
HIGH ORDER REGULARITY FOR CONSERVATION LAWS

RONALD A. DeVORE* and BRADLEY J. LUCIER**

Abstract. We study the regularity of discontinuous entropy solutions to scalar hyperbolic conservation

laws with uniformly convex fluxes posed as initial value problems on R. For positive α we show that if
the initial data has bounded variation and the flux is smooth enough then the solution u( · , t) is in the

Besov space Bασ (Lσ) where σ = 1/(α + 1) whenever the initial data is in this space. As a corollary, we

show that discontinuous solutions of conservation laws have enough regularity to be approximated well by
moving-grid finite element methods. Techniques from approximation theory are the basis for our analysis.
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1. Introduction. Discontinuities may form in the solution u(x, t) of the hyperbolic

conservation law

(C)
ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

even if the flux f and the initial data u0 are smooth. Hence, classical solutions of (C) do not

generally exist. Weak solutions of (C) are not unique, but both existence and uniqueness

of weak solutions that satisfy one of several auxiliary “entropy” condition were shown by

Oleinik [21], Vol’pert [26], and Kružkov [14]. The regularity of these weak solutions is the

topic of this paper. Namely, we are interested in smoothness spaces X that are regularity

spaces for (C), i.e., u0 ∈ X implies that u( · , t) ∈ X for all positive t.

The Sobolev spaces Wα,p for p ≥ 1 and α ≥ 1 contain only continuous functions, and

therefore are not appropriate candidates for X . More generally, a Sobolev-type embedding

theorem implies that if αp > 1 then functions in the Besov spaces Bαq (Lp) (q is a secondary

index of smoothness; see §3) are again continuous. Consequently, if one desires high order

smoothness (α > 1) one must measure smoothness in Lp spaces with 0 < p ≤ 1/α < 1.

Such Besov spaces are not locally convex topological vector spaces—they are locally quasi-

convex topological vector spaces or F -spaces [22, Chapt. 11], [13]—but they are, in some

sense, the right spaces in which to measure the smoothness of solutions of (C) (see [19] for

a discussion).

It is well known that the space BV(R) of functions of bounded variation is a regularity

space for (C). Recently, Lucier [19] has shown that if f is convex and has three bounded
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derivatives, then the spaces BV(R) ∩ Bασ (Lσ) for 1 ≤ α < 2 and σ = 1/(α + 1) are also

regularity spaces for solutions of (C). The main result of the present paper is the following

theorem, which extends results of this type to α ≥ 2. (In this paper C will denote a generic

constant which may be different from one occurence to the next.)

Theorem 1.1. Assume that r is a positive integer and that u0 ∈ BV(R) has support

in I := [0, 1]. Then there exists a constant C1 := C1(r) such that the following statements

are valid. Let Ω = {y | |y| < C1‖u0‖L∞(R)}. Assume that there is a constant C2 such that

for all ξ ∈ Ω, |f (r+1)(ξ)| < C2 and f ′′(ξ) ≥ 1/C2. Then for any positive α < r and time

t > 0 there exists a constant C such that if u0 ∈ Bα(I) := Bασ (Lσ(I)), where σ = 1/(α+1),

then u( · , t), the solution of (C), has support in It = [infξ∈Ω f
′(ξ)t, 1 + supξ∈Ω f

′(ξ)t] and

‖u( · , t)‖Bα(It) ≤ C(‖u0‖Bα(I) + 1).

It may be useful to compare the case 0 < α < 2 in [19] and the case α ≥ 2 of this

paper. The central idea of Lucier’s theorem is to compare the error of L1 approximation

for u( · , t) by piecewise linear functions with N free knots with the corresponding error

of approximation for u0. A specific construction is made in which f ′ is approximated in

L∞(R) to order N−2 by a continuous, piecewise linear function g′ and u0 is approximated

in L1(R) by the best discontinuous, piecewise linear function v0 with N free knots. It is

then shown that the solution v( · , t) of

(P)
vt + g(v)x = 0, x ∈ R, t > 0,

v(x, 0) = v0(x), x ∈ R,

is piecewise linear for all time and has no more than C(‖u0‖BV(R))N pieces. The stability

result (2.3) in §2 shows that u( · , t) can be approximated with an error not exceeding the

error of approximation of u0 plus O(N−2). The regularity theorem is then proved by using

the characterization, developed by DeVore and Popov [4] using results of Petrushev [23],

[24], of the spaces Bασ (Lσ(I)) of order α < r in terms of approximation by free knot splines

of degree less than r.

This approach does not carry over directly to the case α ≥ 2 because then one would

naturally approximate u0 by piecewise polynomials v0 of degree at least two and approx-

imate f ′ by continuous, piecewise polynomials g′ of the same degree. In this case v( · , t)
is no longer a piecewise polynomial, but has pieces which are algebraic functions. This

makes the proof of Theorem 1.1 much more substantial. In order to establish Theorem

1.1, we will develop in §4 various properties of algebraic curves and inverse polynomials

that are analogues of properties of polynomials.

