
P E R F O R M A N C E E V A L U A T I O N F O R M U L T I P R O C E S S O R S
P R O G R A M M E D U S I N G M O N I T O R S

B R A D L E Y J. L U C I E R

DEPARTMENT OF MATHEMATICS

PURDUE UNIVERSITY

WEST LAFAYETTE, IN 47907

A b s t r a c t . We present a classification of synchroniza-

tion delays inherent in multiprocessor systems programmed

using the monitor paradigm. This characterization is use-

ful in relating performance of such systems to algorithmic

parameters in subproblems such as domain decomposition.

We apply this approach to a parallel, adaptive grid code for
solving the equations of one-dimensional gas dynamics im-

plemented on shared memory multiprocessors such as the
Encore Multimax.

1. I n t r o d u c t i o n . Often the only measure of the effi-

ciency of a parallel program is the speed-up S of the pro-

gram when run on N processors. Unfortunately, this figure

gives little information about where the delays occur in the

program or how the program may be changed to improve

its efficiency. This paper presents a profiling technique that

partially remedies these problems in systems that are pro-
grammed using the monitor programming paradigm [1] [3].

In §2, we describe a profiling technique, developed by re-

searchers at Argonne National Laboratory, that measures

and classifies into simple statistics the delays associated

with acquiring the hardware locks through which the var-

ious processors are synchronized. In §3, we present, for

systems programmed with monitors, a natural classifica-

tion, corresponding directly to algorithmic issues, of these

delays. A monitor macro package, also developed at Ar-

gonne and implemented on many machines including the

Intel Hypercube, the Encore Multimax, and the Cray 2,

was modified so that the various monitor calls would gen-

erate the timing data necessary to apply this technique. In

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1988 A C M 0-89791-254-3/88/0005/0022 $1.50 2 2

§4, we apply these ideas to a parallel implementation on the

Encore Multimax (a shared-memory, MIMD computer) of

an adaptive numerical method to solve the Euler equations

of gas dynamics. It is shown that the strategy presented

here can account for and classify all but a few percent of

the delays incurred in the program; this strategy also tells
the programmer exactly where the delays occur and what

parameters at the programmer's disposal (the size of com-
putational subdomains, for example) could be modified to

make the program more efficient. In §5, we present our
conclusions.

2. T h e D r i t z - B o y l e P e r f o r m a n c e E v a l u a t i o n

F r a m e w o r k . In [2], Ken Dritz and Jim Boyle introduce

the following framework for the performance evaluation

of multiprocessors. Although their paper is somewhat re-

stricted to considering shared memory multiprocessors, the
ideas can be generalized to other architectures.

begin, Dritz and Boyle make the following assump-

There are N identical processors in the system.

One can measure the time spent waiting to acquire
hardware locks.

(3) The only delays incurred in the system are the waits

for locks, and hence are measurable. (There are no

"invisible" delays, such as waiting because of cache

contention.)

(4) The same amount of work is done with one proces-
sor as with N processors.

These assumptions are never strictly true in any multipro-

cessor system, of course, and we will consider later their
validity for our application. Next, let

Tk: Program execution time with k processors.

Wk: Total time spent waiting for locks when run with k
processors.

Sk: Speed-up over one processor when run with k pro-

cessors.

To
tions:

(1)
(2)

Obviously, W1 = 0 because all locks are immediate ly avail-

able. Because of the above assumptions we can calculate

T1 based solely on the measured values of TN and WN:

(2.1) T1 = N T N - WN;

S O

T1 N T N - W N _ N WN
(2.2) SN = TN -- TN -- ~ N "

These formulas assume implicit ly that the CPU t ime used

to dis t r ibute problems among and synchronize the processes

can be considered useful work. Dritz and Boyle make sev-
eral remarks about these formulas.

First , one does not have to make a one-processor run

to calculate the speed-up of the program. This has obvious

advantages when large numbers of processors will be used

in a product ion environment.

Second, the quant i ty W N / T N , although dimensionless,

may be interpreted as the number of processors lost in

the computa t ion due to synchronization delays. Dritz and

Boyle recognized that waits incurred in acquiring locks in

different parts of the code could be a t t r ibuted to differ-

ent aspects of their scheduling algorithm, so when one uses

their profiling strategy, s ta tements such as "content ion for

the get new task lock cost 1.24 processors" are meaningful.

