BEST APPROXIMATIONS IN L^{1} ARE NEAR BEST IN $L^{p}, p<1$

LAWRENCE G. BROWN AND BRADLEY J. LUCIER

(Communicated by J. Marshall Ash)

Abstract

We show that any best L^{1} polynomial approximation to a function f in $L^{p}, 0<p<1$, is near best in L^{p}.

Let $I=[0,1]^{d}$ and let \mathcal{P}_{r} be the set of all polynomials in d variables of total degree less than r. It is known that for each f in $L^{1}(I)$ a (not necessarily unique) best approximation $E_{1} f$ to f exists in \mathcal{P}_{r}, and that $E_{1} f=q$ if and only if

$$
\begin{equation*}
\left|\int_{E_{+}} s(x) d x-\int_{E_{-}} s(x) d x\right| \leq \int_{E_{0}}|s(x)| d x \quad \text { for all } s \text { in } \mathcal{P}_{r} \tag{1}
\end{equation*}
$$

where $E_{+}=\{x \in I \mid q(x)>f(x)\}, E_{-}=\{x \in I \mid q(x)<f(x)\}$, and $E_{0}=$ $\{x \in I \mid q(x)=f(x)\}$. Condition (1) makes sense even if f is not in $L^{1}(I)$, and when (1) is satisfied, we call q a best $L^{1}(I)$ approximation to f and denote q by $E_{1} f$. It is easy to show that for constant approximations $(r=1)$ the extended E_{1}, which is the median operator, is defined for all measurable f and bounded on $L^{p}(I)$ for any $p>0$ (see [2] for a discussion of medians). It is also easy to show that the similarly extended L^{2} best projection operator onto polynomials is bounded on L^{p} for $p \geq 1$ and any $r>0$. These facts motivate us to prove the following theorem.
Theorem. For each f in $L^{p}(I), 0<p<1$, and for all $r>0$, a best $L^{1}(I)$ approximation $E_{1} f$ exists in \mathcal{P}_{r}. Moreover, for all choices of $E_{1} f$,

$$
\left\|f-E_{1} f\right\|_{p} \leq(1+2 K)^{1 / p} \inf _{q \in \mathcal{P}_{r}}\|f-q\|_{p}
$$

where

$$
K=\sup _{q \in \mathcal{P}_{r}} \frac{\|q\|_{\infty}}{\|q\|_{1}}
$$

This theorem provides a method to find near-best polynomial approximations in $L^{p}(I)$ for $0<p<1$. Such approximations are useful in atomic decompositions of

[^0]the Besov spaces $B_{p}^{\alpha}\left(L^{p}(I)\right), p<1$, which are the regularity spaces for nonlinear approximation in $L^{q}(I), q^{-1}=p^{-1}-\alpha / d$, by wavelets and free-knot splines. Theory and applications to image and surface compression can be found in [2-6]. Of course, such near-best approximations are known to exist; the new thing here is that $L^{1}(I)$ projections provide them.

We make several remarks about the theorem. First, a more careful argument shows that

$$
\left\|f-E_{1} f\right\|_{p} \leq(2 K)^{\frac{1}{p}-1} \inf _{q \in \mathcal{P}_{r}}\|f-q\|_{p}
$$

for $0<p<1$; see [1]. Second, our proof extends to approximation by any finitedimensional subpace of $L^{1}(\Omega) \cap L^{\infty}(\Omega)$ for any finite measure space $(\Omega, d \mu)$. (A measure space with atoms must first be embedded into a continuous measure space.) Generalizations to the behavior of the best $L^{p}(I)$ approximation in $L^{p-1}(I)$ for $p>1$, and the fact that the best $L^{1}(I)$ approximation is defined for any measurable f are contained in [1].

We first prove the following lemma, which contains the main argument.
Lemma. If there exists a best $L^{1}(I)$ approximation $E_{1} f \in \mathcal{P}_{r}$ to $f \in L^{p}(I)$, then

$$
\left\|E_{1} f\right\|_{p} \leq\left(2 \sup _{q \in \mathcal{P}_{r}} \frac{\|q\|_{\infty}}{\|q\|_{1}}\right)^{1 / p}\|f\|_{p}
$$

Proof. Condition (1) implies, in particular, that for $q=E_{1} f$,

$$
\begin{equation*}
\left|\int_{E_{+}} q(x) d x-\int_{E_{-}} q(x) d x\right| \leq \int_{E_{0}}|q(x)| d x \tag{2}
\end{equation*}
$$

Our approach is to bound from below $\|f\|_{p}$ among all f satisfying (2) for a particular q.