Because of the equivalence between regularity in Bασ (Lσ(I)) and approximation by

piecewise polynomial functions with free knots [5], Theorem 1.1 implies that u( · , t) can

be approximated by piecewise polynomials with free knots as well as the initial data can

be. Such approximations are generated by moving-grid or front-tracking finite element
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schemes, among others. (See, for example, [10], [18], [17], [20].) Thus, Theorem 1.1

shows that solutions of (C) have, in principle, precisely the regularity needed for good

approximation by moving-grid finite element methods.

We remark that others have studied regularity for conservation laws by describing

the structure of the singularity set of u or by showing that “generic” smooth initial data

remains piecewise smooth for positive time [1], [2], [7], [8], [11], [16], [25].

2. Entropy solutions of hyperbolic conservation laws. In this section we recount

properties of solutions of Problem (C) that we will use in the following sections. The

monograph by Lax [15] and Kružkov’s paper [14] are given as general references for this

section.

The method of characteristics shows that C1 solutions of (C) are constant along lines

x = x0 + tf ′(u0(x0)), so near the line t = 0 the function u(x, t) satisfies the implicit

equation

(2.1) u = u0(x− f ′(u)t).

Discontinuities can develop in u, and (2.1) no longer holds for all x and t; however, it is

true in some sense that the solution u is piecewise made up of local solutions of (2.1), at

least when f is convex.

This idea is made rigorous by Lax [15] who describes the solution u of (C) by means

of a related minimization problem. If u0 is continuous and f is strictly convex, he shows

that

(2.2) u(x, t) = u0(y) where y := y(x, t) is a solution of
x− y
t

= f ′(u0(y)).

There may be many solutions to the last equation but the minimization property picks

out a specific value y(x, t). Lax shows that y(x, t) is an increasing function of x for fixed

t. Shocks occur wherever y(x, t) is discontinuous in x.

We also note that entropy solutions of (C) and (P) are stable in L1 with respect to

changes in the initial data and the flux: if u and v are solutions of (C) and (P) with initial

data u0 and v0 in BV(R) and C1 fluxes f and g, respectively, then [18]

(2.3) ‖u( · , t)− v( · , t)‖L1(R) ≤ ‖u0 − v0‖L1(R) + t‖f ′ − g′‖L∞(R)‖u0‖BV(R).

3. Besov spaces and spline approximation. In this section we give the definition

of Besov spaces and recall their relationship to spline approximation with free knots. This

section contains a selection of relevant results from [5]. (See also [4].)

Let I be a finite interval. Fix 0 < α < ∞, 0 < q ≤ ∞ and 0 < p < ∞, and

pick an integer r > α. (Different values of r will give equivalent quasi-norms below.)
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Define the Lp(I) modulus of continuity ωr(f, t)p to be the supremum over all 0 < h < t

of ‖∆r
hf‖Lp(Ih), where Ih = {x ∈ I | x + rh ∈ I}, ∆0

hf(x) = f(x), and ∆r
hf(x) =

∆r−1
h f(x + h) − ∆r−1

h f(x). The Besov space Bαq (Lp(I)) is defined to be the set of all

functions f ∈ Lp(I) for which

|f |Bαq (Lp(I)) :=

(∫ ∞
0

[t−αωr(f, t)p]
q dt/t

)1/q

is finite. Set ‖f‖Bαq (Lp(I)) := ‖f‖Lp(I) + |f |Bαq (Lp(I)). We especially need the case when p

and q are less than one.

We are particularly interested in the spaces Bα(I) := Bασ (Lσ(I)), α > 0, where σ :=

1/(α + 1). These spaces have the property that if α′ > α then Bα
′
(I) is continuously

embedded in Bα(I), which in turn is continuously embedded in L1(I). We define B0(I) :=

L1(I).

The spaces Bα(I), α > 0, form a real interpolation family. The real method of inter-

polation using K-functionals can be described as follows: For any two linear, complete,

quasi-normed spaces X0 and X1 continuously embedded in a linear Hausdorff topological

space X , define the following functional for all f in X0 +X1:

K(f, t, X0, X1) := inf
f=f0+f1

{‖f0‖X0
+ t‖f1‖X1

},

where f0 ∈ X0 and f1 ∈ X1. The new space Xθ,q := (X0, X1)θ,q (0 < θ < 1, 0 < q ≤ ∞)

consists of functions f for which

‖f‖Xθ,q := ‖f‖X0+X1
+

(∫ ∞
0

[t−θK(f, t, X0, X1)]
q dt/t

)1/q

<∞,

where ‖f‖X0+X1
:= K(f, 1, X0, X1). DeVore and Popov [4] showed that if β > γ > α ≥ 0,

q = 1/(γ + 1), and θ is defined by γ = (1− θ)α+ θβ, then (Bα(I), Bβ(I))θ,q = Bγ(I). In

particular, (L1(I), Bβ(I))α/β,1/(α+1) = Bα(I).

