+1).(4.5)

Then (4.3) is proved.
To show the error bound for minimizers, we need the following result, which can

be proved easily using classical arguments.
Lemma 4.1. Assume u is the minimizer of E(v) from (3.3) and uh is the mini-

mizer of Eh(vh) from (3.1). Then for any v ∈ BV(Ω),

‖v − u‖2L2(Ω) ≤ 2λ(E(v)− E(u)).(4.6)
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Also, for any vh defined on Ωh,

‖vh − uh‖2L2(Ωh) ≤ 2λ(Eh(v
h)− Eh(u

h)).(4.7)

Theorem 4.2 (minimizer difference). Let g ∈ Lip(α, L2(Ω)). Assume that u is
the minimizer of E(v) from (3.3) and uh is the minimizer of Eh(vh) from (3.1). Then

‖Ihuh − u‖2L2(Ω) ≤ C‖g‖2Lip(α,L2(Ω))h
α/(α+1).

Proof. We apply (4.7) with vh = PhSεu and ε = h1/(α+1):

‖PhSεu− uh‖2L2(Ωh) ≤ 2λ
(
Eh(PhSεu

h)− Eh(u
h)
)

≤ 2λ
[(

E(u) +
C

λ
‖g‖2Lip(α,L2(Ω))h

α/(α+1)
)

+
(
− E(u) +

C

λ
‖g‖2Lip(α,L2(Ω))h

α/(α+1)
)]

.

The first substitution is by (4.1); the second is by (4.5). Thus we have

‖PhSεu− uh‖2L2(Ωh) ≤ C‖g‖2Lip(α,L2(Ω))h
α/(α+1).(4.8)

Then

‖Ihuh − u‖2L2(Ω) = ‖Ihuh − IhPhSεu+ IhPhSεu− Sεu+ Sεu− u‖2L2(Ω)

≤ 3
(
‖Ihuh − IhPhSεu‖2L2(Ω) + ‖IhPhSεu− Sεu‖2L2(Ω)

+ ‖Sεu− u‖2L2(Ω)

)
.

Because ‖Ihvh‖L2(Ω) = ‖vh‖L2(Ωh) for any vh, it follows from (4.8) that

‖Ihuh − IhPhSεu‖2L2(Ω) = ‖PhSεu− uh‖2L2(Ωh) ≤ C‖g‖2Lip(α,L2(Ω))h
α/(α+1).

To bound ‖IhPhSεu− Sεu‖L2(Ω), by (1.16), (1.26), and (3.7), we have

‖IhPhSεu− Sεu‖L2(Ω) ≤ Cω(Sεu, h)L2(Ω)(4.9)

≤ Cω(u, h)L2(Ω) ≤ Cω(g, h)L2(Ω).

Finally by (1.27) and (3.7),

‖Sεu− u‖L2(Ω) ≤ Cω(u, ε) ≤ Cω(g, ε).(4.10)

Thus combining (4.8), (4.9), and (4.10), we have

‖Ihuh − u‖2L2(Ω) ≤ C
(
‖g‖2Lip(α,L2(Ω))h

α/(α+1) + ω(g, h)2L2(Ω) + ω(g, ε)2L2(Ω)

)

≤ C
(
‖g‖2Lip(α,L2(Ω))h

α/(α+1) + ‖g‖2L2(Ω)h
2α + ‖g‖2L2(Ω)h

2α/(α+1)
)
.

Because the first term dominates the others, we have

‖Ihuh − u‖2L2(Ω) ≤ C‖g‖2Lip(α,L2(Ω))h
α/(α+1).
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5. Error bounds for the upwind scheme. In this section, we provide error
bounds for the “upwind” scheme. The upwind discrete gradient operator −∇h is
defined by

(−∇h)v
h
i =

1

h





Exth vhi − Exth vhi+(1,0)

Exth vhi − Exth vhi−(1,0)

Exth vhi − Exth vhi+(0,1)

Exth vhi − Exth vhi−(0,1)




.(5.1)

The upwind discrete variation is then defined by

JU (v
h) =

∑

i∈Ωh

∣∣(−∇h)v
h
i ∨ 0

∣∣h2,(5.2)

where 0 is the vector (0, 0, 0, 0), and p∨ q and p∧ q are the componentwise maximum
and minimum, respectively, of the vectors p, q ∈ R4.

