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A b s t r a c t .  We present a classification of synchroniza- 

tion delays inherent in multiprocessor systems programmed 

using the monitor paradigm. This characterization is use- 

ful in relating performance of such systems to algorithmic 

parameters in subproblems such as domain decomposition. 

We apply this approach to a parallel, adaptive grid code for 
solving the equations of one-dimensional gas dynamics im- 

plemented on shared memory multiprocessors such as the 
Encore Multimax. 

1. I n t r o d u c t i o n .  Often the only measure of the effi- 

ciency of a parallel program is the speed-up S of the pro- 

gram when run on N processors. Unfortunately, this figure 

gives little information about where the delays occur in the 

program or how the program may be changed to improve 

its efficiency. This paper presents a profiling technique that 

partially remedies these problems in systems that are pro- 
grammed using the monitor programming paradigm [1] [3]. 

In §2, we describe a profiling technique, developed by re- 

searchers at Argonne National Laboratory, that measures 

and classifies into simple statistics the delays associated 

with acquiring the hardware locks through which the var- 

ious processors are synchronized. In §3, we present, for 

systems programmed with monitors, a natural classifica- 

tion, corresponding directly to algorithmic issues, of these 

delays. A monitor macro package, also developed at Ar- 

gonne and implemented on many machines including the 

Intel Hypercube, the Encore Multimax, and the Cray 2, 

was modified so that the various monitor calls would gen- 

erate the timing data necessary to apply this technique. In 
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§4, we apply these ideas to a parallel implementation on the 

Encore Multimax (a shared-memory, MIMD computer) of 

an adaptive numerical method to solve the Euler equations 

of gas dynamics. It is shown that the strategy presented 

here can account for and classify all but a few percent of 

the delays incurred in the program; this strategy also tells 
the programmer exactly where the delays occur and what 

parameters at the programmer's disposal (the size of com- 
putational subdomains, for example) could be modified to 

make the program more efficient. In §5, we present our 
conclusions. 

2. T h e  D r i t z - B o y l e  P e r f o r m a n c e  E v a l u a t i o n  

F r a m e w o r k .  In [2], Ken Dritz and Jim Boyle introduce 

the following framework for the performance evaluation 

of multiprocessors. Although their paper is somewhat re- 

stricted to considering shared memory multiprocessors, the 
ideas can be generalized to other architectures. 

begin, Dritz and Boyle make the following assump- 

There are N identical processors in the system. 

One can measure the time spent waiting to acquire 
hardware locks. 

(3) The only delays incurred in the system are the waits 

for locks, and hence are measurable. (There are no 

"invisible" delays, such as waiting because of cache 

contention.) 

(4) The same amount of work is done with one proces- 
sor as with N processors. 

These assumptions are never strictly true in any multipro- 

cessor system, of course, and we will consider later their 
validity for our application. Next, let 

Tk: Program execution time with k processors. 

Wk: Total time spent waiting for locks when run with k 
processors. 

Sk: Speed-up over one processor when run with k pro- 

cessors. 

To 
tions: 

(1) 
(2) 



Obviously, W1 = 0 because all locks are immediate ly  avail- 

able. Because of the above assumptions we can calculate 

T1 based solely on the measured values of TN and WN: 

(2.1) T1 = N T N  - WN; 

S O  

T1 N T N  - W N  _ N WN 
(2.2) SN = TN -- TN -- ~ N  " 

These formulas assume implicit ly that  the CPU t ime used 

to dis t r ibute  problems among and synchronize the processes 

can be considered useful work. Dritz and Boyle make sev- 
eral remarks about  these formulas. 

First ,  one does not have to make a one-processor run 

to calculate the speed-up of the program. This has obvious 

advantages when large numbers of processors will be used 

in a product ion environment.  

Second, the quant i ty  W N / T N ,  although dimensionless, 

may be interpreted as the number  of processors lost in 

the computa t ion  due to synchronization delays. Dritz and 

Boyle recognized that  waits incurred in acquiring locks in 

different parts of the code could be a t t r ibuted  to differ- 

ent aspects of their  scheduling algorithm, so when one uses 

their  profiling strategy, s ta tements  such as "content ion for 

the get new task lock cost 1.24 processors" are meaningful. 