The Besov spaces Bα(I) are intimately related to approximation by piecewise polyno-

mials with free knots. For all positive integers n and r, let Σn := Σn,r denote the collection

of all piecewise polynomials on I of degree less than r with at most 2n pieces. If f is in

L1(I) and n ≥ 0, we let

sn(f)1 := inf
S∈Σn

‖f − S‖L1(I)

be the error in approximating f in the L1(I) norm by the elements of Σn; s−1(f)1 :=

‖f‖L1(I). DeVore and Popov have shown that a function f is in Bα(I) with α > 0 if and

only if

(3.1) ‖f‖Aασ (L1(I)) :=

( ∞∑
n=−1

(2nαsn(f)1)
σ

)1/σ

<∞,

and ‖f‖Aασ(L1(I)) is equivalent to ‖f‖Bα(I). More generally, if β > α and 0 < q ≤ ∞ then

Aαq (L1(I)) = (L1(I), Bβ(I))α/β,q.
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4. Properties of polynomials and algebraic functions. Whenever I is a finite

interval we will use the notation

‖f‖∗p(I) :=

(
1

|I|

∫
I

|f(x)|p dx
)1/p

, 0 < p <∞,

with ‖f‖∗∞(I) := supx∈I |f(x)|. The following inequalities are well known for polynomials

P of degree no greater than k; see, for example DeVore and Sharpley [6].

• For each k = 0, 1, . . . and p, q ∈ (0,∞] there exists a C such that for all polynomials

P of degree ≤ k,

(4.1) ‖P‖∗p(I) ≤ C‖P‖∗q(I).

• For each k = 0, 1, . . . and p ∈ (0,∞] there exists a C such that for all polynomials

P of degree ≤ k,

(4.2) ‖P ′‖∗p(I) ≤ C|I|−1‖P‖∗p(I).

• For each k = 0, 1, . . . and p ∈ (0,∞] there exists a C such that for all polynomials

P of degree ≤ k, and for all intervals J ⊃ I,

(4.3) ‖P‖∗p(J) ≤ C

(
|J |
|I|

)k
‖P‖∗p(I).

The constants can be chosen to depend only on k if p and q are bounded away from 0.

An analysis of approximation by piecewise polynomials can be based on three prop-

erties: the equivalence of norms (4.1), the “inverse inequality” (4.2), and the fact that

polynomials oscillate in a controlled way that depends on their degree. The rest of this

section is devoted to proving similar results for certain algebraic curves.

Let P and Q be two polynomials of degree ≤ d such that φ := P−1 and ψ := Q−1

are monotone and well defined on an interval [α, β]. This means that P is monotone on

an interval [a, b] and Q is monotone on [a′, b′]. We will consider the functions φ, ψ, and

A(y) := φ(y)− ψ(y) for y ∈ [α, β].

Lemma 4.1 (Equivalence of Norms). Let φ and ψ be defined on an interval I as the

functional inverses of polynomials P and Q of degree ≤ d; assume that φ and ψ are

monotone on I. Then for all 1 ≤ p < d/(d− 1)

(4.4) ‖φ− ψ‖∗p(I) ≤ C(p, d)‖φ− ψ‖∗1(I).

Proof. We can assume that P is increasing since otherwise we replace P and Q by −P
and −Q respectively. By considering (P −α)/(β−α) and (Q−α)/(β−α), we can assume
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that α = 0 and β = 1. Also, by a linear change of variable, we can assume that a = 0,

b = 1, and a′ ≥ 0.

We assume first that Q is decreasing and consider the following cases:

Case 1: b′ ≥ 1/2. We have P (1/8) ≥ δ > 0 where δ depends only on d, for otherwise

by (4.3) applied to P and p = ∞, P could not attain the value 1 at x = 1. Similarly, for

m = (a′ + b′)/2, Q(m) ≥ δ′ > 0 for some δ′ depending only on d since otherwise Q cannot

attain the value 1 at x = a′. Hence, for δ′′ = min(δ, δ′), |A(y)| ≥ |m − 1/8| ≥ b′/4 ≥
1
8

max(b′, 1) for y ∈ [0, δ′′]. On the other hand, |A(y)| ≤ max(b′, 1) for all y ∈ [0, 1], so

(4.4) follows for all 1 ≤ p ≤ ∞.

Case 2: b′ ≤ 1/2. We have P (3/4) ≤ δ < 1 with δ depending only on d for otherwise

(4.3) applied to 1−P and p =∞ would show that P could not attain the value 0 at x = 0.

It follows that |A(y)| ≥ 3/4− b′ ≥ 1/4, y ∈ [δ, 1], while |A(y)| ≤ 1 for all y ∈ [0, 1]. Hence

(4.4) follows for all 1 ≤ p ≤ ∞.

We consider now when Q is increasing. We can assume that Q is not a translate of P ,

i.e., we do not have P (x) = Q(x+ δ) for some δ, for then (4.4) follows trivially. In what

follows, C and δ depend on d, and C may depend on p. We consider the following cases:

Case 3: a′ ≥ 1/4 and b′ ≤ 100. From (4.3) for P and p =∞, it follows that P (1/8) ≥ δ
since otherwise P cannot attain the value 1 at x = 1. Hence |A(y)| ≥ a′ − 1/8 ≥ 1/8 on

[0, δ]. On the other hand |A(y)| ≤ b′ for all y ∈ [0, 1] and hence (4.4) follows for all

1 ≤ p ≤ ∞.