Third, if the value of T1 calculated in (2.1) is close to

the measured value of T1, then one may conclude that the
assumptions that were made are reasonably valid for the

purposes of computat ion. Because countervailing architec-

tural effects may cancel each other out, (2.1) may give a
closer es t imate of T1 than if each effect were present alone.

Thus careful examinat ion of the da ta is still required.

Based on the above assumptions, one can collect a

wealth of information about how long each processor waited

to obtain each synchronization lock in a program. It would

be very useful to classify this information into statistics

that allow the synchronization delays to be correlated with

aspects of the code's underlying algorithm. For example,

at the hardware level on many shared memory MIMD ma-

chines, all acquisitions of locks use the same system call,

but the interpreta t ion of each call may differ depending
on a certain call 's use. In the next section we present a

classification of synchronization delays that is useful when

programming with monitors.

3. C l a s s i f i c a t i o n o f S y n c h r o n i z a t i o n D e l a y s w h e n

u s i n g M o n i t o r s . In this section we apply the Dri tz-Boyle

performance evaluat ion framework to synchronization us-

ing monitors, which, having more s tructure than some other
synchronization primitives, can yield to a more precise anal-

ysis.

Monitors, introduced by Hoare [3] and Brinch Hansen
[1], are a way to control parallel access by several processes

to shared resources. (This section will talk more generally

about processes rather than processors.) A monitor consists

of a shared da ta s t ructure or physical resource, together

with a set of procedures that manipula te this structure,

and several delay queues. Only one process at a t ime may
execute code in the monitor, so critical regions are enforced.

Once inside the monitor, a process may choose to be delayed

in a delay queue if it is not able to operate on the shared

da ta as it likes. A process inside the monitor may release

another process from a delay queue to start executing code
in the monitor; if it does so, then it must immediately exit

the monitor.

When using this paradigm for process synchronization,

there are only two places where delays may o c c u r - - a t the
entrance to a monitor, when a process must wait to enter

because another process is inside the monitor, and in the

moni tor delay queues, where processes wait because they

have no useful work to do until the status of the shared

resource changes. This classification is quite useful, because

delays at monitor entry and in delay queues can generally

be a t t r ibu ted to two different algori thmic issues: delays at

moni tor entry are due to critical region contention, while

delays in the delay queues are due to lack of parallelism.

Processes contend at a moni tor entry because each process

executes too much code inside the monitor, or because the

processes as a group return too often to the moni tor without
doing enough work outside the monitor. Processes wait in

delay queues, on the other hand, because other processes

have not yet done the work that they should do to prepare
the shared resource for processing by the processes in the

delay queue.

Par ts of the above paragraph are necessarily vague, be-

cause we claim a characterizat ion of delays in all uses of
monitors, which is clearly impossible. However, the basic

classification of delays due to monitor entry and waiting in

delay queues is valid.

For many algorithms, the monitors that are used to con-

trol the distr ibut ion of subtasks are more specialized and

can sustain a more detailed analysis. We refer specifically

to the case when a major problem is broken up into smaller
minor problems through a process called domain decom-

position. These minor problems are then distr ibuted by a

moni tor to the processes that can do the work. Often, all

the processes must synchronize at the end of of each major

p r o b l e m - - n o process may proceed across the synchroniza-

tion point, called a barrier, until all processes have reached

this point. Thus, processes wait ing in a delay queue are re-

leased from the queue with one of two results: they either

get a minor problem to work on, or they pass the synchro-

nization point with the other processes. Using this classifi-
cation, waits in delay queues may be characterized as being

due ei ther to task distr ibution or barrier synchronization.

In summary, synchronizat ion delays in algorithms pro-

2 3

grammed using monitors are due either to:

• Critical region contention, manifested through de-
lays at monitor entry points; or

• Lack of parallelism, manifested through delays in
monitor delay queues. Waits in delay queues can
often be subclassified as being due to:

• Task distribution delays, if the process receives
useful work to do when it is released from the
queue; or

• Barrier synchronization, if the process waited
solely for other processes to pass a synchroniza-
tion point.