Third,  if the value of T1 calculated in (2.1) is close to 

the measured value of T1, then one may conclude that  the 
assumptions that  were made are reasonably valid for the 

purposes of computat ion.  Because countervailing architec- 

tural  effects may cancel each other  out, (2.1) may give a 
closer es t imate  of T1 than  if each effect were present alone. 

Thus careful examinat ion of the da ta  is still required. 

Based on the above assumptions, one can collect a 

wealth of information about  how long each processor waited 

to obtain  each synchronization lock in a program. It would 

be very useful to classify this information into statistics 

that  allow the synchronization delays to be correlated with 

aspects of the code's underlying algorithm. For example, 

at the hardware level on many shared memory MIMD ma- 

chines, all acquisitions of locks use the same system call, 

but  the interpreta t ion of each call may differ depending 
on a certain call 's use. In the next section we present a 

classification of synchronization delays that  is useful when 

programming with monitors. 

3. C l a s s i f i c a t i o n  o f  S y n c h r o n i z a t i o n  D e l a y s  w h e n  

u s i n g  M o n i t o r s .  In this section we apply the Dri tz-Boyle 

performance evaluat ion framework to synchronization us- 

ing monitors,  which, having more s tructure than some other  
synchronization primitives, can yield to a more precise anal- 

ysis. 

Monitors,  introduced by Hoare [3] and Brinch Hansen 
[1], are a way to control parallel access by several processes 

to shared resources. (This section will talk more generally 

about  processes rather  than processors.) A monitor  consists 

of a shared da ta  s t ructure or physical resource, together  

with a set of procedures that  manipula te  this structure,  

and several delay queues. Only one process at a t ime may 
execute code in the monitor,  so critical regions are enforced. 

Once inside the monitor,  a process may choose to be delayed 

in a delay queue if it is not able to operate on the shared 

da ta  as it likes. A process inside the monitor  may release 

another  process from a delay queue to start  executing code 
in the monitor;  if it does so, then it must immediately exit 

the monitor.  

When  using this paradigm for process synchronization, 

there are only two places where delays may o c c u r - - a t  the 
entrance to a monitor,  when a process must wait to enter 

because another  process is inside the monitor,  and in the 

moni tor  delay queues, where processes wait because they 

have no useful work to do until  the status of the shared 

resource changes. This classification is quite useful, because 

delays at monitor  entry and in delay queues can generally 

be a t t r ibu ted  to two different algori thmic issues: delays at 

moni tor  entry are due to critical region contention,  while 

delays in the delay queues are due to lack of  parallelism. 

Processes contend at a moni tor  entry because each process 

executes too much code inside the monitor,  or because the 

processes as a group return too often to the moni tor  without  
doing enough work outside the monitor.  Processes wait in 

delay queues, on the other  hand, because other  processes 

have not yet done the work that  they should do to prepare 
the shared resource for processing by the processes in the 

delay queue. 

Par ts  of the above paragraph are necessarily vague, be- 

cause we claim a characterizat ion of delays in all uses of 
monitors,  which is clearly impossible. However, the basic 

classification of delays due to monitor  entry and waiting in 

delay queues is valid. 

For many algorithms, the monitors that  are used to con- 

trol the distr ibut ion of subtasks are more specialized and 

can sustain a more detailed analysis. We refer specifically 

to the case when a major  problem is broken up into smaller 
minor problems through a process called domain  decom- 

position. These minor  problems are then distr ibuted by a 

moni tor  to the processes that  can do the work. Often, all 

the  processes must synchronize at the end of of each major  

p r o b l e m - - n o  process may  proceed across the synchroniza- 

tion point,  called a barrier, until  all processes have reached 

this point. Thus,  processes wait ing in a delay queue are re- 

leased from the queue with one of two results: they either 

get a minor  problem to work on, or they pass the synchro- 

nization point with the other  processes. Using this classifi- 
cation, waits in delay queues may  be characterized as being 

due ei ther to task distr ibution or barrier synchronization.  

In summary, synchronizat ion delays in algorithms pro- 
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grammed using monitors are due either to: 

• Critical region contention, manifested through de- 
lays at monitor entry points; or 

• Lack of parallelism, manifested through delays in 
monitor delay queues. Waits in delay queues can 
often be subclassified as being due to: 

• Task distribution delays, if the process receives 
useful work to do when it is released from the 
queue; or 

• Barrier synchronization, if the process waited 
solely for other processes to pass a synchroniza- 
tion point. 