Case 4: b′ ≥ 100. The value of Q at m = (a′+ b′)/2 is less than δ < 1, since otherwise

by (4.3) (applied to (1−Q) for p =∞), Q could not attain the value 0 at x = a′. Hence

for y ∈ [δ, 1], A(y) ≥ m − 1 ≥ b′/4, while for all y ∈ [0, 1] we have |A(y)| ≤ b′. Therefore

(4.4) follows for all 1 ≤ p ≤ ∞.

Case 5: b′ ≤ 1/2. From (4.3) for 1− P and p =∞, P (3/4) ≤ δ < 1 since otherwise P

could not attain the value 0 at x = 0. Hence, |A(y)| ≥ 3/4 − b′ ≥ 1/4 for y ∈ [δ, 1]. On

the other hand, |A(y)| ≤ 1 for all y ∈ [0, 1], and therefore (4.4) follows for all 1 ≤ p ≤ ∞.

Case 6: a′ ≤ 1/4 and 1/2 ≤ b′ ≤ 100. We let M := ‖A‖L1([0,1]), b0 := min(b′, 1), and

b1 := max(b′, 1). It follows that ‖P − Q‖L1([a′,b0]) ≤ ‖A‖L1([0,1]) = M and therefore by

(4.1) and (4.3), ‖P − Q‖L∞([0,b1]) ≤ C0M . Now let Ek := {y ∈ [0, 1] | |A(y)| > 2kM},
k = 0, 1, . . . . We fix k and show that

(4.5) meas(Ek) ≤ C2−kd/(d−1).

We first observe that Ek is the union of disjoint open intervals which total at most

2d in number. Indeed, if y is in the boundary of Ek then y = P (x) = Q(x + δ) with
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δ = ±2kM . For either of these choices of δ, the polynomial P (x)−Q(x+ δ) has at most

d zeros (unless it is identically zero) and therefore our claim follows.

Let J := [y0, y0 + µ], µ ≥ meas(Ek)/(2d) be one of the intervals that make up Ek. We

assume that φ(y) < ψ(y), y ∈ J ; the other case is the same. We repeatedly move “up and

to the right” by setting x0 = φ(y0), x1 = ψ(y0), y1 = P (x1), x2 = ψ(y1), and so on. Let m

be the smallest integer such that ym /∈ J . Then the points x0, . . . , xm are in [0, b1]. Now

yj+1 − yj = P (xj+1)−Q(xj+1) ≤ C0M , j = 0, 1, . . . , m− 1. Hence

(4.6) meas(J) ≤ |ym − y0| ≤ C0mM.

Since |P (x)−P (x0)| ≤ C0mM for x ∈ [x0, xm], and xm−x0 = xm−xm−1 + · · ·+x1−x0 =

ψ(xm−1)− φ(xm−1) + · · ·+ ψ(x0)− φ(x0) ≥ m2kM , we have from (4.3) with p =∞,

(4.7) |P (x)− P (x0)| ≤ CmM(m2kM)−d, x ∈ [0, b1].

For one of the values x = 0, 1, the left side of (4.7) is larger than 1/2. Hence, mM ≤
C2−kd/(d−1). Using this in (4.6) establishes that meas(J) and hence meas(Ek) do not

exceed C2−kd/(d−1), which is (4.5).

Finally,

∫ 1

0

|A(y)|p dy ≤Mp +

∞∑
k=1

2kpMpmeas({y ∈ [0, 1] | 2k−1M ≤ |A(y)| < 2kM})

≤Mp(1 +
∞∑
k=1

2kp meas(Ek−1)).

If p < d/(d− 1), the sum on the right side converges because of (4.5); therefore, we obtain

(4.4) in this case as well.

We will need to know, roughly speaking, that algebraic functions and their derivatives

do not oscillate very much. This is stated more precisely in the following lemma.

Lemma 4.2 (Bounded Oscillation). Assume that P and Q are polynomials with real

coefficients in two variables of total degree less than r. Let φ and ψ be functions that are

real analytic in the interior of an interval I and satisfy P (x, φ) = 0 and Q(x, ψ) = 0 for

x ∈ I. Let A = φ− ψ. Then for k = 0, 1, . . . , r + 1 either A(k) is identically zero on I or

A(k)(x) = 0 has finitely many solutions x in I. The number of solutions depends only on

r.

Proof. The statement that the kth derivative of φ is equal to the kth derivative of ψ

can be written as a system of polynomial equations in 2k+3 variables. For example, when



8

k = 1, A′(x) = 0 for a particular x if and only if there exist numbers φ, ψ, φ′, and ψ′ such

that the following set of polynomial equations has a solution:

P (x, φ) = 0, Q(x, ψ) = 0,

D1P (x, φ) +D2P (x, φ)φ′ = 0, D1Q(x, ψ) +D2Q(x, ψ)ψ′ = 0,

φ′ = ψ′.

