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Abstract. We generalize the first author’s adaptive numerical scheme for scalar first order conservation laws to systems
of equations. The resulting numerical methods generate highly non-uniform, time-dependent grids, and hence are difficult
to execute efficiently on vector computers such as the Cray or Cyber 205. In contrast, we show that these algorithms may
be executed in parallel on alternate computer architectures. We describe a parallel implementation of the algorithm on the
Denelcor HEP, a multiple-instruction, multiple-data (MIMD) shared memory parallel computer.

Introduction

In [22] the first author presented an adaptive numerical scheme for the numerical approximation of the

scalar hyperbolic conservation law

(C)
ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.

The novelty of the method lay in the criteria used to adapt the grid and the experimental demonstration

that asymptotic speedup resulted for some problems when compared with a method using the same finite

difference scheme on a fixed, uniform grid. Although the adaptive method is unsuitable for execution on

vector computers such as the Cray or Cyber 205 because it uses a highly non-uniform, time-dependent

computation grid, the algorithm may be executed in parallel on alternate computer architectures. In this

paper we extend the algorithm for scalar conservation laws to hyperbolic systems of conservation laws, and

we describe a parallel implementation of the algorithm on the Denelcor HEP, a multiple-instruction, multiple-

data (MIMD) shared memory parallel computer [16]. Because our implementation uses a macro-preprocessor

to avoid mention of the specific hardware synchronization primitives provided on the HEP, our programs

may be transported to any shared-memory multiprocessor on which the synchronization macro package has

been installed.

There has been much recent interest in adaptive or moving grid methods applied to evolution equations,

and specifically to conservation laws. Papers describing numerical schemes or analyses may be found in

[2–5], [9], [13–14], [15–23], [25–27], [29], [33], [35–36]. Papers making specific mention of data structures for

adaptive computation include [1], [4], [22], and [32].

1. Background: The Sequential Algorithm for Scalar Equations

We first describe the method for scalar conservation laws presented in [22]. While no further reference

will be made in this section to that paper, the interested reader is referred there for more details about the

algorithm. The numerical method is based on the following algorithm, similar to well-known algorithms for

adaptive linear approximation [6–7], for choosing a grid on which to approximate a function u defined on an

interval [a, b].
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Algorithm M: This algorithm chooses grid points at which to approximate a bounded function u defined

on [a, b] that is constant outside [a, b]. Let ε be a small parameter.

(1) The grid points consist only of the points a and b and the centers of admissible intervals. Admissible

intervals are defined by (2) and (3) below.

(2) The interval [a, b] is an admissible interval.

(3) For any admissible interval I, let 3I = {x|dist (x, I) = infy∈I |x− y| < |I|}. If |I| ≥ ε and

(1) |I|
∫

3I

[|uxx|+ |f ′′(u)|u2
x] dx ≥ ε,

then the left and right halves of I are admissible intervals. The above integral is finite if uxx is a

finite measure; otherwise, it is to be interpreted as infinite. Note that 3I is an open interval. The

approximation to u is chosen to be the piecewise linear interpolant of u at the given grid points.

This algorithm chooses a grid that satisfies three criteria that we feel are important for adaptive numerical

methods that use piecewise linear functions as approximations to solutions of evolution equations:

(1) Under plausible assumptions about the structure of the solution u of (C) (that u ∈ BV (R), and

that between discontinuity curves ux ∈ BV (R)), it may be shown that u can be approximated well

in L1(R) by continuous piecewise linear functions on this grid.

(2) It may be shown formally that the spatial operator f(u)x may be approximated well in L1(R) by

piecewise constant functions on this grid.

(3) One observes empirically that the error incurred in the regridding process from one time-step to the

next is small on this grid; there are heuristic reasons, based on the assumed local smoothness of u

away from discontinuity curves, for believing this.

The numerical scheme solves (C) on an interval [a, b] instead of R. To ensure that interactions with the

boundaries of the interval [a, b] may be neglected, we assume that the widths of the leftmost and rightmost

minimal interval are greater than ε. We also assume that f ∈ C2 and that ‖f ′‖L∞(R) ≤ 1; this may always

be achieved by a change in the time scale. The numerical scheme is as follows:

(1) A grid {x0
i } = M0 and initial approximation U0 is chosen, based on the initial data u0(x) (Un(xni ) =

Uni ).