In other words, we include a difference in the vector norm of the ith term in (5.2)
only if vh is increasing into vhi . Nothing changes in the following proofs (and one sees
little change in the images themselves) if we change componentwise maximum (∨) to
componentwise minimum (∧) in (5.2). In their paper, Osher and Sethian [12] were
solving Hamilton–Jacobi equations where this substitution could not be made: their
problem, unlike ours, has a true notion of “wind.”

To prove the result for the upwind scheme, we need to adapt to JU the previous
lemmas involving J∗.

First we shall prove the convexity of JU .
Lemma 5.1. JU is convex.
Proof. First note that for two vectors p, q ∈ Rn, it is easy to verify

0 ≤ (p+ q) ∨ 0 ≤ p ∨ 0 + q ∨ 0,

where inequality p ≤ q means pi ≤ qi for each index i. Thus,

|(p+ q) ∨ 0| ≤ |p ∨ 0|+ |q ∨ 0|.(5.3)

We apply (5.3) to each term in (5.2) of JU
(
λfh + (1 − λ)gh

)
, where 1 > λ > 0

and fh and gh are discrete functions, to find that

JU
(
λfh + (1− λ)gh

)
=

∑

i

∣∣(−∇h)(λf
h + (1− λ)gh)i ∨ 0

∣∣ h2

≤
∑

i

{∣∣λ(−∇h)f
h
i ∨ 0

∣∣+
∣∣(1− λ)(−∇h)g

h
i ∨ 0

∣∣}h2

= λJU (f
h) + (1− λ)JU (g

h).

In the following we use the notation ∇⊕
x and ∇⊕

y defined for ⊕ ∈ {+,−} by

∇⊕
x v

h
i = ⊕

Exth vhi⊕(1,0) − Exth vhi
h

, ∇⊕
y v

h
i = ⊕

Exth vhi⊕(0,1) − Exth vhi
h

.(5.4)

Note that the divided differences are applied to the extended discrete function, and
that the difference is zero if i ∈ Ωh and the other index is outside Ωh.
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Using these operators, we can write

JU (v
h) =

∑

i∈Ωh

∣∣∣∣∣∣∣∣





−∇+
x v

h
i ∨ 0

∇−
x v

h
i ∨ 0

−∇+
y v

h
i ∨ 0

∇−
y v

h
i ∨ 0





∣∣∣∣∣∣∣∣
h2.(5.5)

The following lemma corresponds to (1.13).
Lemma 5.2. JU is equivalent to | · |W 1,1(Ωh), where | · |W 1,1(Ωh) is the discrete

semi-norm defined in (1.12).
Proof. Trivially,

1

2

∑

i

{∣∣−∇+
x v

h
i ∨ 0

∣∣+
∣∣∇−

x v
h
i ∨ 0

∣∣+
∣∣−∇+

y v
h
i ∨ 0

∣∣+
∣∣∇−

y v
h
i ∨ 0

∣∣
}
h2

≤
∑

i

√{∣∣−∇+
x vhi ∨ 0

∣∣2 +
∣∣∇−

x vhi ∨ 0
∣∣2 +

∣∣−∇+
y vhi ∨ 0

∣∣2 +
∣∣∇−

y vhi ∨ 0
∣∣2
}
h2

≤
∑

i

{∣∣−∇+
x v

h
i ∨ 0

∣∣+
∣∣∇−

x v
h
i ∨ 0

∣∣+
∣∣−∇+

y v
h
i ∨ 0

∣∣+
∣∣∇−

y v
h
i ∨ 0

∣∣
}
h2.

The middle sum is JU (vh), so we need to prove that the last sum equals |vh|W 1,1(Ωh).
Note that

∣∣−∇+
x v

h
i ∨ 0

∣∣+
∣∣∣∇−

x v
h
i+(1,0) ∨ 0

∣∣∣ =
∣∣−∇+

x v
h
i ∨ 0

∣∣+
∣∣∇+

x v
h
i ∨ 0

∣∣ =
∣∣∇+

x v
h
i

∣∣ ,

so the absolute value of each horizontal and vertical difference in vh is included pre-
cisely once in the last sum, so it equals |vh|W 1,1(Ωh).