(D1 and D2 denote differentiation with respect to the first and second argument, respec-

tively.) Tarski’s Theorem (see Friedman [9, p. 225 ff.] or Jacobson [12, Chapt. 5] for a

proof) states that such systems have solutions for x in a finite number of subintervals of I,

and the number of subintervals depends only on the degree of P and Q. If φ′(x) = ψ′(x)

for x in an open interval of I, then φ′(x) = ψ′(x) for all x ∈ I because φ and ψ are analytic.

Thus, either A′(x) = 0 for all x ∈ I or for a finite number, depending only on r, of values

of x. This argument can be extended to higher derivatives of A in an obvious manner.

We shall also need the following “inverse inequality” for functions more general than

polynomials.

Lemma 4.3 (Inverse Inequality). Let v be twice continuously differentiable on an open

interval I and assume that v, v′, and v′′ each have one sign on I. If numbers p and q

are given such that 0 < p ≤ 1 and qp < q − p, then there exists a constant C such that

whenever v ∈ Lq(I) then v′ ∈ Lp(I) and

(4.8) ‖v′‖∗p(I) ≤ C|I|−1‖v‖∗q(I).

Proof. We can assume without loss of generality that I = (0, 1), because the general

result follows from this by scaling. We can also assume that v ≥ 0 (consider −v instead)

and that v(x) is increasing (otherwise, consider v(1− x)). If v′′ ≥ 0 on I, it follows that

for each x there is a ξ ∈ [x, (x+ 1)/2] such that

v((x+ 1)/2) ≥ v((x+ 1)/2)− v(x) = v′(ξ)(1− x)/2 ≥ v′(x)(1− x)/2.

Let s = q/p > 1, and define t by 1/t+ 1/s = 1. Then by Hölder’s inequality,∫ 1

0

|v′(x)|p dx ≤ 2p
(∫ 1

0

v((x+ 1)/2)ps dx

)1/s(∫ 1

0

(1− x)−pt dx
)1/t

≤ C(p, q)

(∫ 1

1/2

v(τ)ps dτ

)1/s

because pt = (p−1 − q−1)−1 < 1. This proves (4.8).

If v′′ ≤ 0 on I, one proceeds similarly after noting that

v(x) ≥ v(x)− v(x/2) = v′(ξ)(x/2) ≥ v′(x)(x/2).
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5. Proof of the regularity theorem. In this section we prove Theorem 1.1. The

proof is divided into several steps; the first consists of constructing certain approximations

to the solution u(x, t) of (C). The ideas used in this construction are similar to those

presented in [18] and [19].

We will assume that the initial data u0 has support in I := [0, 1] and is in BV(R)∩Bα(I)

for some α > 0. We fix an integer r > α. For each n > 0, let S̃n be a best L1(I)

approximation to u0 from Σn := Σn,r, the class of discontinuous, piecewise polynomial

functions of degree less than r with at most 2n pieces, i.e., ‖u0 − S̃n‖L1(I) = sn(u0)1. We

observe that there exists a constant C1 that depends only on r such that

(5.1) ‖S̃n‖BV(R) ≤ C1‖u0‖BV(R).

Indeed, let Jj be the intervals that support the polynomial pieces Pj of S̃n. For each j let

tj be a point in Jj ; if λ is the piecewise constant function that takes the value cj := u0(tj)

on Jj then clearly VarI(λ) ≤ VarI(u0). (Here we assume that u0 is taken to be right

continuous, for example.) Now for each n, Pj is the best L1(Jj) approximation to u0 on Jj
among polynomials of degree less than r; in particular, it is a better approximation than

the constant cj . Hence, from (4.2) with p = 1 it follows that

VarJj (Pj) = VarJj (Pj − cj) ≤ C‖Pj − cj‖∗1(Jj)
≤ C[‖u0 − Pj‖∗1(Jj) + ‖u0 − cj‖∗1(Jj)] ≤ 2C‖u0 − cj‖∗1(Jj)
≤ 2C VarJj (u0)

Moreover, this inequality and (4.1) show that ‖Pj− cj‖∞(Jj) ≤ C VarJj (u0) and therefore

the jump in S̃n in going from Jj to Jj+1 does not exceed C VarJj (u0) + C VarJj+1
(u0) +

|cj+1 − cj |. This gives VarI(S̃n) ≤ C[VarI(u0) + VarI(λ)] and (5.1) follows. In addition,

one sees that

‖Pj − cj‖∗∞(Jj) ≤ C‖Pj − cj‖∗1(Jj)
≤ C[‖u0 − Pj‖∗1(Jj) + ‖u0 − cj‖∗1(Jj)] ≤ 2C‖u0 − cj‖∗1(Jj)
≤ 2C‖u0 − cj‖∗∞(Jj).