This classification is of use because it corresponds di- 
rectly to algorithmic parameters. Consider a monitor that 
controls the subdivision of a large problem into smaller 
problems and distributes these smaller problems to various 
processes. If the monitor entry delays are excessive, they 
can be decreased by increasing the subproblem size. This 
will decrease the number of subproblems (and the number 
of times processes require the monitor) and will increase 
the amount of work each process does outside the mon- 
itor. If barrier synchronization times are excessive, they 
can be made smaller by reducing the size of subproblems. 
This will decrease the inequity in total process execution 
times. Thus, differing reasons for small speed-ups can be 
identified, and a choice can be made between conflicting 
algorithmic corrections. This is one of the most important 
reasons for the existence of classification schemes. 

We implemented these ideas by modifying a monitor 
macro package, written in the C programming language 
by Ross Overbeek and E. L. Lusk at Argonne National 
Laboratory, that runs on many parallel computer systems, 
including the Intel Hypercube, the Encore Multimax, the 
Sequent, and the Cray 2 [6]. Specifically, the macros for 
the Encore Mulfimax were modified to take two extra ar- 
guments, variables that were to be incremented for monitor 
entry delay times (in the rnenter macro) and queue wait de- 
lay times (in the delay macro). All process synchronization 
is achieved using these two macros, and the variables used 
to record various delays in the higher level macros (such 
as receive and 8end) were just passed on to reenter and 
delay. If the timing arguments are not present, or if the 
non-profiling monitor macro package is used, then timing 
data is not generated. 

4. App l i ca t ion :  A Para l l e l  A d a p t i v e  N u m e r i c a l  
Code.  In this section the ideas in §3 are used to analyze 
the performance of a parallel, adaptive, computer code to 
calculate the solution of the one-dimensional Euler equa- 
tions of gas dynamics [5]. The code was written in the pro- 

gramming language C on the Encore Multimax, a shared- 
memory MIMD computer that runs a version of the Unix 

struct node { 

struct node *parent; 

struct node *isib; 
struct node *rsib; 

struct node *ichild; 

struct node *rchild; 

struct node *ineigh; 

struct node *rneigh; 

struct node *ibound; 

struct node *rhound; 

struct node *next; 

/* parent of p */ 

/* left sibling (cousin) of p */ 
/* right sibling (cousin) of p */ 
/* left child of p */ 

/* right child of p */ 

/* left neighbor of p */ 

/* right neighbor of p */ 

/* left boundary of p */ 
/* right boundary of p */ 

/* next new node at same depth */ 
NLOCKDEC(Iock) /* synchronization lock for p */ 

/* in accumulating data from children into a node, count 
* records how many children have finished. 
*/ 

int count; 

int depth; /* depth of p in the tree */ 

/* tree_size is the size of the subtree headed by p */ 
int tree_size; 

/* inorm, rnorm, norm and uxx are variables used to 
* determine if p should have children. 
*/ 

double inorm; /* used for adaptive criteria */ 

double rnorm; /* used for adaptive criteria */ 

double norm; /* used for adaptive criteria */ 
double uxx; /* used for adaptive criteria */ 
struct ~ double rho, m, e, u, p, c;} 

st, newst, 
/* 

double x;  / *  

B00L isleaf; /* 
BOOL isleft; /* 

BOOL isdone; /* 

stm2, stml, etpl, stp2; 

various state variables */ 

x coordinate of p */ 

TRUE if node is a leaf */ 

TRUE if node is a left child */ 

TRUE if node has been updated 

by one of its neighbors */ 

FIG. 1. Data structure for  a node in the tree. 

operating system. For process synchronization we used a 
C-language monitor macro package developed at Argonne 
National Laboratory, modified, as described in the previous 
section, to generate timing statistics for each monitor call. 
(See [6] for a description of the FORTRAN version of the 
macro package.) 

The Euler equations consist of a system of nonlinear, 
time-dependent, hyperbolic partial differential equations. 
These equations do not have smooth, or differentiable, so- 
lutions; discontinuities, or shocks, develop in the solutions 
even if the initial data are smooth. The adaptive code 
therefore attempts to insert more mesh points (points at 

which the solution is approximated) near these shocks and 

other singularities in the solution. As the solution pro- 

gresses in time, the places where the mesh-point density is 

high move along with the evolving singularities. The issues 

related to the parallel implementation of the algorithm are 

as follows. 