This classification is of use because it corresponds di-
rectly to algorithmic parameters. Consider a monitor that
controls the subdivision of a large problem into smaller
problems and distributes these smaller problems to various
processes. If the monitor entry delays are excessive, they
can be decreased by increasing the subproblem size. This
will decrease the number of subproblems (and the number
of times processes require the monitor) and will increase
the amount of work each process does outside the mon-
itor. If barrier synchronization times are excessive, they
can be made smaller by reducing the size of subproblems.
This will decrease the inequity in total process execution
times. Thus, differing reasons for small speed-ups can be
identified, and a choice can be made between conflicting
algorithmic corrections. This is one of the most important
reasons for the existence of classification schemes.

We implemented these ideas by modifying a monitor
macro package, written in the C programming language
by Ross Overbeek and E. L. Lusk at Argonne National
Laboratory, that runs on many parallel computer systems,
including the Intel Hypercube, the Encore Multimax, the
Sequent, and the Cray 2 [6]. Specifically, the macros for
the Encore Mulfimax were modified to take two extra ar-
guments, variables that were to be incremented for monitor
entry delay times (in the rnenter macro) and queue wait de-
lay times (in the delay macro). All process synchronization
is achieved using these two macros, and the variables used
to record various delays in the higher level macros (such
as receive and 8end) were just passed on to reenter and
delay. If the timing arguments are not present, or if the
non-profiling monitor macro package is used, then timing
data is not generated.

4. App l i ca t ion : A Para l l e l A d a p t i v e N u m e r i c a l
Code. In this section the ideas in §3 are used to analyze
the performance of a parallel, adaptive, computer code to
calculate the solution of the one-dimensional Euler equa-
tions of gas dynamics [5]. The code was written in the pro-

gramming language C on the Encore Multimax, a shared-
memory MIMD computer that runs a version of the Unix

struct node {

struct node *parent;

struct node *isib;
struct node *rsib;

struct node *ichild;

struct node *rchild;

struct node *ineigh;

struct node *rneigh;

struct node *ibound;

struct node *rhound;

struct node *next;

/* parent of p */

/* left sibling (cousin) of p */
/* right sibling (cousin) of p */
/* left child of p */

/* right child of p */

/* left neighbor of p */

/* right neighbor of p */

/* left boundary of p */
/* right boundary of p */

/* next new node at same depth */
NLOCKDEC(Iock) /* synchronization lock for p */

/* in accumulating data from children into a node, count
* records how many children have finished.
*/

int count;

int depth; /* depth of p in the tree */

/* tree_size is the size of the subtree headed by p */
int tree_size;

/* inorm, rnorm, norm and uxx are variables used to
* determine if p should have children.
*/

double inorm; /* used for adaptive criteria */

double rnorm; /* used for adaptive criteria */

double norm; /* used for adaptive criteria */
double uxx; /* used for adaptive criteria */
struct ~ double rho, m, e, u, p, c;}

st, newst,
/*

double x; / *

B00L isleaf; /*
BOOL isleft; /*

BOOL isdone; /*

stm2, stml, etpl, stp2;

various state variables */

x coordinate of p */

TRUE if node is a leaf */

TRUE if node is a left child */

TRUE if node has been updated

by one of its neighbors */

FIG. 1. Data structure for a node in the tree.

operating system. For process synchronization we used a
C-language monitor macro package developed at Argonne
National Laboratory, modified, as described in the previous
section, to generate timing statistics for each monitor call.
(See [6] for a description of the FORTRAN version of the
macro package.)

The Euler equations consist of a system of nonlinear,
time-dependent, hyperbolic partial differential equations.
These equations do not have smooth, or differentiable, so-
lutions; discontinuities, or shocks, develop in the solutions
even if the initial data are smooth. The adaptive code
therefore attempts to insert more mesh points (points at

which the solution is approximated) near these shocks and

other singularities in the solution. As the solution pro-

gresses in time, the places where the mesh-point density is

high move along with the evolving singularities. The issues

related to the parallel implementation of the algorithm are

as follows.

The mesh points are created through a process of recur-

sive bisection starting with an interval [a,b], so the basic
data structure for organizing the set of mesh points is a
threaded binary tree. Each interval that appears during
any period of this recursive bisection has positioned at its
midpoint a mesh point, so mesh points, tree nodes, and in-

2 4

FIG. 2. A sample tree as computational domain.

tervals can be identified. The corresponding data s t ructure

is shown in Figure 1 (c.f., [4]), and a small sample tree is

shown in Figure 2. The trees are very deep near shocks

in the solution and get more unbalanced as the number of
nodes increases.