(2) For each n ≥ 0:

(a) The approximate solution is advanced from time tn to tn+1 at all the grid-points xni ∈Mn using,

in our case, the Engquist-Osher finite difference operator ([10]):

(F)
Ūn+1
i − Uni

∆t
+
f+(Uni )− f+(Uni−1)

hni
+
f−(Uni+1)− f−(Uni )

hni+1

= 0.

The flux f has been separated into its increasing (f+) and decreasing (f−) parts, f = f+ + f−.

To maintain the stability of the scheme, the time-step for the finite difference scheme (F), ∆t,

is chosen to be ε/4; hni = xni − xni−1.

(b) The grid-selection algorithm is applied to the piecewise linear function Ūn+1 with values Ūn+1
i

at the points xni ∈Mn to yield a new grid Mn+1 and approximation Un+1.

The greatest difficulty in a sequential implementation of the adaptive numerical method is the orga-

nization of the data structures and the implementation of Algorithm M (which, strictly speaking, is not

algorithmic at all, but definitional). Because the grid selection is based on recursive subdivision of the basic

interval [a, b], the natural data structure through which to organize the grid information is a binary tree.

Each point in the grid, or equivalently, each admissible interval, corresponds to a node in the tree; therefore,
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we will speak of nodes, grid points and intervals interchangeably. The left and right children of a node are

the nodes corresponding to the left and right halves of the interval associated with that node; the parent

relation is the inverse of the child relation. Two other pairs of pointers are needed to calculate the integral in

(1). Links to the left and right boundary points of the interval associated with each node are stored in that

node. As well, if a node is not a leaf node (if it has been divided by Step 3 in Algorithm M), pointers are

stored to the adjacent intervals of the same width to the left and right of the node’s corresponding interval,

which we choose to call sibling links. (Because these links correspond to adjacent nodes at the same depth

in the tree representing the grid, cousins may be a more appropriate term!) It may be shown that interior

nodes always have adjacent left and right siblings; this will prove important in the parallel version of the

algorithm.

After an initialization phase that calculates the grid M0, the calculation is organized as follows. As

outlined above, the finite difference scheme calculates Ūn+1 defined on Mn; a new grid must then be chosen

based on the new solution Ūn+1. The grid selection algorithm is divided into two phases. First, a standard

recursive algorithm, similar to algorithms for adaptive quadrature, calculates for each grid point xni ∈ M

centered in the interval I = (xl, xr), left int, right int, and int, the integral (1) over the intervals (xl, x
n
i ),

(xni , xr) and (xl, xr). This process is relatively simple—because Ūn+1 is piecewise linear, Ūn+1
xx consists

solely of multiples of delta measures located at each grid point xni ; the absolute value of each measure will be

denoted by xni → uxx. For the same reason, Ūn+1
x is constant between grid points, further simplifying the

calculation. After these integrals are calculated, the tree associated with Mn is then traversed in a breadth

first, top down, ordering, examining each node in turn. If a node xni is a left child, it is not difficult to see

that with the definitions of the various links, the integral in (1) may be calculated as

(2) xni → parent→ int+ xni → parent→ left sibling→ right int+ xni → left boundary → uxx.

(Links are represented with a right arrow.) A similar calculation applies to nodes that are right children.

Note that the calculation depends on the sibling links of the parent. Step 3 of Algorithm M is applied to

decide whether the node xni should have children, and the tree is updated accordingly. It may be shown that

at every stage in the calculation all interior nodes have adjacent left and right siblings, so that (2) may be

calculated.

2. Adaptive Methods For Hyperbolic Systems

We now consider when u in (C) is a vector of unknowns in Rm, and the equation takes the form

(S)
ut + F (u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x) ∈ Rm, x ∈ R.

We assume that for all u the Jacobian matrix A(u) = ∂F (u) has m real and distinct eigenvalues λ1(u) <

λ2(u) < · · · < λm(u), with associated right eigenvectors r1(u), r2(u), . . . , rm(u). Furthermore we assume

that each eigenvalue is either genuinely nonlinear in the sense of Lax or is linearly degenerate, that is, the

eigenvectors rk(u) may be normalized so that ∇uλk(u) · rk(u) is either identically 1 (which is a convexity

condition) or is identically 0 (see [17]). Again we assume a time scaling such that |λi(u)| ≤ 1 for all i and

all u that will arise in the computation.

