BEST APPROXIMATIONS IN L^1 **ARE NEAR BEST IN** L^p , p < 1

LAWRENCE G. BROWN AND BRADLEY J. LUCIER (Communicated by J. Marshall Ash)

ABSTRACT. We show that any best L^1 polynomial approximation to a function f in L^p , $0 , is near best in <math>L^p$.

Let $I = [0, 1]^d$ and let \mathcal{P}_r be the set of all polynomials in d variables of total degree less than r. It is known that for each f in $L^1(I)$ a (not necessarily unique) best approximation $E_1 f$ to f exists in \mathcal{P}_r , and that $E_1 f = q$ if and only if

(1)
$$\left| \int_{E_+} s(x) \, dx - \int_{E_-} s(x) \, dx \right| \le \int_{E_0} |s(x)| \, dx \quad \text{for all } s \text{ in } \mathcal{P}_r,$$

where $E_+ = \{x \in I \mid q(x) > f(x)\}, E_- = \{x \in I \mid q(x) < f(x)\}$, and $E_0 = \{x \in I \mid q(x) = f(x)\}$. Condition (1) makes sense even if f is not in $L^1(I)$, and when (1) is satisfied, we call q a best $L^1(I)$ approximation to f and denote q by E_1f . It is easy to show that for constant approximations (r = 1) the extended E_1 , which is the median operator, is defined for all measurable f and bounded on $L^p(I)$ for any p > 0 (see [2] for a discussion of medians). It is also easy to show that the similarly extended L^2 best projection operator onto polynomials is bounded on L^p for $p \ge 1$ and any r > 0. These facts motivate us to prove the following theorem.

Theorem. For each f in $L^p(I)$, 0 , and for all <math>r > 0, a best $L^1(I)$ approximation $E_1 f$ exists in \mathcal{P}_r . Moreover, for all choices of $E_1 f$,

$$||f - E_1 f||_p \le (1 + 2K)^{1/p} \inf_{q \in \mathcal{P}_r} ||f - q||_p,$$

where

$$K = \sup_{q \in \mathcal{P}_r} \frac{\|q\|_{\infty}}{\|q\|_1}.$$

This theorem provides a method to find near-best polynomial approximations in $L^p(I)$ for 0 . Such approximations are useful in atomic decompositions of

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

Received by the editors October 29, 1990 and, in revised form, May 28, 1991.

¹⁹⁹¹ Mathematics Subject Classification. 41A50, 41A10, 46E30.

Key words and phrases. Best approximation, L^p spaces.

The second author was supported in part by the National Science Foundation (grants DMS-8802734 and DMS-9006219), the Office of Naval Research (contract N00014-91-J-1152), and by the Army High Performance Computing Research Center.

the Besov spaces $B_p^{\alpha}(L^p(I))$, p < 1, which are the regularity spaces for nonlinear approximation in $L^q(I)$, $q^{-1} = p^{-1} - \alpha/d$, by wavelets and free-knot splines. Theory and applications to image and surface compression can be found in [2–6]. Of course, such near-best approximations are known to exist; the new thing here is that $L^1(I)$ projections provide them.

We make several remarks about the theorem. First, a more careful argument shows that

$$||f - E_1 f||_p \le (2K)^{\frac{1}{p}-1} \inf_{q \in \mathcal{P}_r} ||f - q||_p$$

for 0 ; see [1]. Second, our proof extends to approximation by any finite $dimensional subpace of <math>L^1(\Omega) \cap L^{\infty}(\Omega)$ for any finite measure space $(\Omega, d\mu)$. (A measure space with atoms must first be embedded into a continuous measure space.) Generalizations to the behavior of the best $L^p(I)$ approximation in $L^{p-1}(I)$ for p > 1, and the fact that the best $L^1(I)$ approximation is defined for any measurable f are contained in [1].

We first prove the following lemma, which contains the main argument.