Because |cj | ≤ ‖u0‖L∞(I), we have ‖S̃n‖L∞(I) ≤ C‖u0‖L∞(I).

We modify S̃n at each of its discontinuities xi by replacing S̃n on (xi − δ, xi + δ) by a

linear function such that the resulting piecewise polynomial Sn is continuous on I. Clearly

by choosing δ > 0 sufficiently small, we will guarantee that

‖u0 − Sn‖L1(I) ≤ 2sn(u0)1, ‖Sn‖BV(R) ≤ C1‖u0‖BV(R),

and ‖Sn‖L∞(I) ≤ C1‖u0‖L∞(I).
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This C1 is the constant of Theorem 1.1. Other properties of Sn are that it has no more

than 2n+1 pieces and that the range of Sn is contained in Ω := {y | |y| ≤ C1‖u0‖L∞(I)}.
We now construct an approximation gn to f on Ω. There exists an r− 1 times contin-

uously differentiable, piecewise polynomial function gn of degree at most r with knots at

the points j/2n ∈ Ω that satisfies

(5.2) ‖f (k) − g(k)
n ‖L∞(Ω) ≤ C‖f (r+1)‖L∞(Ω)2

−n(r+1−k), k = 0, . . . , r;

see, for example, [3]. It follows therefore that for n sufficiently large infξ∈Ω g
′′
n(ξ) ≥

1
2

infξ∈Ω f
′′(ξ) > 1/(2C) > 0. Clearly we can require this last property for small n and

retain (5.2) as well. Hence g′n is increasing on Ω.

Our interest now is to describe the solution v(x, t) to problem (P) when v0 = Sn
and g = gn. We fix t and introduce three special types of points in I. The first are the

knots of Sn, that is, points where Sn changes from one polynomial piece to another. By

construction there are at most 2n+1 such points.

The second type of special points are isolated points x where Sn(x) = j/2n ∈ Ω for

some j. If Sn is polynomial of degree less than r on an interval Jj ⊂ I then between any

two consecutive points xi and xi+1 of type two either Sn(xi) = Sn(xi+1), in which case

S′n(ξ) = 0 for some ξ in [xi, xi+1], or |Sn(xi)−Sn(xi+1)| = 1/2n. Because S′n has no more

than r − 2 zeros in Jj , if k > r − 1 points of type two are in Jj , then the variation of Sn
on Jj must be at least (k − r + 1)/2n. Because VarI(Sn) is bounded, there are no more

than ((r− 1)+ ‖Sn‖BV(R)) 2n+1 ≤ ((r− 1) +C1‖u0‖BV(R)) 2n+1 points of the second type.

Let J be a maximal open interval which contains no points of the two types already

described. Since the range of Sn on J is contained in an interval [i/2n, (i+1)/2n], P (s) :=

s+ tg′n(Sn(s)) is a polynomial on J . A point of the third type is a point where P changes

monotonicity. Because there are at most C2n intervals J and at most r2 points of type

three in each interval, there will be at most C2n points of type three with C depending

only on r and ‖u0‖BV(R).

We denote by xj the points of any of the three types described above. According to

(2.2), the solution v(x, t) of (P) satisfies v(x, t) = v(yn) for some solution yn := yn(x, t) to

the equation

(5.3)
x− yn
t

= g′n(Sn(yn)).

Consider now a maximal interval I0 of x values on which yn takes values in an interval

J which contains no points of the three types described above. Since s + tg′n(Sn(s)) is

by definition of the points of type three a monotone function of u for u ∈ J , there is at

most one solution yn to (5.3) in J . Thus, because yn increases as x increases and there

are only C2n intervals I0, the solution yn(x, t), and hence v(x, t), has at most C2n points
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of transition. Between these points of transition the solution v(x, t) is a solution to the

algebraic equation

v = P (x− tQ′(v)),

where P is the polynomial piece for Sn on I0, and Q is the polynomial piece for g′n on J .

Thus v is a piecewise algebraic function of degree less than r2. In what follows we will

denote v by Sn(x, t).

That the support of Sn( · , t) ⊂ It is well known [14]. The stability result (2.3) implies

that

(5.4)
‖u( · , t)− Sn( · , t)‖L1(R) ≤ ‖u0 − Sn( · , 0)‖L1(R) + t‖f ′ − g′n‖L∞(R)‖u0‖BV(R)

≤ Csn(u0)1 + Ct‖u0‖BV(R)2
−rn

Proof of Theorem 1.1. Assume first that α is close to r and u0 ∈ Bα(I). Then by the

characterization (3.1),
∑

[2nαsn(u0)1]
σ <∞. From (5.4) we obtain that Sn( · , t) converges

to u( · , t) in L1(It) and therefore

u = S0 +

∞∑
n=0

(Sn+1 − Sn) =

∞∑
n=−1

Tn,

where T−1 := S0 and for later use we define S−1 := 0.

From the form of the function Sn(x, t) discussed above, we can write for n = −1, 0, . . .