Several finite difference schemes (see [12] [28] [31]) have been devised for such problems that satisfy

certain auxiliary conditions, such as having Riemann invariants. In our algorithm we chose a generalization

of the Engquist-Osher scheme, introduced by Osher and Solomon in [30], which is based on methods described

in [17] for solving the Riemann problem for (S). The Riemann problem has the special initial data,

u0(x) =

{
ul, for x ≤ 0,

ur, for x > 0.
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Because the structure of Osher and Solomon’s finite difference operator determines the grid selection algo-

rithm (as we believe it should), their scheme is described below.

Near each point u ∈ Rm one may find a local covering σ( · , u) : [−S, S]m → Rm, with σ(0, u) = u, by

solving successively the differential equations:

dΓk
dτ

= rk(Γk), for τ between 0 and sk, k = m, . . . , 1,

with Γm(0) = u and Γk(0) = Γk+1(sk+1). Set σ(s, u) = Γ1(s1). (The paths Γk(τ) are related to the solution

of the Riemann problem with ul = u and ur = σ(s, u).) Because the matrix whose columns consist of the

eigenvectors rk(u) is nonsingular, for small enough S the mapping σ exists, is one-to-one, and covers a local

neighborhood of u. In other words, any state v near u may be connected to u by a unique path {Γk}. For

many physical problems, and for the Euler equations for gas dynamics in particular, it may be shown that

any two physically possible states may be connected by such a path. This property is necessary for the finite

difference scheme of Osher and Solomon to make sense, and we restrict our attention to systems (S) that

have this property.

Note that for the conservation law (C), the spatial difference operator (f(Uni ) − f(Uni−1))/h
n
i may be

written as:

(3)

f(Uni )− f(Uni−1)

hni
=
f+(Uni )− f+(Uni−1)

hni
+
f−(Uni )− f−(Uni−1)

hni

=
1

hni

∫ Uni

Uni−1

(f ′(u) ∨ 0) du+
1

hni

∫ Uni

Uni−1

(f ′(u) ∧ 0) du,

where a ∨ b = max(a, b) and a ∧ b = min(a, b). The scheme (F) may be thought of as distributing the first

term on the right of (3) to the right endpoint of the interval (xni−1, x
n
i ) and the second term to the left. The

basic idea of the Osher-Solomon finite difference method for systems is to apply the difference scheme (F)

along each curve Γik connecting Uni−1 to Uni ; i.e., Uni = σ(s, Uni−1). For the system (S), the wave speeds λk(u)

correspond to f ′(u) and the paths {Γik} replace the simple path of integration, so that

(4)
F (Uni )− F (Uni−1)

hni
=

1

hni

m∑
k=1

∫
Γi
k

(λk(u) ∨ 0)rk(u) du+
1

hni

m∑
k=1

∫
Γi
k

(λk(u) ∧ 0)rk(u) du.

The finite difference scheme for systems, then, consists of distributing the first sum to the right endpoint of

the interval (xni−1, x
n
i ) and the second sum to the left. Osher and Solomon showed that these integrals may

be calculated simply and effectively for many problems of interest.

One may instantly devise an adaptive method for systems, based on Algorithm M, once one finds a

suitable substitute for the condition (1). The condition we choose, although heuristic, reduces to (1) in the

special case of a scalar conservation law, and may be shown to be effective when solving constant coefficient,

linear problems.

We first note that when the flux f of (C) is convex or linear and u is a piecewise linear function defined

on a grid {xi}, we may write

(5) I1(i) =

∫ xi

xi−1

|f ′′(u)|u2
x dx = |f ′(u(xi))− f ′(u(xi−1))|

|u(xi)− u(xi−1)|
hi

;

similarly,

(6) I2(i) =

∫ xi+δ

xi−δ
|uxx| dx =

∣∣∣∣u(xi+1)− u(xi)
hi+1

− u(xi)− u(xi−1)

hi

∣∣∣∣ ,
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in the limit of small δ. We generalize (5) and (6) for systems (with the assumption of genuinely nonlinear or

linearly degenerate eigenvalues) by noting that the eigenvalues λk(u) play the part of the derivative f ′(u),

and so for systems we set

(7) I1(i) =

m−1∑
k=0

|λk(Γik(0))− λk(Γik+1(0))|
‖Γik(0)− Γik+1(0)‖1

hi
,

and

(8) I2(i) = ‖ui+1 − ui
hi+1

− ui − ui−1

hi
‖1,

where ‖v‖1 =
∑m
k=1 |vk| for v ∈ Rm. When m = 1 definitions (5) (6) and (7) (8) coincide. The adaptive

scheme for systems uses Algorithm M to choose the grid, substituting (7) and (8) for (5) and (6) whenever

the latter two quantities arise in the scalar computation of (1).