The following lemma corresponds to Lemma 1.3.
Lemma 5.3.

∣∣JU (vh)− J⊕)(v
h)
∣∣ ≤ h

∣∣Exth vh
∣∣
W 2,1

h (2Ωh)
,(5.6)

where J⊕) is any discrete variation defined in (1.9).
Proof. We prove only the case for J⊕) = J++. The other cases are the same.
Note that

|∇+
x v

h
i |2 = |∇+

x v
h
i ∨ 0|2 + |(−∇+

x )v
h
i ∨ 0|2,

so we can write J++(vh) in a way similar to JU (vh) as

J++(v
h) =

∑

i∈Ωh

∣∣∣∣∣∣∣∣





−∇+
x v

h
i ∨ 0

∇+
x v

h
i ∨ 0

−∇+
y v

h
i ∨ 0

∇+
y v

h
i ∨ 0





∣∣∣∣∣∣∣∣
h2.
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Thus,

∣∣JU (vh)− J++(v
h)
∣∣ =

∣∣∣∣∣∣∣∣

∑

i∈Ωh






∣∣∣∣∣∣∣∣





−∇+
x v

h
i ∨ 0

∇−
x v

h
i ∨ 0

−∇+
y v

h
i ∨ 0

∇−
y v

h
i ∨ 0





∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣





−∇+
x v

h
i ∨ 0

∇+
x v

h
i ∨ 0

−∇+
y v

h
i ∨ 0

∇+
y v

h
i ∨ 0





∣∣∣∣∣∣∣∣





h2

∣∣∣∣∣∣∣∣

≤
∑

i∈Ωh

∣∣∣∣∣∣∣∣





0
∇−

x v
h
i ∨ 0−∇+

x v
h
i ∨ 0

0
∇−

y v
h
i ∨ 0−∇+

y v
h
i ∨ 0





∣∣∣∣∣∣∣∣
h2

≤
∑

i∈Ωh

( ∣∣∇−
x v

h
i ∨ 0−∇+

x v
h
i ∨ 0

∣∣+
∣∣∇−

y v
h ∨ 0−∇+

y v
h ∨ 0

∣∣ )h2.

Because |a ∨ 0− b ∨ 0| ≤ |a− b| , we have

∣∣JU (vh)− J++(v
h)
∣∣ ≤

∑

i∈Ωh

( ∣∣∇−
x v

h
i −∇+

x v
h
i

∣∣+
∣∣∇−

y v
h
i −∇+

y v
h
i

∣∣ )h2

≤ h
∣∣Exth vh

∣∣
W 2,1

h (2Ωh)
.

We use Lemmas 5.2 and 5.3 to prove the following lemma that corresponds to
Lemma 2.1.

Lemma 5.4. There exists a C > 0 such for any v ∈ L1(Ω),

JU (Phv) ≤ |v|BV(Ω) + Ch|Ext v|W 2,1(2Ω),(5.7)

and for any vh defined on Ωh,

| Int vh|BV(Ω) ≤ JU (v
h) + Ch|Exth vh|W 2,1

h (2Ωh).(5.8)

Proof. The second inequality can be proved by simply combining (2.2) and (5.6).
To prove the first inequality, again we assume that Ext v ∈ W 2,1(2Ω); otherwise

it is trivial. We apply Lemma 5.3 with vh = Phv; then

JU (Phv) ≤ J⊕)(Phv) + Ch|Exth Phv|W 2,1
h (2Ωh).

Then by (2.1) in Lemma 2.1,

JU (Phv) ≤ |v|BV(Ω) + Ch|Ext v|W 2,1(2Ω) + Ch|Exth Phv|W 2,1
h (2Ωh)

= |v|BV(Ω) + Ch|Ext v|W 2,1(2Ω) + Ch|Ph Ext v|W 2,1
h (2Ωh)

≤ |v|BV(Ω) + Ch|Ext v|W 2,1(2Ω).