We introduce the function

$$
g(x)= \begin{cases}0, & x \in E_{+}, q(x)>0 \\ q(x), & x \in E_{+}, q(x) \leq 0 \\ 0, & x \in E_{-}, q(x)<0 \\ q(x), & x \in E_{-}, q(x) \geq 0 \\ q(x), & x \in E_{0}\end{cases}
$$

Clearly, $\|g\|_{p} \leq\|f\|_{p}$ and the sets $\tilde{E}_{+} \subset E_{+}, \tilde{E}_{-} \subset E_{-}$, and $\tilde{E}_{0} \supset E_{0}$ for g and q satisfy

$$
\begin{equation*}
\left|\int_{\tilde{E}_{+}} q(x) d x-\int_{\tilde{E}_{-}} q(x) d x\right| \leq \int_{\tilde{E}_{0}}|q(x)| d x \tag{3}
\end{equation*}
$$

Now $\int_{I}|g|^{p}=\int_{\tilde{E}_{0}}|q|^{p}$, and to further bound $\|f\|_{p}$ from below we minimize $\int_{\tilde{E}_{0}}|q(x)|^{p} d x$ among all partitions $\left(\tilde{E}_{+}, \tilde{E}_{-}, \tilde{E}_{0}\right)$ with $q>0$ on $\tilde{E}_{+}, q<0$ on \tilde{E}_{-}, and (3) holding. These conditions imply that

$$
\int_{\tilde{E}_{+} \cup \tilde{E}_{-}}|q(x)| d x \leq \int_{\tilde{E}_{0}}|q(x)| d x
$$

i.e.,

$$
\int_{\tilde{E}_{0}}|q(x)| d x \geq \frac{1}{2}\|q\|_{1}
$$

We claim that the best choice of \tilde{E}_{0} satisfies

$$
\inf _{x \in \tilde{E}_{0}}|q(x)| \geq \sup _{x \notin \tilde{E}_{0}}|q(x)| \quad \text { and } \quad \int_{\tilde{E}_{0}}|q(x)| d x=\frac{1}{2}\|q\|_{1} .
$$

Suppose \tilde{E}_{0}^{\prime} is any other choice. We can assume $\int_{\tilde{E}_{0}^{\prime}}|q(x)| d x=\frac{1}{2}\|q\|_{1}$, because otherwise we could make \tilde{E}_{0}^{\prime}, and, a fortiori, $\int_{\tilde{E}_{0}^{\prime}}|q(x)|^{p} d x$, smaller.

Let a be any number between $\sup _{x \notin \tilde{E}_{0}}|q(x)|$ and $\inf _{x \in \tilde{E}_{0}}|q(x)|$, and let $A=$ $\tilde{E}_{0} \backslash \tilde{E}_{0}^{\prime}$ and $B=\tilde{E}_{0}^{\prime} \backslash \tilde{E}_{0}$. Then $\int_{A}|q(x)| d x=\int_{B}|q(x)| d x$ and

$$
\begin{aligned}
\int_{A}|q(x)| d x & =\int_{A}|q(x)|^{p}|q(x)|^{1-p} d x \geq a^{1-p} \int_{A}|q(x)|^{p} d x \\
\int_{B}|q(x)| d x & =\int_{B}|q(x)|^{p}|q(x)|^{1-p} d x \leq a^{1-p} \int_{B}|q(x)|^{p} d x
\end{aligned}
$$

Therefore,

$$
\int_{A}|q(x)|^{p} d x \leq \int_{B}|q(x)|^{p} d x
$$

and

$$
\int_{\tilde{E}_{0}}|q(x)|^{p} d x \leq \int_{\tilde{E}_{0}^{\prime}}|q(x)|^{p} d x
$$

So

$$
\frac{\int_{I}|q(x)|^{p} d x}{\int_{I}|f(x)|^{p} d x} \leq \frac{\int_{I}|q(x)|^{p} d x}{\int_{\tilde{E}_{0}}|q(x)|^{p} d x}
$$

Since $\int_{\tilde{E}_{0}}|q(x)| d x=\frac{1}{2}\|q\|_{1}$, we have

$$
\|q\|_{\infty}\left|\tilde{E}_{0}\right| \geq \frac{1}{2}\|q\|_{1}, \quad \text { or } \quad\left|\tilde{E}_{0}\right| \geq \frac{1}{2} \frac{\|q\|_{1}}{\|q\|_{\infty}}
$$