The mesh points are created through a process of recur- 

sive bisection starting with an interval [a,b], so the basic 
data structure for organizing the set of mesh points is a 
threaded binary tree. Each interval that appears during 
any period of this recursive bisection has positioned at its 
midpoint a mesh point, so mesh points, tree nodes, and in- 
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FIG. 2. A sample tree as computational domain. 

tervals can be identified. The  corresponding data  s t ructure 

is shown in Figure 1 (c.f., [4]), and a small sample tree is 

shown in Figure 2. The  trees are very deep near shocks 

in the solution and get more unbalanced as the number  of 
nodes increases. 

Unusual  terms used in Figure 1 are defined below. As- 
sume that  the node p corresponds to a point xi at the center 

of an interval (xt, xr),  and assume that  the points xi are or- 

dered so that  xi-1 < xi for all i. Then  the terms are defined 
as follows. 

l s i b  The greatest  point x j  with x j  < xi and 

the depth  of x j  equal to the depth of xi 

in the tree. Similarly for r s i b .  

l n e i g h  The  node xi-1.  Similarly for r ne igh .  

lbound The node xl. Similarly for rbound. 

n e x t  When nodes are added to the tree, they 

are collected in an array of lists, one for 

each depth in the tree. n e x t  points to 

the next i tem in the list. 

rho,  etc. These are physical parameters  that  de- 

scribe the state of the gas. rho is the 

density, m is the momentum,  e is the en- 

ergy per unit volume, u is the velocity, p 

is the pressure, and c is the local sound 

speed. 

The  total  t ime progression of the solution from time 0 

to some t ime T is broken clown into t ime steps of size At.  
Conceptually,  at each t ime step the mesh is re-calculated 
based on the approximate  solution at that  time, and then a 

finite-difference approximat ion to the differential equations 

advances the approximate  solution to the next time. In 

more detail,  for each n between 0 and T / A t ,  the work is 
divided into several passes. 

Pass 1. Approximate  Riemann problems are solved for 

each interval (xi -1 ,  xi) and (xi, x i+l) ,  where xi 

is a leaf in the tree. (For the present purposes, 

it is not necessary to know what a Riemann 

problem is. One must  just  know that  for each 
leaf in the tree some small amount  of work must  

be done.) Information used to decide the set of 

mesh points at the next t ime step is passed up 
the tree to all interior nodes. 

Pass 2a. The  tree is examined in a top-down manner  

from the root to see which nodes (subtrees, in 
fact) will remain through the next time-step; 

unnecessary nodes are removed. For each leaf 

node that  remains and which will not be mod- 

ified with the addi t ion of children during this 

t ime step, the values of the state variables at 

that  leaf node and its left and right neighbors 

are updated  using the approximate  Riemann 

solver information calculated in Pass 1. Also 

during this pass, all new nodes that  are imme- 

diate children of existing nodes in the tree are 
added to the tree. 

Pass 2b. This is a clean-up pass. Sibling links are added 

to the parents of nodes that  were added to the 

tree in Pass 2a, approximate  Riemann problems 

are solved for the new nodes, and the solution is 

advanced at the new nodes and their  neighbors. 

Passes 1 and 2a can be executed completely in paral- 
lel with minimal  synchronization logic. The  domain (the 

tree) is decomposed into small parts of varying sizes using 

an algori thm introduced in [5] and il lustrated in Figure 3. 
Given a parameter  rain_size, this a lgori thm breaks up a bi- 

nary tree (in which each node has either no or two children) 
into parts that  contain between min_size + 1 and 3min_size 

nodes. It uses a counter  in each node that  records the 
size of the subtree headed by that  node. Subtrees that  are 

pruned off to be worked on by the process are stored on a 

local stack. This algori thm increases parallel processing ef- 

ficiency because when subtasks picked up by processes are 

about  the same size, barrier delays are decreased. 