Lemma. If there exists a best $L^1(I)$ approximation $E_1 f \in \mathcal{P}_r$ to $f \in L^p(I)$, then

$$||E_1f||_p \le \left(2\sup_{q\in\mathcal{P}_r} \frac{||q||_{\infty}}{||q||_1}\right)^{1/p} ||f||_p.$$

Proof. Condition (1) implies, in particular, that for $q = E_1 f$,

(2)
$$\left| \int_{E_{+}} q(x) \, dx - \int_{E_{-}} q(x) \, dx \right| \leq \int_{E_{0}} |q(x)| \, dx$$

Our approach is to bound from below $||f||_p$ among all f satisfying (2) for a particular q.

We introduce the function

$$g(x) = \left\{egin{array}{ll} 0, & x \in E_+, \; q(x) > 0, \ q(x), & x \in E_+, \; q(x) \leq 0, \ 0, & x \in E_-, \; q(x) < 0, \ q(x), & x \in E_-, \; q(x) \geq 0, \ q(x), & x \in E_0. \end{array}
ight.$$

Clearly, $||g||_p \leq ||f||_p$ and the sets $\tilde{E}_+ \subset E_+$, $\tilde{E}_- \subset E_-$, and $\tilde{E}_0 \supset E_0$ for g and q satisfy

(3)
$$\left|\int_{\tilde{E}_{+}} q(x) \, dx - \int_{\tilde{E}_{-}} q(x) \, dx\right| \leq \int_{\tilde{E}_{0}} |q(x)| \, dx.$$

Now $\int_{I} |g|^{p} = \int_{\tilde{E}_{0}} |q|^{p}$, and to further bound $||f||_{p}$ from below we minimize $\int_{\tilde{E}_{0}} |q(x)|^{p} dx$ among all partitions $(\tilde{E}_{+}, \tilde{E}_{-}, \tilde{E}_{0})$ with q > 0 on \tilde{E}_{+} , q < 0 on \tilde{E}_{-} , and (3) holding. These conditions imply that

$$\int_{\tilde{E}_+\cup\tilde{E}_-} |q(x)| \, dx \leq \int_{\tilde{E}_0} |q(x)| \, dx;$$

i.e.,

$$\int_{\tilde{E}_0} |q(x)| \, dx \ge \frac{1}{2} \|q\|_1$$

We claim that the best choice of \tilde{E}_0 satisfies

$$\inf_{x \in \tilde{E}_0} |q(x)| \ge \sup_{x \notin \tilde{E}_0} |q(x)| \quad \text{and} \quad \int_{\tilde{E}_0} |q(x)| \, dx = \frac{1}{2} \|q\|_1$$

Suppose \tilde{E}'_0 is any other choice. We can assume $\int_{\tilde{E}'_0} |q(x)| dx = \frac{1}{2} ||q||_1$, because otherwise we could make \tilde{E}'_0 , and, *a fortiori*, $\int_{\tilde{E}'} |q(x)|^p dx$, smaller.

otherwise we could make \tilde{E}'_0 , and, *a fortiori*, $\int_{\tilde{E}'_0} |q(x)|^p dx$, smaller. Let *a* be any number between $\sup_{x \notin \tilde{E}_0} |q(x)|$ and $\inf_{x \in \tilde{E}_0} |q(x)|$, and let $A = \tilde{E}_0 \setminus \tilde{E}'_0$ and $B = \tilde{E}'_0 \setminus \tilde{E}_0$. Then $\int_A |q(x)| dx = \int_B |q(x)| dx$ and

$$\int_{A} |q(x)| \, dx = \int_{A} |q(x)|^{p} |q(x)|^{1-p} \, dx \ge a^{1-p} \int_{A} |q(x)|^{p} \, dx,$$
$$\int_{B} |q(x)| \, dx = \int_{B} |q(x)|^{p} |q(x)|^{1-p} \, dx \le a^{1-p} \int_{B} |q(x)|^{p} \, dx.$$

Therefore,

$$\int_A |q(x)|^p \, dx \le \int_B |q(x)|^p \, dx,$$

 $\quad \text{and} \quad$

$$\int_{\tilde{E}_0} |q(x)|^p \, dx \le \int_{\tilde{E}_0'} |q(x)|^p \, dx.$$

 \mathbf{So}

$$\frac{\int_{I} |q(x)|^{p} dx}{\int_{I} |f(x)|^{p} dx} \leq \frac{\int_{I} |q(x)|^{p} dx}{\int_{\tilde{E}_{0}} |q(x)|^{p} dx}$$