Unusual terms used in Figure 1 are defined below. As-
sume that the node p corresponds to a point xi at the center

of an interval (xt, xr), and assume that the points xi are or-

dered so that xi-1 < xi for all i. Then the terms are defined
as follows.

l s i b The greatest point x j with x j < xi and

the depth of x j equal to the depth of xi

in the tree. Similarly for r s i b .

l n e i g h The node xi-1. Similarly for r ne igh .

lbound The node xl. Similarly for rbound.

n e x t When nodes are added to the tree, they

are collected in an array of lists, one for

each depth in the tree. n e x t points to

the next i tem in the list.

rho, etc. These are physical parameters that de-

scribe the state of the gas. rho is the

density, m is the momentum, e is the en-

ergy per unit volume, u is the velocity, p

is the pressure, and c is the local sound

speed.

The total t ime progression of the solution from time 0

to some t ime T is broken clown into t ime steps of size At.
Conceptually, at each t ime step the mesh is re-calculated
based on the approximate solution at that time, and then a

finite-difference approximat ion to the differential equations

advances the approximate solution to the next time. In

more detail, for each n between 0 and T / A t , the work is
divided into several passes.

Pass 1. Approximate Riemann problems are solved for

each interval (xi -1 , xi) and (xi, x i+l) , where xi

is a leaf in the tree. (For the present purposes,

it is not necessary to know what a Riemann

problem is. One must just know that for each
leaf in the tree some small amount of work must

be done.) Information used to decide the set of

mesh points at the next t ime step is passed up
the tree to all interior nodes.

Pass 2a. The tree is examined in a top-down manner

from the root to see which nodes (subtrees, in
fact) will remain through the next time-step;

unnecessary nodes are removed. For each leaf

node that remains and which will not be mod-

ified with the addi t ion of children during this

t ime step, the values of the state variables at

that leaf node and its left and right neighbors

are updated using the approximate Riemann

solver information calculated in Pass 1. Also

during this pass, all new nodes that are imme-

diate children of existing nodes in the tree are
added to the tree.

Pass 2b. This is a clean-up pass. Sibling links are added

to the parents of nodes that were added to the

tree in Pass 2a, approximate Riemann problems

are solved for the new nodes, and the solution is

advanced at the new nodes and their neighbors.

Passes 1 and 2a can be executed completely in paral-
lel with minimal synchronization logic. The domain (the

tree) is decomposed into small parts of varying sizes using

an algori thm introduced in [5] and il lustrated in Figure 3.
Given a parameter rain_size, this a lgori thm breaks up a bi-

nary tree (in which each node has either no or two children)
into parts that contain between min_size + 1 and 3min_size

nodes. It uses a counter in each node that records the
size of the subtree headed by that node. Subtrees that are

pruned off to be worked on by the process are stored on a

local stack. This algori thm increases parallel processing ef-

ficiency because when subtasks picked up by processes are

about the same size, barrier delays are decreased.

The algori thm in Figure 3 uses a global shared stack

on which to put nodes that represent the entire subtrees

that they head. Access to this global stack is controlled by
an askfor monitor [6]. This moni tor has two main proce-

dures. The first can add any amount of work to the stack,

and through the second a processor can request work from

the stack. When a process requests work from the stack,
then ei ther work is available and is given to the process,

or the process is delayed in the delay queue of the moni-

2 5

Tree Partition Algorithm {
Let stack.size denote the number of nodes in the

subtrees stored temporarily on the local stack
pop interval (node) I from global stack
stack_size := 0
while (stack_size <_ rain_size and

stack_size -1- I----~tree size > 3 (roin..size)) {
process I as an interior node
let min_tree head the smaller subtree of I
let roax_tree head the larger subtree of I
if (roin_tree-+tree size 4- stack_size > 3 (roin_size)) {

push roin_tree onto the global stack
} else {

push roin_tree onto the local stack
stack_size : = stack_size 4" roin_tree--~tree size

}
I := roax_tree

}
if (I--+tree size -t- stack_size > 3 (min..size)) {

push I onto the global stack
} e l se {

push I onto the local stack
}
Process all subtrees on the local stack

Flc. 3. Tree partition algorithro.

for. Whenever a process,/)1 say, adds work to the stack or

successfully gets work from the stack, then before leaving

the monitor that process releases another process, /2, from

the delay queue, if any are waiting. (P1 releases /)2 when

it picks up work from the stack because it may not have

taken all the work from the stack.) /)2 then checks whether

more work is available. If all processes are either waiting
in the delay queue or are in the monitor looking for work,

then there is no more work to be done during this part

of the computation and all processes are released from the

monitor. (This is an implicit barrier synchronization.) One

distinguished process then sets up the problem for the next
pass by changing a few flags and pushing the root of the

tree onto the global stack. The other processes continue to

enter the monitor looking for work.