Tn =
N∑
j=1

Aj , N ≤ C2n,

where C depends on r, t, and ‖u0‖BV(R). (All further constants will depend on at most

these three quantities and ‖f (r+1)‖L∞(Ω).) Here Aj = (φj−ψj)χj with φj and ψj algebraic

functions, and χj the characteristic function of an interval Ij . We can further assume by

Lemma 4.2 that A
(k)
j has one sign on Ij for k = 0, . . . , r + 1 and 1 ≤ j ≤ N .

We fix j and measure the smoothness of A := Aj . For this, fix h and consider the

sets Γ of all x such that {x, x + h, . . . , x + rh} ⊂ I := Ij , Γ′ of all x 6∈ Γ for which

{x, x+ h, . . . , x+ rh} ∩ I 6= φ, and Γ′′ of all remaining x ∈ R.

For x ∈ Γ′′, ∆r
h(A, x) = 0, so

(5.5)

∫
Γ′′
|∆r

h(A, x)|σ dx = 0.

For x ∈ Γ′, ∆r
h(A, x) ≤ 2r(|A(x)|+ · · ·+ |A(x+ rh)|). Since Γ′ has measure no greater

than 2rmin(h, |I|), we have for a fixed p > 1 with p < (2r)/(2r−1), by Hölder’s inequality

(5.6)

∫
Γ′
|∆r

h(A, x)|σ dx ≤ C[min(h, |I|)]1−σ/p
(∫

I

|A(x)|p
)σ/p

.
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We can write A = φ−ψ where φ is a piece of Sn+1 and ψ is a piece of Sn. From (2.2), we

can write φ as the solution of

(5.7) g′n+1(φ) =
x− (I + tg′n+1 ◦ P1)

−1(x)

t
,

where P1 is one of the polynomial pieces in the definition of Sn+1(0); similarly for ψ. (We

recall that on each piece of φ, the function g′n+1 can be taken as a polynomial, by our

construction.) Because there exist constants C1 and C2 such that for all n and for all

ξ ∈ Ω, 0 < C1 < g′′n(ξ) < C2, one knows that g′n and (g′n)
−1 are uniformly Lipschitz

continuous for all n. Therefore,

(5.8)

‖φ− ψ‖∗p(I) ≤ C‖g′n(φ)− g′n(ψ)‖∗p(I)
≤ C‖g′n+1(φ)− g′n(ψ)‖∗p(I) + C‖g′n+1(φ)− g′n(φ)‖∗p(I)
≤ C‖g′n+1(φ)− g′n(ψ)‖∗p(I) + C2−rn

=
C

t
‖(I + tg′n+1 ◦ P1)

−1 − (I + tg′n ◦ P2)
−1‖∗p(I) + C2−rn

≤ C

t
‖(I + tg′n+1 ◦ P1)

−1 − (I + tg′n ◦ P2)
−1‖∗1(I) + C2−rn

= C‖g′n+1(φ)− g′n(ψ)‖∗1(I) + C2−rn

≤ C‖g′n(φ)− g′n(ψ)‖∗1(I) + C2−rn

≤ C‖φ− ψ‖∗1(I) + C2−rn.

Here the third inequality is because |g′n+1− g′n| ≤ |f ′− g′n+1|+ |f ′− g′n| ≤ C2−rn; the first

equality is (5.7) and the inequality that follows is by Lemma 4.1. Therefore, from (5.6)

and (5.8) we can conclude that

(5.9)

∫
Γ′
|∆r

h(A, x)|σ dx ≤ C[min(h, |I|)]1−σ/p|I|−σ+σ/p

(∫
I

|A(x)| dx+ |I|2−rn
)σ

.

We next consider x ∈ Γ. Because A(r) is monotone on I, we know that for each x there

is a ξ such that

|∆r
h(A, x)| = C(r)hr|A(r)(ξ)| ≤ Chr max(|A(r)(x)|, |A(r)(x+ rh)|).

Without loss of generality assume that the maximum is attained by the first term. For

a number ε > 0 to be specified in a moment, let αr := α and αk := αk+1 − 1 − ε,

k = r− 1, . . . , 0, and let σk := 1/(αk + 1). Then by choosing ε appropriately, we will have

σ0 = p, where p is as in (5.8). (Here we must assume that α is close enough to r.) We also

have that 0 < σk ≤ 1 for k = r, . . . , 1, and that σkσk−1 < σk−1 − σk; therefore, Lemma

4.3 implies that

‖A(r)‖∗σr(I) ≤ C|I|
−1‖A(r−1)‖∗σr−1

(I) ≤ · · · ≤ C|I|−r‖A‖∗σ0
(I).
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We then apply (5.8) to find that

(5.10)

∫
Γ

|∆r
h(A, x)|σ dx ≤ Chrσ

∫
I

|A(r)(x)|σ dx

≤ Chrσ |I|−rσ+1

(
1

|I|

∫
I

|A(x)|p dx
)σ/p

≤ Chrσ |I|−rσ−σ+1

(∫
I

|A(x)| dx+ 2−rn|I|
)σ

.