A complete analysis of the adaptive scheme using these substitutes for the integral (1) may be carried

out for the constant coefficient, linear case, that is, for

(9)
ut +Aux = 0, x ∈ R, t > 0,

u(x, 0) = u0(x) ∈ Rm, x ∈ R,

where A is a constant matrix. We may write A = RΛR−1, where Λ is the diagonal matrix with nontrivial

entries λk, and R is the matrix whose columns consist of the right eigenvectors of A. The finite difference

scheme that we use may now be written as

(10)
Ūn+1
i − Uni

∆t
+
A+(Uni − Uni−1)

hni
+
A−(Uni+1 − Uni )

hni+1

= 0,

where A+ = RΛ+R−1 and Λ+ is the diagonal matrix with diagonal entries max(λk, 0); A− is defined similarly.

To analyze the system, we introduce the change of dependent variables u = Rv; by this device, the system

(9) is transformed to the decoupled system

vt + Λvx = 0, x ∈ R, t > 0,

v(x, 0) = R−1u0(x);

the finite difference scheme (4) is equivalent to

V̄ n+1
i − V ni

∆t
+

Λ+(V ni − V ni−1)

hni
+

Λ−(V ni+1 − V ni )

hni+1

= 0.

Because the components of this system are uncoupled, and the system is linear (so that I1(i) = 0), the

analysis presented in Theorem 5.2 of [22] may be applied separately to each component of v to prove the

following theorem, which we state here without proof.

Theorem. Let each component of u0 have a first derivative that is of bounded variation, and let u(x, t)

be the solution of (9). Assume, moreover, that Algorithm M is modified so that if an interval is smaller than

ε1/2, then it may no longer be divided by Step 3; let ∆t = ε1/2/4. If n∆t = T , and Un is the solution of the

adaptive grid algorithm above, then

‖u(T )− Un‖(L1(R))m ≤ 3(T + 1)m∆t‖R‖1‖R−1‖1‖u′0‖(BV (R))m .
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‖R‖1 is the operator norm of R when applied to Rm with the ‖ · ‖1 norm.

The computer implementation for systems of equations is organized somewhat differently than the im-

plementation for a scalar equation. Each time-step begins with Ūn defined on Mn−1. The first pass through

the tree calculates (1) for every interval I in Mn−1; in doing so it calculates Γik(s
i
k) and Γi+1

k (si+1
k ) for each

leaf xn−1
i in Mn−1. For systems such as the Euler equations, calculating the intersection of the curves Γk

takes much longer than calculating (7) and (8), so that the supplementary calculations to choose the mesh

are very cheap. Next, the tree is traversed in a breadth first ordering, as before, to add and remove nodes

to obtain Mn. Whenever one discovers a leaf xni in Mn, then one knows that the left and right neighbors

of xni cannot be changed by further modifications to the tree, and one can calculate the contributions of the

sums in (4) on (xni−1, x
n
i ) and (xni , x

n
i+1) to Ūn+1

i−1 , Ūn+1
i , and Ūn+1

i+1 . Thus, the tree modification phase and

the finite difference phase of the computation are fused into the second pass over the tree.

3. Parallel Implementation

Several changes had to be made to the original data structure and computational sequence found in

[22] to implement an efficient parallel version of the adaptive algorithm. We will begin our discussion by

describing in more detail the recursive calculation of the integral (1) over each interval (xl, xi), (xi, xr), and

(xl, xr) = I associated with a node xi in the grid.