The last line follows from (1.17).
Lemma 5.5 is the counterpart of the first inequality (1.25) in Lemma 1.6.
Lemma 5.5. JU (SLvh) ≤ JU (vh).
Proof. The result comes from the symmetry and convexity of JU . The proof is

exactly the same as the proof for J∗ in Lemma 1.6.
We note that the proofs of Lemmas 3.1 and 4.1 carry over directly to JU , and we

obtain the following theorem for the upwind discrete variation.
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Table 6.1
L2(Ω) errors on grids of size 128, 256, and 512, and differences σ = ‖g−u‖L2(Ω) of 16, 32, and

64, with initial data a multiple of the characteristic function of a disk (6.1). Columns 1–3 are the
results with the anisotropic approximation Jh = J++ to | · |BV(Ω); columns 4–6 are the results with

the upwind approximation Jh = JU ; α is the estimated order of convergence, ‖u− uh‖L2 ≈ Chα.

L2(Ω) difference between continuous and discrete solutions
“Anisotropic” Jh “Upwind” Jh

Resolution σ = 16 σ = 32 σ = 64 σ = 16 σ = 32 σ = 64
128×128 10.637 9.223 6.004 9.925 8.312 5.143
256×256 7.929 6.981 4.542 7.061 6.051 3.795
512×512 6.029 5.360 3.495 5.185 4.503 2.852

α 0.410 0.392 0.390 0.468 0.442 0.425

Theorem 5.1 (error bounds for upwind scheme). Assume u is the minimizer
of E(v) from (3.3) for g ∈ Lip(α, L2(Ω)) and uh is the minimizer of the discrete
functional

Eh(v
h) =

1

2λ
‖vh − Phg‖2L2(Ωh) + JU (v

h).

Then

‖Ihuh − u‖2L2(Ω) ≤ C‖g‖2Lip(α,L2(Ω))h
α/(α+1).

The proof is the same as the proof for the symmetric discrete variation J∗.

6. Discussion and extensions. We remark that our error bounds are not op-
timal in an approximation-theory sense. In general, with suitably smooth piecewise
polynomials, one can approximate a function in Lip(α, Lp(Ω)) to order hα in Lp(Ω)
for 0 < p < ∞. So one can approximate Lip(α, L2(Ω)) functions in L2(Ω) to order
hα; in contrast, we derive an error bound of hα/(2α+2).

The characteristic function of a disk is in Lip(α, Lp(Ω)) for α = 1/p; if g is the
characteristic function of a disk, then the minimizer u of E(v) is again the charac-
teristic function of a disk (for λ small enough). Thus one has α = 1/2 and one can
expect at most a convergence rate of h1/2 in L2(Ω). Our results bound the L2(Ω)
error by Chα/(2(α+1)) = Ch1/6.

In [5] some numerical experiments were conducted; with permission we reprint a
table showing the results of these computations with initial data

(6.1) g = 255χ|x−(12 ,
1
2 )|≤

1
4
.

While the computations were iterative, the iterated approximation to the true discrete
solution was provably within a distance in L2(Ω) of 1/4 to the true discrete solution.

We note that the upwind scheme has slightly smaller errors (because of less
smoothing in the discrete solution at the edges of the disk) and a slightly higher
estimated rate of convergence. In both cases, the estimated rate of convergence is
strictly between our bound of h1/6 and the optimal rate of h1/2; we don’t know
whether this difference is real.

Estimating real rates of convergence for data in Lip(α, L2(Ω)) is difficult for many
reasons. Even the optimal asymptotic rate of convergence, O(hα), is quite slow, so
one needs very small h to be convinced that the parameter h is in the asymptotic
regime. Furthermore, a function in Lip(α, L2(Ω)) for α ≤ 1/2 is, in general, not even
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bounded; if it is the characteristic function of a set, then this set need not have a
bounded perimeter. For both these reasons, computing with “generic” Lip(α, L2(Ω))
data is quite difficult. We do not have an opinion on what the true rate of convergence
might be.

Somewhat weaker results were proved by the first author in [14] for the functional

Jh(v
h) =

1

2

(
J++(v

h) + J−−(v
h)
)
.