Since $\int_{\tilde{E}_0} |q(x)| dx = \frac{1}{2} ||q||_1$, we have

$$||q||_{\infty}|\tilde{E}_{0}| \ge \frac{1}{2}||q||_{1}, \text{ or } |\tilde{E}_{0}| \ge \frac{1}{2}\frac{||q||_{1}}{||q||_{\infty}}$$

Now

$$\int_{I\setminus \tilde{E}_0} |q(x)|^p \, dx \le a^p (1-|\tilde{E}_0|)$$

and

$$\int_{\tilde{E}_0} |q(x)|^p \, dx \ge a^p |\tilde{E}_0|.$$

 So

$$\frac{\int_{I} |q(x)|^{p} dx}{\int_{\tilde{E}_{0}} |q(x)|^{p} dx} = 1 + \frac{\int_{I \setminus \tilde{E}_{0}} |q(x)|^{p} dx}{\int_{\tilde{E}_{0}} |q(x)|^{p} dx} \le 1 + \frac{1 - |\tilde{E}_{0}|}{|\tilde{E}_{0}|} = \frac{1}{|\tilde{E}_{0}|} \le 2 \frac{\|q\|_{\infty}}{\|q\|_{1}}.$$

Therefore, $||q||_p \le (2K)^{1/p} ||f||_p$, where $K = \sup_{q \in \mathcal{P}_r} (||q||_{\infty}/||q||_1)$. \Box

Corollary. For each f in $L^p(I)$, $0 , a best <math>L^1(I)$ polynomial approximation $E_1 f$ exists.

Proof. For each positive integer n, define f_n by

$$f_n(x) = \begin{cases} n, & f(x) > n, \\ f(x), & |f(x)| \le n, \\ -n, & f(x) < -n. \end{cases}$$

Then $f_n \in L^{\infty}(I)$ and $||f_n||_p \leq ||f||_p$. Best $L^1(I)$ approximations q_n to f_n exist for all n, and

$$||q_n||_p \le C ||f_n||_p \le C ||f||_p.$$

However, for each p and r there is a constant C_1 such that for all $q \in \mathcal{P}_r$, $\|q\|_{\infty} \leq C_1 \|q\|_p$. Therefore for all n we have $\|q_n\|_{\infty} \leq CC_1 \|f\|_p$, so that for some n we have $\|q_n\|_{\infty} < n$. This implies that we can choose $E_1 f = q_n$ because the sets E_+ , E_- , and E_0 are the same for f as for f_n . \Box

Proof of the main theorem. The corollary shows that $E_1 f$ exists. Now E_1 is linear with respect to addition of polynomials in \mathcal{P}_r : If we let g = f + q, $q \in \mathcal{P}_r$, and $E_1g = E_1f + q$, then clearly condition (1) is satisfied because E_+ , E_- , and E_0 are the same for g and E_1g as for f and E_1f . So $E_1f + q$ is a best $L^1(I)$ approximation to f + q according to our definition.

Finally, because $||f + g||_p^p \le ||f||_p^p + ||g||_p^p$, we have for all $q \in \mathcal{P}_r$,

$$\begin{split} \|f - E_1 f\|_p^p &\leq \|f - q\|_p^p + \|q - E_1 f\|_p^p \\ &= \|f - q\|_p^p + \|E_1(q - f)\|_p^p \\ &\leq (1 + 2K)\|f - q\|_p^p \end{split}$$

by the lemma. \Box

References

- 1. L. G. Brown, L^p best approximation operators are bounded on L^{p-1} , in preparation.
- R. A. DeVore, B. Jawerth, and B. J. Lucier, Image compression through wavelet transform coding, IEEE Trans. Information Theory 38 (1992), 719–746.
- 3. _____, Surface compression, Computer Aided Geometric Design 9 (1992), 219–239.
- R. A. DeVore, B. Jawerth, and V. A. Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992), 737–785.
- 5. R. A. DeVore and V. A. Popov, Free multivariate splines, Constr. Approx. 3 (1987), 239-248.
- 6. _____, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988), 397-414.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907 *E-mail address*: lgb@math.purdue.edu, lucier@math.purdue.edu