The basic algorithm is very simple:

Calculate Integrals (I) {
do calculations common to all nodes xi
if (I is a leaf) {

calculate left int, right int, and uxx from basic formulae

set int := left int + right int + uxx

} else {
Calculate Integrals (I→left child)

Calculate Integrals (I→right child)

set left int := I→left child→int

set right int := I→right child→int

calculate uxx from basic formula

set int := left int + right int + uxx

}
}

By maintaining a stack of nodes waiting to be processed and introducing a counter in each node that keeps

track of the number of children of that node that have been processed, the recursion may be removed as

follows:
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initialize the stack

push the root of the tree onto the stack

while (the stack is not empty) {
pop I from the stack

while (I is not a leaf) {
do calculations common to all intervals

set I→count := 0

push I→right child onto the stack

set I := I→left child

}
/* at this point I is a leaf */

do calculations common to all intervals

calculate left int, right int, and uxx from basic formulae

set int := left int + right int + uxx

set done := false

while (I is not the root node and not done) {
set I := I→parent

if (I→count = 0) {
/* only one child of I has been processed */

set I→count := 1

set done := true

} else {
/* both children of I have been processed */

set left int := I→left child→int

set right int := I→right child→int

calculate uxx from basic formula

set int := left int + right int + uxx

}
}

}

To implement this algorithm in parallel we follow the strategy of Lusk and Overbeek [24] (and, obviously,

Brinch Hansen [8] and others), and set up a monitor to control access to the stack by a fixed number of

processes executing identical copies of the above code in parallel. A monitor is a shared data structure that

can be accessed by only one process at a time, together with routines that access and modify that structure.

In our case, the stack of nodes waiting to be processed has associated with it two routines, push a node onto

the stack, and request a node from the stack. When a process requests a node from the stack, either (a)

it is successful, or (b) all processes are waiting to get a node from the stack and the stack is empty; in the

latter case, the request monitor routine returns a special code to all processes that indicates that the integral

calculation stage of execution is finished because there are no other processes executing that can add a node

to the stack. When the special termination code is sent out, one process, the organizer, returns to set up

the next phase of the computation, while the worker processes wait until the stack is non-empty and there

is more work to be done. The monitor routines are implemented as macros that are expanded into in-line

code by a macro preprocessor, so that little overhead is expended in the synchronization code. It is true,

however, that the code in the monitor is executed sequentially, so whenever one routine is pushing a node

onto the stack, for example, no other process may enter the monitor.

Because processes may not access the global (shared) stack in parallel, it is important to minimize

contention among processes using the stack. This can be accomplished by having each process complete the
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computation for a subtree if this subtree is smaller than a maximum size. This requires one to keep track

of the size of the subtree headed by each node in the tree; this information is stored in a field that we call

subtree size. The integral calculation algorithm may be further abstracted as follows:

while (the global stack is not empty) {
pop I from the global stack

while (I→subtree size > max size) {
do preliminary calculations

push I→right child onto the global stack

set I := I→left child

}
/* at this point I heads a subtree with max size or fewer nodes */

process the subtree headed by I

}

This strategy works well when the tree is balanced, that is, when the two subtrees headed by the children

of a node are roughly of the same size. In this case, each process computes results for about max size to

(max size) / 2 nodes. However, the trees that are generated by our grid algorithm are very unbalanced,

because the tree is deep and narrow near discontinuities in the solution. This causes some processes to have

little work to do between trips to the monitor, thereby decreasing the amount of inherent parallelism. Thus,

a dynamic tree partitioning algorithm that breaks up the tree into parts of roughly the same size is necessary

to ensure that all processes have about the same workload between trips to the monitor. We developed the

scheme presented in Figure 1, which is similar to a bottom-up scheme noted in [11]. In the tree-modification

phase of the computation, complete subtrees may be removed by the algorithm, thereby making a bottom-up

scheme impractical—it is useless to examine nodes that should have already been removed by a previous

part of the calculation. This algorithm ensures that each process works on between (max size) + 1 and

3(max size), inclusive, nodes before returning to the monitor. It also ensures that every node on the global

stack heads a subtree of size at least (max size) + 1. The partitioning algorithm employs a local stack on

which to hold unprocessed subtrees. In practice, this code is executed by each worker process imbedded in

a loop that repeats endlessly, with the worker processes waiting between timesteps when there are no nodes

on the shared stack. At the end of the program a special signal is sent to all worker processes that allows

them to terminate gracefully.