The arguments there exploit the fact that for this particular Jh,

| Int vh|BV(Ω) = Jh(v
h);

they also require that g ∈ Lip(β, L1(Ω))∩L∞(Ω), which implies that g ∈ Lip(α, L2(Ω))
for α = β/2, and they achieve the same convergence rate of hα/(2α+2).

Finally, similar techniques have been applied to analyze a central difference ap-
proximation to |v|BV(Ω) in [11]; there the same convergence rate of approximation

O(h1/4)(α = 1) was achieved, but for quite smooth functions: g is required to be in
the Sobolev space W 1,2(Ω), a space that does not contain “images with edges.”

Appendix. We include here the proof of a technical lemma.
Proof of Lemma 2.1. One proves the second inequality simply by combining (1.20)

and (1.15).
As for the first inequality, the left-hand side is finite for v ∈ L1(Ω), so if Ext v /∈

W 2,1(2Ω), we are done. So we assume that Ext v ∈ W 2,1(2Ω) and we prove (2.1) for
Jh = J++, the other cases being the same.

We denote Phv by vh and use the divided differences ∇+
x v

h
i and ∇+

y v
h
i from (5.4).

In the argument that follows, we write v for Ext v.
Then

∇+
x v

h
i − 1

h2

∫

Ωi

D1v =
vhi+(1,0) − vhi

h
− 1

h2

∫

Ωi

D1v

=
1

h

1

|Ωi|

∫

Ωi

[v(x + h, y)− v(x, y)] dx dy − 1

h2

∫

Ωi

D1v .

The integrand of the first integral can be rewritten as an integral of D1v. Then
combining these two integrals and once again rewriting the integrand as an integral
of the second derivative of v, we have

∇+
x v

h
i − 1

h2

∫

Ωi

D1v =
1

h3

∫

Ωi

∫ h

0
(D1v(x+ t, y)−D1v(x, y)) dt dx dy

=
1

h3

∫

Ωi

∫ h

0

∫ t

0
D2

1v(x+ s, y) ds dt dx dy .

Therefore

∇+
x v

h
i =

1

h2

∫

Ωi

D1v +
1

h3

∫

Ωi

∫ h

0

∫ t

0
D2

1v(x+ s, y) ds dt dx dy .

Because we can write ∇+
y v

h
i in a similar way, we can bound the norm of ∇+vhi =
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(
∇+

x vh
i

∇+
y vh

i

)
by

|∇+vhi | ≤
1

h2

∣∣∣∣

( ∫
Ωi

D1v∫
Ωi

D2v

)∣∣∣∣+
1

h3

∣∣∣∣∣

( ∫
Ωi

∫ h
0

∫ t
0 D

2
1v(x+ s, y) ds dt dx dy

∫
Ωi

∫ h
0

∫ t
0 D

2
2v(x, y + s) ds dt dx dy

)∣∣∣∣∣

≤ 1

h2

∫

Ωi

|Dv|

+
1

h3

∫

Ωi

∫ h

0

∫ t

0
|D2

1v(x+ s, y)| ds dt dx dy

+
1

h3

∫

Ωi

∫ h

0

∫ t

0
|D2

2v(x, y + s)| ds dt dx dy .(A.1)

The last line follows from the fact that
∣∣∣
( ∫

f∫
g

)∣∣∣ ≤
∫ √

f2 + g2 (by Jensen’s inequality)

and
√
a2 + b2 ≤ |a|+ |b|.

To bound the discrete total variation J++(vh), we sum (A.1) over all indices
i ∈ Ωh with weight h2 at each index. We obtain

J++(v
h) ≤

∫

Ω
|Dv|+ ex + ey,

where

ex =
∑

i

h2 1

h3

∫

Ωi

∫ h

0

∫ t

0
|D2

1v(x+ s, y)| ds dt dx dy

≤ 1

h

∫ h

0

∫ t

0

{∫

Ω
|D2

1v(x+ s, y)| dx dy
}
ds dt

≤ C

h

∫ h

0

∫ t

0

{∫

Ω
|D2

1v| dx dy
}
ds dt

≤ Ch

∫

Ω
|D2

1v| .

Because we can bound ey in a similar way, we have

J++(v
h) ≤

∫

Ω
|Dv|+ Ch

∫

Ω
(|D2

1v|+ |D2
2v|) .
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