The  algori thm in Figure 3 uses a global shared stack 

on which to put  nodes that  represent the entire subtrees 

that  they head. Access to this global stack is controlled by 
an askfor monitor  [6]. This moni tor  has two main proce- 

dures. The  first can add any amount  of work to the stack, 

and through the second a processor can request work from 

the stack. When  a process requests work from the stack, 
then ei ther work is available and is given to the process, 

or the process is delayed in the delay queue of the moni- 
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Tree Partition Algorithm { 
Let stack.size denote the number of nodes in the 

subtrees stored temporarily on the local stack 
pop interval (node) I from global stack 
stack_size := 0 
while (stack_size <_ rain_size and 

stack_size -1- I----~tree size > 3 (roin..size)) { 
process I as an interior node 
let min_tree head the smaller subtree of I 
let roax_tree head the larger subtree of I 
if (roin_tree-+tree size 4- stack_size > 3 (roin_size)) { 

push roin_tree onto the global stack 
} else { 

push roin_tree onto the local stack 
stack_size : =  stack_size 4" roin_tree--~tree size 

} 
I := roax_tree 

} 
if (I--+tree size -t- stack_size > 3 (min..size)) { 

push I onto the global stack 
} e l se  { 

push I onto the local stack 
} 
Process all subtrees on the local stack 

Flc. 3. Tree partition algorithro. 

for. Whenever a process,/)1 say, adds work to the stack or 

successfully gets work from the stack, then before leaving 

the monitor that process releases another process, /2,  from 

the delay queue, if any are waiting. (P1 releases /)2 when 

it picks up work from the stack because it may not have 

taken all the work from the stack.) /)2 then checks whether 

more work is available. If all processes are either waiting 
in the delay queue or are in the monitor looking for work, 

then there is no more work to be done during this part 

of the computation and all processes are released from the 

monitor. (This is an implicit barrier synchronization.) One 

distinguished process then sets up the problem for the next 
pass by changing a few flags and pushing the root of the 

tree onto the global stack. The other processes continue to 

enter the monitor looking for work. 

The clean-up pass of the computation is different. It is 

a fact that to decide whether an interval is to be subdivided 

according to the criteria presented in [5] then the left and 

right sibling links must be present for that interval's parent. 
Since sibling links cannot, in general, be added in parallel 
to parents of new nodes (the sibling nodes themselves may 

not have been added to the tree yet, if such was the re- 
sponsibility of another process) the sibling links are added 

in the clean-up pass. To ensure the top-down property of 

sibling links alluded to above, it was decided to add sibling 

links to the parents of new nodes during the clean-up pass 
in a top-down, breadth-first ordering. As it turned out, this 

had a severe impact on the clean-up pass--all the code was 

executed sequentially by one process. 

Various delays due to processor synchronization occur 
in each pass of the algorithm. The synchronization delays 

during 

(1) 

Pass 1 of each time step occur when processors: 

Wait for node locks before updating information in 

a node's parent. 

(2) Wait to enter the askfor monitor. 

(3) Wait to leave the delay queue in the askfor monitor 

when the processor subsequently obtains work to do 

(task distribution delays). 

(4) Wait to leave the delay queue in the askfor mon- 
itor when the processor obtains no work (barrier 

synchronization). 

A graph showing the speed-up of this part of the algorithm, 

together with the attribution of the remaining CPU time to 

synchronization delays, is given in Figure 4. The program 

was run with from one to sixteen processors. There were 

339 nodes in the tree at the final time step, and min_size in 

Figure 3 was set to two. One can see that the major cause 

of processor efficiency loss was the barrier synchronization 

delay, so that if this algorithm were applied to larger prob- 

lems, with more subproblems, the speed-up would be even 

better. (The barrier synchronization time depends on the 

product of the number of time steps, the number of pro- 

cessors, and min_3ize, while the amount of useful work per- 

formed by all processes is proportional to the number of 

time steps times the tree size.) 

Figure 5 presents the speed-up and synchronization de- 

lays for Passes 2a and 2b of the algorithm when applied to 

the same problem. The delays for Pass 2a are similar to 

those for Pass 1; they occur when the processors: 

(1) Wait for access to a shared list of free nodes (mem- 

ory management locks). 

(2) Wait for node locks before updating information in 

a node's parent. 

(3) Wait for access to a linked list of new nodes. 

(4) Wait to enter the a~kfor monitor. 

(5) Wait to leave the delay queue in the askfor monitor 

when the processor subsequently obtains work to do 

(task distribution delays). 

(6) Wait to leave the delay queue in the a~kfor mon- 
itor when the processor obtains no work (barrier 

synchronization). 

In the clean-up pass, delays occur when processors: 

(1) Wait to enter the askfor monitor. 