The clean-up pass of the computation is different. It is

a fact that to decide whether an interval is to be subdivided

according to the criteria presented in [5] then the left and

right sibling links must be present for that interval's parent.
Since sibling links cannot, in general, be added in parallel
to parents of new nodes (the sibling nodes themselves may

not have been added to the tree yet, if such was the re-
sponsibility of another process) the sibling links are added

in the clean-up pass. To ensure the top-down property of

sibling links alluded to above, it was decided to add sibling

links to the parents of new nodes during the clean-up pass
in a top-down, breadth-first ordering. As it turned out, this

had a severe impact on the clean-up pass--all the code was

executed sequentially by one process.

Various delays due to processor synchronization occur
in each pass of the algorithm. The synchronization delays

during

(1)

Pass 1 of each time step occur when processors:

Wait for node locks before updating information in

a node's parent.

(2) Wait to enter the askfor monitor.

(3) Wait to leave the delay queue in the askfor monitor

when the processor subsequently obtains work to do

(task distribution delays).

(4) Wait to leave the delay queue in the askfor mon-
itor when the processor obtains no work (barrier

synchronization).

A graph showing the speed-up of this part of the algorithm,

together with the attribution of the remaining CPU time to

synchronization delays, is given in Figure 4. The program

was run with from one to sixteen processors. There were

339 nodes in the tree at the final time step, and min_size in

Figure 3 was set to two. One can see that the major cause

of processor efficiency loss was the barrier synchronization

delay, so that if this algorithm were applied to larger prob-

lems, with more subproblems, the speed-up would be even

better. (The barrier synchronization time depends on the

product of the number of time steps, the number of pro-

cessors, and min_3ize, while the amount of useful work per-

formed by all processes is proportional to the number of

time steps times the tree size.)

Figure 5 presents the speed-up and synchronization de-

lays for Passes 2a and 2b of the algorithm when applied to

the same problem. The delays for Pass 2a are similar to

those for Pass 1; they occur when the processors:

(1) Wait for access to a shared list of free nodes (mem-

ory management locks).

(2) Wait for node locks before updating information in

a node's parent.

(3) Wait for access to a linked list of new nodes.

(4) Wait to enter the a~kfor monitor.

(5) Wait to leave the delay queue in the askfor monitor

when the processor subsequently obtains work to do

(task distribution delays).

(6) Wait to leave the delay queue in the a~kfor mon-
itor when the processor obtains no work (barrier

synchronization).

In the clean-up pass, delays occur when processors:

(1) Wait to enter the askfor monitor.

(2) Wait to leave the delay queue in the a3kfor monitor
when the processor subsequently obtains work to

do (task distribution delays). (This time is zero,

because only one processor got work to do, and the

work was immediately available.)

(3) Wait to leave the delay queue in the askfor mon-

itor when the processor obtains no work (barrier

synchronization).

2 6

12

z/ S

A

0 2" / .z

FiG. 4. A t t r ibu t ion of processor use in Pass 1 of the algo-
rithm. The horizontal axis represents the number oS physical
processors available, the vertical axis represents how these
processors were used. The diagonal line y ---- x represents the
theoretical m a x i m u m speed-up. The lowest curve represents
the actual speed-up (or effective processor use) versus the
number of actual processors used. Each band between the line
y = x and the speed-up curve represents the number of pro-
cessors lost to various synchronizat ion delays. The reasons
for the various losses, f rom the top band down, are: barrier
synchronizat ion delays in the askfor monitor, task distribu-
tion delays in the askfor monitor, moni tor entry content ion
in the askfor monitor, and various node lock delays.

Here one can see that when run with sixteen processors, the

serialization of the clean-up pass alone costs 1.7 processors.

(The barrier synchronization time in the clean-up pass is

generated when N - 1 processors are sitting there idle and
eventually leave the monitor delay queue without picking

up any work.)