8



Tree Partition Algorithm {
Let stack size denote the number of nodes in the

subtrees stored temporarily on the local stack

pop I from global stack

set stack size := 0

while (stack size ≤ max size and stack size + I→tree size > 3 (max size)) {
process I as an interior node

let min tree be the smaller of the subtrees of the two children of I

let max tree be the larger of the subtrees of the two children of I

if (min tree→tree size + stack size > 3 (max size)) {
push min tree onto the global stack

} else {
push min tree onto the local stack

set stack size := stack size + min tree→tree size

}
set I := max tree

}
if (I→tree size + stack size > 3 (max size)) {

push I onto the global stack

} else {
push I onto the local stack

}
Process all subtrees on the local stack

}
Figure 1. Tree partitioning algorithm.

There are two conflicting requirements when considering the value of the parameter max size. Max size

should be small enough so that the tree is partitioned into many pieces and all processes end work at about

the same time; it should be large enough so that little time is spent by processes waiting to enter the monitor.

One might find that only for larger trees can these conflicting requirements be met—there may just not be

enough inherent parallelism available in the computation of a small tree.

The tree partitioning algorithm could not be applied directly to the second phase of the algorithm, in

which we modify the tree and advance the solution using the finite difference operator. As noted in the

discussion of the sequential algorithm, the decision whether to add or remove subtrees from a node depends

on the left and right sibling links of that node’s parent. Thus a breadth first traversal of the tree is strongly

suggested. This means that the maximum parallelism available at one stage of the computation is restricted

to the number of nodes at a given depth in the tree. Near shocks the tree is very narrow (cf. Figure 3 of

[22]), and very little parallelism is available—our first implementation used a breadth first traversal of the

tree and could achieve a speedup of at most a factor of 1.5 independently of the number of processes invoked

in the computation. Clearly another strategy is in order.

It is at this point that we use the fact that the regridding process may be interpreted as a tree transfor-

mation process, where the tree with which we are starting, Mn, has been developed by the same process at

the previous time step. It is known that every node in Mn has a parent with adjacent left and right siblings,

so that every node in Mn may be examined in parallel (subject to the condition that the tree be traversed

top-down, so that nodes that will be removed during this time-step are removed before their children are

examined). Thus, if we allow ourselves to remove subtrees at will, but to add only a layer of nodes one node

thick to the edge of the tree, the complete tree associated with Mn may be executed in parallel. This requires

that we postpone the addition of sibling links to new nodes until the tree has been processed completely.
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One may show that children may be added to leaf nodes in parallel with the processing of the rest of the

tree if the sibling links are not added immediately. The tree partitioning algorithm in Figure 1 may now be

used to balance the execution load among the processes.

After the nodes in Mn have been processed, it remains to add the new sibling links and to process

recursively the nodes that have been added in this step. This part of the program is done sequentially, using

a breadth first ordering. Because it is rare that a subtree of height two or more is added to a node in one

step (it was never observed in any computer simulation), this part of the computation takes very little time.

4. Computational Results and Discussion

Our method was applied to approximate the one-dimensional Euler equations of gas dynamics. The

physical quantities in this system are the density ρ, the momentum m and the specific energy e, so that

u =

 ρ

m

e

 , and F (u) =


m

m

ρ

(
m+ (γ − 1)

(
e− 1

2

m2

ρ

))
m

ρ

(
e+ (γ − 1)

(
e− 1

2

m2

ρ

))
 .

To compare the results with experiments by Sod [34], we set γ = 1.4; the initial values of ρ(x) were chosen

to be 1 for x ≤ 0 and 1/8 for x > 0; the momentum was initially 0 everywhere; and e(x) = 2.5 for x ≤ 0 and

e(x) = 0.2 for x > 0. The mesh refinement algorithm was modified slightly for this problem. To make the

mesh slightly less uniform, Step 3 of Algorithm M was changed for m-dimensional systems so that if |I| ≥ ε
and

|I|
∫

3I

[|uxx|+ |f ′′(u)|u2
x] dx ≥ mε,

(with the appropriate substitute for the integral whenm > 1) then the left and right halves of I are admissible

intervals. To avoid an artificial time scaling, the time-step ∆t was set to ε/16. Figures 2a through 2c show

the numerical approximations to the density ρ, the pressure p = (γ − 1)

(
e− m2

2ρ

)
, and the internal energy(

e

ρ
− 1

2

m2

ρ2

)
at time 0.15 when solved on the interval [−1, 1] with ε = 1/256. A total of 193 grid points

were used to approximate the solution at the final time; the minimum grid spacing was 1/1024, while the

largest spacing was 1/8. Figure 3 shows the node placement superimposed upon a graph of the density ρ.