Now

$$
\int_{I \backslash \tilde{E}_{0}}|q(x)|^{p} d x \leq a^{p}\left(1-\left|\tilde{E}_{0}\right|\right)
$$

and

$$
\int_{\tilde{E}_{0}}|q(x)|^{p} d x \geq a^{p}\left|\tilde{E}_{0}\right|
$$

So

$$
\frac{\int_{I}|q(x)|^{p} d x}{\int_{\tilde{E}_{0}}|q(x)|^{p} d x}=1+\frac{\int_{I \backslash \tilde{E}_{0}}|q(x)|^{p} d x}{\int_{\tilde{E}_{0}}|q(x)|^{p} d x} \leq 1+\frac{1-\left|\tilde{E}_{0}\right|}{\left|\tilde{E}_{0}\right|}=\frac{1}{\left|\tilde{E}_{0}\right|} \leq 2 \frac{\|q\|_{\infty}}{\|q\|_{1}}
$$

Therefore, $\|q\|_{p} \leq(2 K)^{1 / p}\|f\|_{p}$, where $K=\sup _{q \in \mathcal{P}_{r}}\left(\|q\|_{\infty} /\|q\|_{1}\right)$.

Corollary. For each f in $L^{p}(I), 0<p<1$, a best $L^{1}(I)$ polynomial approximation $E_{1} f$ exists.
Proof. For each positive integer n, define f_{n} by

$$
f_{n}(x)= \begin{cases}n, & f(x)>n \\ f(x), & |f(x)| \leq n \\ -n, & f(x)<-n\end{cases}
$$

Then $f_{n} \in L^{\infty}(I)$ and $\left\|f_{n}\right\|_{p} \leq\|f\|_{p}$. Best $L^{1}(I)$ approximations q_{n} to f_{n} exist for all n, and

$$
\left\|q_{n}\right\|_{p} \leq C\left\|f_{n}\right\|_{p} \leq C\|f\|_{p}
$$

However, for each p and r there is a constant C_{1} such that for all $q \in \mathcal{P}_{r}$, $\|q\|_{\infty} \leq C_{1}\|q\|_{p}$. Therefore for all n we have $\left\|q_{n}\right\|_{\infty} \leq C C_{1}\|f\|_{p}$, so that for some n we have $\left\|q_{n}\right\|_{\infty}<n$. This implies that we can choose $E_{1} f=q_{n}$ because the sets E_{+}, E_{-}, and E_{0} are the same for f as for f_{n}.
Proof of the main theorem. The corollary shows that $E_{1} f$ exists. Now E_{1} is linear with respect to addition of polynomials in \mathcal{P}_{r} : If we let $g=f+q, q \in \mathcal{P}_{r}$, and $E_{1} g=E_{1} f+q$, then clearly condition (1) is satisfied because E_{+}, E_{-}, and E_{0} are the same for g and $E_{1} g$ as for f and $E_{1} f$. So $E_{1} f+q$ is a best $L^{1}(I)$ approximation to $f+q$ according to our definition.

Finally, because $\|f+g\|_{p}^{p} \leq\|f\|_{p}^{p}+\|g\|_{p}^{p}$, we have for all $q \in \mathcal{P}_{r}$,

$$
\begin{aligned}
\left\|f-E_{1} f\right\|_{p}^{p} & \leq\|f-q\|_{p}^{p}+\left\|q-E_{1} f\right\|_{p}^{p} \\
& =\|f-q\|_{p}^{p}+\left\|E_{1}(q-f)\right\|_{p}^{p} \\
& \leq(1+2 K)\|f-q\|_{p}^{p}
\end{aligned}
$$

by the lemma.

References

1. L. G. Brown, L^{p} best approximation operators are bounded on L^{p-1}, in preparation.
2. R. A. DeVore, B. Jawerth, and B. J. Lucier, Image compression through wavelet transform coding, IEEE Trans. Information Theory 38 (1992), 719-746.
3.
4. R. A. DeVore, B. Jawerth, and V. A. Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992), 737-785.
5. R. A. DeVore and V. A. Popov, Free multivariate splines, Constr. Approx. 3 (1987), 239-248.
6. \qquad , Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988), 397-414.

Department of Mathematics, Purdue University, West Lafayette, IN 47907
E-mail address: lgb@math.purdue.edu, lucier@math.purdue.edu

[^0]: Received by the editors October 29, 1990 and, in revised form, May 28, 1991.
 1991 Mathematics Subject Classification. 41A50, 41A10, 46E30.
 Key words and phrases. Best approximation, L^{p} spaces.
 The second author was supported in part by the National Science Foundation (grants DMS8802734 and DMS-9006219), the Office of Naval Research (contract N00014-91-J-1152), and by the Army High Performance Computing Research Center.