The number of processors lost in Pass 2a due to the

ask]or monitor synchronization is larger than in Pass 1 be-

cause the amount of work done for each node in the tree is

much less in the second pass than in the first. This implies

that both the time spent in monitor entry contention and

the ratio of time spent in barrier delays to clock time will

be greater in the second pass than in the first.

The statistics compiled for the present analysis revealed

that during the clean-up phase no process waiting in the

aslcfor delay queue subsequently obtained work. Thus, this

part of the code had been executed sequentially by one

processor. Subsequent to this finding, a more careful al-

gorithmic analysis showed that a breadth-first traversal of
the new nodes is not necessary. It is only necessary to
add nodes to the tree in "layers," with all new children

of old nodes added before any grandchildren of old nodes

S j -

FIG. 5. At t r ibu t ion of processor use in Passes 2a and 2b of
the algorithm. The horizontal axis represents the number oS
physical processors available, the vertical axis represents how
these processors were used. The diagonal line y = x rep-
resents the theoretical m a x i m u m speed-up. The lowest curve
represents the actual speed-up (or effective processor use) ver-
sus the number of actual processors used. Each band between
the line y ~ x and the speed-up curve represents the number
of processors lost to various synchronizat ion delays. The rea-
sons]or the various losses, f rom the top band down, are: bar-
rier synchronizat ion delays in the ask]or moni tor during Pass
$b, moni tor entry content ion in the ask]or moni tor during
Pass 2b, barrier synchronizat ion delays in the ask]or moni tor
during Pass 2a, task distribution delays in the ask]or mon-
itor during Pass ~a, moni tor entry contention in the ask]or
moni tor during Pass 2a, and various node lock delays during
Pass 2a. The task distribution delays during Pass 2b, and
the memory management lock content ion t imes and the new
node lock content ion t imes during Pass 2a were insignificant.

are added, etc. Implementation of this changed algorithm

might have speeded up the program by allowing more par-

allelism.

The effect of changing the parameter m i n _ ~ i z e in the

tree partition algorithm of Figure 3 is exhibited in Figure 6.

Here, one compares the number of processors lost in Pass 1

and Pass 2ab of the program for N = 16 and ra in_s i ze equal

to two and four. It is seen that reducing the size of subtrees

in the tree partition from four to two makes the algorithm

more emcient. One might expect this to be true because the

barrier synchronization time in the ask]or monitor is much

greater than the monitor entry (critical region contention)

time when ra in_s i ze is four. A test run of a FORTRAN

version of this program run on the HEP [5] showed exactly

the opposite behavior. For the FORTRAN implementation
of the monitors, the amount of code executed at the head
of each procedure in the ask]or monitor was so large that

monitor entry contention times overwhelmed the barrier

2 7

Pass 1
min_size

4

Pass 2AB
min_size

4 2

oN. barrier ~

~ m o n i t o r
e n t r y ~

~ speedup

Fro. 6. Effect of changing the size of computational subdo-
mains on the delays in the program. Each bar shows, for
a run with sixteen processors, the fraction of time spent in
either useful work (speed-up), or time the processors spent
waiting for busy locks. The three bars of interest are the ones
that indicate the program speed-up, the time spent in mon-
itor entry contention in the askfor monitor, and the time
spent waiting for barrier synchronization in the askfor moni-
tor. (The bands represent the same quantities as in Figures
and 5.) The graphs show that when the parameter min_size in

"the tree partition algorithm is four, barrier synchronization
time is much larger than contention to enter the monitor, so
that reducing rain_size should allow for more speed-up. This
indeed happens when rain_size is reduced to two.

synchronization times until min_s i ze was larger.

The simple analysis in §2 was predicated on four as-

sumptions, whose validity we will examine here for the En-

core Multimax computer. First, the assumption of having

N identical processors seems to have been valid for N no

greater than sixteen on a twenty-processor system with no

other activity on the system, as new processes were assigned

to otherwise idle processors.