The algorithm was implemented in C on the Denelcor HEP using the synchronization macro package

described in [24]. The architecture of the HEP is described in [16]; for our purposes each Process Execu-

tion Module (PEM) may be seen as a computer with an execution pipeline of length eight that executes

instructions from processes in a common execution queue. One instruction from the queue is started every

cycle that an instruction is waiting to be executed. When an instruction is completed, the next instruction

from the same process is entered into the instruction queue. Processes waiting on semaphores busy-wait

in a separate queue. In a one PEM system, all main memory accesses except for accesses to asynchronous

variables and indexed stores go through a local memory interface that has a queue length of eight; all other

memory accesses go through the general memory switch, which has an effective queue length of 24–30 (see

[15]). One HEP may have several PEMs.

The speedups resulting from the parallel algorithm are presented in Table 1 and Figure 4. Table 1

presents the clock times for the execution of the the program for the Euler equations with ε = 1/256.

Execution times were not directly measurable, and the clock times were partially vitiated by the periodic

execution of a system disk management routine for a fraction of a second. Figure 4 presents the speed-up

versus the number of processes for the same problem.
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TABLE 1

Execution Times

Number of Processes Time (in seconds) Time (in seconds)

for first pass for second pass

1 165.589419 51.099661

2 86.486981 27.329106

3 60.209457 19.657619

4 48.109058 16.012172

5 40.244957 13.783819

6 35.079278 12.341126

7 32.348853 11.445739

8 29.046026 10.726242

9 27.370288 10.190968

10 25.556640 9.809485

11 24.225887 9.481623

12 23.330546 9.264341

13 22.942822 9.215509

14 22.728492 9.123390

15 22.503358 9.183468

Because of the various queues in the HEP architecture, with their different lengths, it is difficult to

estimate the maximum possible speed-up for this algorithm independent of the task synchronization time.

However, some indication may be given by an examination of the assembly code for the program. Ignoring

synchronization code, fewer than 13 percent of all non-synchronization instructions in the main execution

path of the program are indexed store instructions. Furthermore, much of the time is spent in the library

routines pow() and sqrt() (used to calculate the position of the points {Γik(sik)}), which have mainly register

to register instructions. If one assumes that the sqrt routine takes about 15 instructions and the pow routine

takes about 40 instructions (conservative estimates), this further lowers the fraction of instructions that

use the general memory switch to an estimated 9 percent. A crude estimate of the maximum speedup

possible in a program may be obtained by taking a average of the queue lengths of the instructions executed,

weighted by the number of instructions that go through each queue. In our case this would be less than

0.91×8+0.09×24, or about 9.44. The final speedup of 7.36 achieved for the first phase of the computation,

on a problem of relatively small size, is very good.

The second computational phase of each time-step did not speed up as much as the first because of the

spatial dimension of the underlying physical problem. When a shock moves along the x-axis, most often

only two or four nodes are added in front of the shock in one time-step. These nodes are added at the

deepest part of the tree, after most of the tree has been processed. There is therefore at most a factor of

two or four parallelism available during the latter part of the tree-modification and finite difference step.

This effect would disappear for two dimensional problems, for which approximately O(N2) nodes would be

added along a moving front at each time-step, where the average mesh size where the solution is smooth is

O(N−1). Thus, a much greater amount of parallelism would be available in the two dimensional problem.

5. Conclusions

We present a programming methodology and tree partitioning algorithm that allows us to efficiently

compute the solution of a nonlinear partial differential equation with moving discontinuities in parallel on an

currently available machine. It has been shown empirically in [22] that in some cases the present adaptive

method achieves asymptotic speed-up over uniform fixed grid methods with the same difference scheme.
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This work shows that even though the fixed grid scheme may be simple to execute on vector machines,

parallel processing offers hope of executing adaptive grid methods at supercomputer speeds. The use of

these techniques with better difference schemes may improve the approximation schemes for the problems

by an order of magnitude. Because the amount of parallelism available depends on tree size, two dimensional

problems, with larger and more complex grids, offer the promise of even more parallel efficiency.

Acknowledgments. Danny Sorensen offered much help and many suggestions during the course of this

work. The computer coding was done on the Denelcor HEP at Argonne National Laboratory.
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