Because Γ = φ if h > |I|/r, (5.10), (5.9), and (5.5) imply that∫
R
|∆r

h(A, x)|σ dx ≤ C
(
[min(h, |I|)]1−σ/p|I|−σ+σ/p + |I|−rσ−σ+1hrσχ(h)

)
×
(∫

I

|A(x)| dx+ 2−rn|I|
)σ

,

where χ is the characteristic function of [0, |I|/r]. It follows that ωr(A, h)
σ
σ is also less than

the right hand side of our latest inequality. Therefore,

(5.11)

∫ ∞
0

h−ασωr(A, h)
σ
σ dh/h

≤ C
(
|I|−σ+σ/p

∫ |I|
0

h−ασ−σ/p dh+ |I|1−σ
∫ ∞
|I|

h−ασ−1 dh

+|I|−rσ−σ+1

∫ |I|
0

h(r−α)σ−1 dh

)(∫
I

|A(x)| dx+ 2−rn|I|
)σ

≤ C|I|−ασ−σ+1

(∫
I

|A(x)| dx+ 2−rn|I|
)σ

≤ C
(∫

I

|A(x)| dx+ 2−rn|I|
)σ

,

because −ασ − σ + 1 = 0.

We can now estimate the smoothness of Tn = Tn( · , t). Because σ < 1, we know that

(5.12) ωr(Tn, h)
σ
σ ≤

N∑
j=1

ωr(Aj, h)
σ
σ.

Hence, (5.11) and Hölder’s inequality imply that

(5.13)

∫ ∞
0

h−ασωr(Tn, h)
σ
σ dh/h ≤ C

N∑
j=1

(∫
Ij

|A(x)| dx+ 2−rn|Ij |
)σ

≤ CN1−σ (‖Tn‖L1(It) + 2−rn|It|
)σ

≤ CNασ
(
‖Tn‖σL1(It)

+ 2−rnσ|It|σ
)
.
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Consider now the expression for u, u( · , t) =
∑∞
n=−1 Tn. Using (5.12) and the continuous

embedding of Bα([0, 1]) into L1([0, 1]), we obtain

(5.14)

∫ ∞
0

ωr(u, h)
σ
σh
−ασ−1 dh ≤

∞∑
n=−1

∫ ∞
0

ωr(Tn, h)
σ
σh
−ασ−1 dh

≤ C

∞∑
n=−1

2nασ
(
‖Tn‖σL1(It)

+ 2−rnσ
)

≤ C

∞∑
n=−1

2nασ
(
sn(u0)

σ
1 + 2−rnσ

)
≤ C‖u0‖σBα([0,1]) + C‖u0‖σL1([0,1]) + C

≤ C‖u0‖σBα([0,1]) + C,

because from (2.3), for n = −1, 0 . . . ,

‖Tn(t)‖L1(It) = ‖Sn+1(t)− Sn(t)‖L1(It)

≤ ‖Sn+1(t)− u(t)‖L1(It) + ‖u(t)− Sn(t)‖L1(It)

≤ ‖Sn+1(0)− u0‖L1(It) + ‖u0 − Sn(0)‖L1(It) + C2−rn

≤ 4sn(u0)1 + C2−rn.

By (5.14), ‖u( · , t)‖Bα(It) ≤ C‖u0‖Bα([0,1]) + C. This proves the theorem for α close to r.

We shall now complete the proof by using interpolation. Fix a value of β < r with

β close to r so that the above analysis holds for β. We can estimate the K-functional

K(u, h) := K(u, h, L1, Bβ). Let u0 ∈ L1([0, 1]), let v0 be any function in Bβ([0, 1]), and let

u(x, t) and v(x, t) be the solutions to (C) corresponding to these initial conditions. Then,

from the stability estimate (2.3) and (5.14), we see that

‖u( · , t)− v( · , t)‖L1(It) + h‖v( · , t)‖Bβ(It) ≤ C[‖u0 − v0‖L1([0,1]) + h‖v0‖Bβ([0,1]) + h].

We recall that ‖u( · , t)‖L1(It) = ‖u0‖L1([0,1]) and v( · , t) ≡ 0 when v0 is chosen to be zero.

Therefore, we can take an infimum over all v0 ∈ Bβ([0, 1]) to see that

K(u( · , t), h) ≤
{ ‖u0‖L1([0,1]), for h > 1,

CK(u0, h) + Ch, for h ≤ 1.

Apply the (θ, q) norm to K(u( · , t), h) with θ = α/β and q = 1/(α+ 1):

‖u( · , t)‖Bα(It) ≤ ‖u( · , t)‖L1(It) +

(∫ ∞
0

[h−θK(u( · , t), h)]q dh/h
)1/q

≤ ‖u0‖L1([0,1]) + C

(∫ 1

0

[h−θ(K(u0, h) + h)]q dh/h

)1/q

+ C

(∫ ∞
1

[h−θ‖u0‖L1([0,1])]
q dh/h

)1/q

≤ C‖u0‖Bα([0,1]) + C,

by the equivalence in §3. This holds for all α < β, and hence for all α < r.
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