(2) Wait to leave the delay queue in the a3kfor monitor 
when the processor subsequently obtains work to 

do (task distribution delays). (This time is zero, 

because only one processor got work to do, and the 

work was immediately available.) 

(3) Wait to leave the delay queue in the askfor mon- 

itor when the processor obtains no work (barrier 

synchronization). 
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FiG. 4. A t t r ibu t ion  of  processor use in Pass 1 of the algo- 
rithm. The horizontal axis represents the number  oS physical 
processors available, the vertical axis represents how these 
processors were used. The diagonal line y ---- x represents the 
theoretical m a x i m u m  speed-up. The lowest curve represents 
the actual speed-up (or effective processor use) versus the 
number  of  actual processors used. Each band between the line 
y = x and the speed-up curve represents the number  of  pro- 
cessors lost to various synchronizat ion delays. The reasons 
for the various losses, f rom the top band down, are: barrier 
synchronizat ion delays in the askfor monitor,  task distribu- 
tion delays in the askfor monitor,  moni tor  entry content ion 
in the askfor monitor,  and various node lock delays. 

Here one can see that when run with sixteen processors, the 

serialization of the clean-up pass alone costs 1.7 processors. 

(The barrier synchronization time in the clean-up pass is 

generated when N - 1 processors are sitting there idle and 
eventually leave the monitor delay queue without picking 

up any work.) 

The number of processors lost in Pass 2a due to the 

ask]or  monitor synchronization is larger than in Pass 1 be- 

cause the amount of work done for each node in the tree is 

much less in the second pass than in the first. This implies 

that both the time spent in monitor entry contention and 

the ratio of time spent in barrier delays to clock time will 

be greater in the second pass than in the first. 

The statistics compiled for the present analysis revealed 

that during the clean-up phase no process waiting in the 

aslcfor delay queue subsequently obtained work. Thus, this 

part of the code had been executed sequentially by one 

processor. Subsequent to this finding, a more careful al- 

gorithmic analysis showed that a breadth-first traversal of 
the new nodes is not necessary. It is only necessary to 
add nodes to the tree in "layers," with all new children 

of old nodes added before any grandchildren of old nodes 

S j -  

FIG. 5. At t r ibu t ion  of  processor use in Passes 2a and 2b of  
the algorithm. The horizontal axis represents the number  oS 
physical processors available, the vertical axis represents how 
these processors were used. The diagonal line y = x rep- 
resents the theoretical m a x i m u m  speed-up. The lowest curve 
represents the actual speed-up (or effective processor use) ver- 
sus the number  of  actual processors used. Each band between 
the line y ~ x and the speed-up curve represents the number  
of  processors lost to various synchronizat ion delays. The rea- 
sons ]or the various losses, f rom the top band down, are: bar- 
rier synchronizat ion delays in the ask]or moni tor  during Pass 
$b, moni tor  entry content ion in the ask]or moni tor  during 
Pass 2b, barrier synchronizat ion delays in the ask]or moni tor  
during Pass 2a, task distribution delays in the ask]or mon- 
itor during Pass ~a, moni tor  entry contention in the ask]or 
moni tor  during Pass 2a, and various node lock delays during 
Pass 2a. The task distribution delays during Pass 2b, and 
the memory  management  lock content ion t imes and the new 
node lock content ion t imes during Pass 2a were insignificant. 

are added, etc. Implementation of this changed algorithm 

might have speeded up the program by allowing more par- 

allelism. 

The effect of changing the parameter m i n _ ~ i z e  in the 

tree partition algorithm of Figure 3 is exhibited in Figure 6. 

Here, one compares the number of processors lost in Pass 1 

and Pass 2ab of the program for N = 16 and ra in_s i ze  equal 

to two and four. It is seen that reducing the size of subtrees 

in the tree partition from four to two makes the algorithm 

more emcient. One might expect this to be true because the 

barrier synchronization time in the ask]or  monitor is much 

greater than the monitor entry (critical region contention) 

time when ra in_s i ze  is four. A test run of a FORTRAN 

version of this program run on the HEP [5] showed exactly 

the opposite behavior. For the FORTRAN implementation 
of the monitors, the amount of code executed at the head 
of each procedure in the ask]or  monitor was so large that 

monitor entry contention times overwhelmed the barrier 
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Pass 1 
min_size 