Second, we assumed that time spent waiting to acquire

a lock could be measured accurately. Event times on the

Encore Multimax can be measured accurately using its one-

microsecond hardware clock, which is accessed by reading

a hardware register. It took about fifteen microseconds

for a processor to read the hardware clock, call the sys-

tem routine to acquire a lock, and read the hardware clock

again, even if the lock is immediately available. Accord-

ingly, the time to acquire a hardware lock was consistently

over-estimated by about fifteen microseconds. By count-

ing the number of times that hardware locks were called in

this application, one can conclude that this particular tim-

ing error comprised less than one percent of the total CPU

time. (The actual overestimate was 38 seconds out of a to-

tal run time of 6050 seconds for one processor. This time is

dwarfed by the amount of time processors actually waited

to acquire busy locks in a sixteen pt~ocessor run, which was

over 2800 seconds, or about 175 seconds per processor.)

Third, we assumed that there were no other synchro-

nization delays in the architecture other than waiting for

locks, an assumption that is obviously false. For example,

the Encore has a fast, shared, system bus. However, the

amount of local computing required for each word of shared

data taken off the bus was large enough that the shared bus
seemed to slow down the computation by less than about

3 or 4 percent (see below). In addition to the shared bus,

hardware caches are shared between pairs of processors, so

that certain data brought into the cache for one proces-

sor may displace data needed by another, causing artificial

cache invalidation. In this application, however, all proces-

sors are executing the same code at the same time, so cache

interference seemed not to be a problem.

Finally, we assumed that the same amount of work was

done for N processors as for one. The ask for monitor logic

causes very little more code to be executed for N processors

than for one, so this hypothesis was experimentally valid.

Any particular combination of real operating conditions

can be evaluated by comparing the measured T1 with the

quantities N T N - W N , which would be precisely T1 if the

assumptions were valid. In our example, T~ is 6050 seconds,

while the estimate N T N - W N monotonically increases, for

N between one and sixteen, between 6012 and 6176 sec-
onds, a difference of about two percent. 1 One can conclude
therefore that the assumptions are experimentally valid for

our program on the Encore Multimax.

5. Conc lus ions . We have introduced a classification

of synchronization delays that occur in multiprocessor sys-

tems programmed using, monitors. This classification is use-

ful in that it differentiates classes of delays that are affected

in known ways by changes in algorithmic parameters, such

as the size of subdomains in domain decomposition. This

analysis has been applied to a parallel, adaptive code on
the Encore Multimax for solving the one-dimensional Eu-

ler equations of gas dynamics, where it accounted for all
but a few percent of the delays that occur in the system.

A c k n o w l e d g m e n t s . This work was supported in part

by NSF grant No. DMS-8403219, by the Applied Mathe-

matical Sciences subprogram of the Office of Energy Re-

search, U.S. Department of Energy, under contract W-31-

109-Eng-38, and by the Institute for Mathematics and its

1The fact tha t the measured value of W1 is not identically zero
decreases the es t imate NTN - IIZN when N = 1 from 6050 to 6012
seconds, while unmeasured sys tem contention causes W N to be more
and more underes t imated as N increases, causing the es t imated value
of T1 to increase. It is from these figures tha t we es t imate the shared
bus content ion to be less than about three or four percent with sixteen
processors.

2 8

Appl i ca t ions w i t h funds p rov ided by the Na t i ona l Science

F o u n d a t i o n .

REFERENCES

[1] P. BRINCtt HANSEN, The programming language Concurrent
Pascal, IEEE Trans. Software Eng., SE-1 (1975), pp. 199-207.

[2] K. DRITZ AND J. BOYLE, Beyond "speedup": Performance anal-
ysis of parallel programs, Argonne National Laboratory Tech.
Rep. ANL-87-7.

[3] C. A. R. HOARE, Monitors: an operating system structuring
concept, Comm. of the ACM, 17 (1974), pp. 549-557.

[4] B . J . LucIER, A stable adaptive numerical scheme for hyper-
bolic conservation laws, SIAM J. Numer. Anal., 22 (1985), pp.
180-203.

[5] B . J . LUClER AND R. A. OVI~RBEEK, A parallel adaptive numer-
ical scheme for hyperbolic systems of conservation laws, SIAM
J. Sci. Stat. Comput., 8 (1987), pp. s203-s219.

[6] E. L. LusK AND R. A. OVERBEEK, Use of monitors in FOR-
TRAN: A tutorial on the barrier, self-scheduling do-loop, and
askfor monitors~ in Parallel MIMD Computation: HEP Super-
computer and its Applications, J. S. Kowalik, ed., The MIT
Press, Cambridge, Massachusetts, pp. 367-411.

2 9