4 

Pass 2AB 
min_size 

4 2 

oN. barrier ~ 

~ m o n i t o r  
e n t r y ~  

~ speedup 

Fro. 6. Effect of changing the size of computational subdo- 
mains on the delays in the program. Each bar shows, for 
a run with sixteen processors, the fraction of time spent in 
either useful work (speed-up), or time the processors spent 
waiting for busy locks. The three bars of interest are the ones 
that indicate the program speed-up, the time spent in mon- 
itor entry contention in the askfor monitor, and the time 
spent waiting for barrier synchronization in the askfor moni- 
tor. (The bands represent the same quantities as in Figures 
and 5.) The graphs show that when the parameter min_size in 

"the tree partition algorithm is four, barrier synchronization 
time is much larger than contention to enter the monitor, so 
that reducing rain_size should allow for more speed-up. This 
indeed happens when rain_size is reduced to two. 

synchronization times until min_s i ze  was larger. 

The simple analysis in §2 was predicated on four as- 

sumptions, whose validity we will examine here for the En- 

core Multimax computer. First, the assumption of having 

N identical processors seems to have been valid for N no 

greater than sixteen on a twenty-processor system with no 

other activity on the system, as new processes were assigned 

to otherwise idle processors. 

Second, we assumed that time spent waiting to acquire 

a lock could be measured accurately. Event times on the 

Encore Multimax can be measured accurately using its one- 

microsecond hardware clock, which is accessed by reading 

a hardware register. It took about fifteen microseconds 

for a processor to read the hardware clock, call the sys- 

tem routine to acquire a lock, and read the hardware clock 

again, even if the lock is immediately available. Accord- 

ingly, the time to acquire a hardware lock was consistently 

over-estimated by about fifteen microseconds. By count- 

ing the number of times that hardware locks were called in 

this application, one can conclude that this particular tim- 

ing error comprised less than one percent of the total CPU 

time. (The actual overestimate was 38 seconds out of a to- 

tal run time of 6050 seconds for one processor. This time is 

dwarfed by the amount of time processors actually waited 

to acquire busy locks in a sixteen pt~ocessor run, which was 

over 2800 seconds, or about 175 seconds per processor.) 

Third, we assumed that there were no other synchro- 

nization delays in the architecture other than waiting for 

locks, an assumption that is obviously false. For example, 

the Encore has a fast, shared, system bus. However, the 

amount of local computing required for each word of shared 

data taken off the bus was large enough that the shared bus 
seemed to slow down the computation by less than about 

3 or 4 percent (see below). In addition to the shared bus, 

hardware caches are shared between pairs of processors, so 

that certain data brought into the cache for one proces- 

sor may displace data needed by another, causing artificial 

cache invalidation. In this application, however, all proces- 

sors are executing the same code at the same time, so cache 

interference seemed not to be a problem. 

Finally, we assumed that the same amount of work was 

done for N processors as for one. The ask for  monitor logic 

causes very little more code to be executed for N processors 

than for one, so this hypothesis was experimentally valid. 

Any particular combination of real operating conditions 

can be evaluated by comparing the measured T1 with the 

quantities N T N  - W N ,  which would be precisely T1 if the 

assumptions were valid. In our example, T~ is 6050 seconds, 

while the estimate N T N  - W N  monotonically increases, for 

N between one and sixteen, between 6012 and 6176 sec- 
onds, a difference of about two percent. 1 One can conclude 
therefore that the assumptions are experimentally valid for 

our program on the Encore Multimax. 

5. Conc lus ions .  We have introduced a classification 

of synchronization delays that occur in multiprocessor sys- 

tems programmed using, monitors. This classification is use- 

ful in that it differentiates classes of delays that are affected 

in known ways by changes in algorithmic parameters, such 

as the size of subdomains in domain decomposition. This 

analysis has been applied to a parallel, adaptive code on 
the Encore Multimax for solving the one-dimensional Eu- 

ler equations of gas dynamics, where it accounted for all 
but a few percent of the delays that occur in the system. 
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1The fact tha t  the measured  value of W1 is not identically zero 
decreases the es t imate  NTN - IIZN when N = 1 from 6050 to 6012 
seconds, while unmeasured  sys tem contention causes W N to be more  
and more  underes t imated  as N increases, causing the es t imated  value 
of T1 to increase. It  is from these figures tha t  we es t imate  the shared 
bus content ion to be less than  about  three or four percent  with sixteen 
processors. 
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