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REGULARITY THROUGH APPROXIMATION FOR

SCALAR CONSERVATION LAWS∗

BRADLEY J. LUCIER†

Abstract. In this paper it is shown that recent approximation results for scalar conservation
laws in one space dimension imply that solutions of these equations with smooth, convex fluxes
have more regularity than previously believed. Regularity is measured in spaces determined by

quasinorms related to the solution’s approximation properties in L1(R) by discontinuous, piecewise
linear functions. Using a previous characterization of these approximation spaces in terms of Besov
spaces, it is shown that there is a one-parameter family of Besov spaces that are invariant under
the differential equation. An intriguing feature of this investigation is that regularity is measured
quite naturally in smoothness classes that are not locally convex—they are similar to Lp spaces for
0 < p < 1. Extensions to Hamilton-Jacobi equations are mentioned.
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1. Introduction. It is well known that discontinuities may form in the solution
u(x, t) of the hyperbolic conservation law

(C)
ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

even if the flux f and the initial data u0 are smooth. (In gas dynamics these discon-
tinuities represent shocks.) Hence, classical solutions of (C) do not generally exist.
Weak solutions of (C) are not unique, but both existence and uniqueness of weak so-
lutions that satisfy an auxiliary “entropy” condition were shown by Vol’pert [22] and
Kružkov [15]. The regularity of these weak solutions is the topic of this paper.

There have been two different approaches to studying the regularity of solutions of
hyperbolic conservation laws of one or more independent variables. Both approaches
are “structural” in that they describe properties of the solution without quantifying
a norm, seminorm, or quasinorm that says, for example, that one function is twice
as smooth as another. The first approach is to show that “generic” solutions of the
scalar equation (C) with C∞ initial data are piecewise C∞. This approach has been
followed, for example, by Schaeffer [21], Guckenheimer [13], and Dafermos [5], [6]. A
typical result is that except for a set of first Baire category in the Schwartz class S,
initial data in S results in piecewise C∞ solutions u(x, t). (Various assumptions are
made on the flux f , typically that it is convex or has isolated points of inflection.)

The second, more measure-theoretic, approach is to show that the set of singu-
larities of a solution u(x, t) is more restricted than those of an arbitrary function of
bounded variation in R×R+. Consider the following definitions. If u(x, t) ∈ BV(R2),
then it is known [11], [22] that for every point (x, t) outside of a set of one-dimensional
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Hausdorff measure zero (called the set of singular points), there exist numbers u+ and
u− and a direction ν ∈ R2 such that

lim
r→0

1

r2

∫∫

{(y,τ)·(±ν)≥0}∩B((x,t),r)

|u(y, τ) − u±| dy dτ = 0.

If u+ = u−, then (x, t) is a point of approximate continuity; if u+ 6= u−, then (x, t) is
a point of approximate discontinuity (a jump point). Furthermore, the set of regular
points consisting of the jump points is at most a countable union of rectifiable sets
of dimension n − 1. DiPerna [9], [10] showed for genuinely nonlinear systems of two
equations that the singular set of any solution u constructed by the random choice
method of Glimm [12] is in fact at most countable, and that at each regular point of u,
u has true one-sided limits that satisfy the Rankine-Hugoniot conditions. Furthermore,
the shock set of u has “nice” structure.

In a similar vein, Oleinik [18] has shown that if f is convex, then u is continu-
ous except on the union of a countable set of Lipschitz continuous curves (shocks).
Dafermos [6] and Liu [16] establish similar results.

Rather than considering structural properties of solutions, either of the solution
values (e.g., smoothness) or solution singularities (e.g., shocks), I consider smoothness
in certain approximation spaces that are closely related to Besov spaces. I show that
if u0 is in one of these approximation spaces, then u( · , t) is in the same space for all
later time if f is convex and smooth enough. (Of course, the results in this paper also
hold if f is concave.) These function spaces are not Banach spaces, and are not even
locally convex topological vector spaces, but they are composed of functions that are,
in some sense, smoother than arbitrary functions in BV, or even arbitrary piecewise
C∞ functions (see §6). In §2 I rationalize this approach by arguing that BV(R) is the
wrong space in which to measure smoothness, precisely because it is a locally convex
topological vector space. The convexity of the “unit ball” of BV(R) allows only coarse
measurement of the smoothness of functions that are discontinuous.

In this paper I consider a function smooth if it can be approximated well in L1

by possibly discontinuous, piecewise linear functions with free knots—the better the
approximation, the better the smoothness. This notion is developed in §3, in which I
recount certain results of DeVore and Popov [7], [8], based on work by Petrushev [19],
[20], that characterize the approximation spaces used here.

In §4, results from [17] are used to show that solutions of (C) that are initially in
BV(R) preserve whatever smoothness is obtained by the initial data in the sense given
in §3. In particular, it is shown that there is a one-parameter family of Besov spaces
that are invariant under the action of (C) provided the initial data is of bounded
variation. In §5, I point out that this is indeed a new result, because BV(R) is not
contained in the approximation spaces when the order of smoothness is greater than
one.

In §6, I show that there is, in general, no smoothing by the solution operator of
(C) in the approximation spaces considered here. This result follows from the partial
reversibility in time of the equation (C). The question arises because it is known that
if f is uniformly convex, then initial data in L1(R) generate solutions that have locally
bounded variation for all positive time, so there is some smoothing action from L1(R)
to BV(R).

These ideas also have applications to regularity of solutions of Hamilton-Jacobi
equations based on approximation properties in L∞; this will be explored in a later
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paper. However, in §7 I present one result that follows immediately from the results
in §4.

2. Why nonconvex spaces are natural. I begin with a specific example. Let
u0 be the characteristic function of [0, 1] and let f(u) = u. Then the solution u( · , t) of
(C) is the characteristic function of [t, 1 + t]. Except for the two jumps at the points t
and 1 + t, u( · , t) is a very smooth function of x for every t. If the space that one uses
to measure regularity allows any jumps at all (which it must, because solutions of (C)
can develop jumps even for smooth data when f is nonlinear), then u( · , t) must be a
relatively smooth function in that space.

Consider the inclusion of the functions u( · , t) in BV(R), or in fact in any normed
or seminormed space whose unit ball is convex, and define the smoothness of u( · , t)
to be its norm in this space. The solution u( · , t), being a translation of u0, must have
the same smoothness as u0. (Of course, I am assuming that the norm or seminorm is
translation invariant.) This implies that any convex linear combination of u( · , t) (for
0 ≤ t ≤ 1, say) will also have the same smoothness, because the unit ball of BV(R) is
convex.

It is easily seen that convex linear combinations of u( · , t) can approximate arbi-
trarily well in L1([0, 1]) any monotone function that takes the values 0 at 0 and 1 at 1.
But, as is shown in §5 in a particular technical sense, an arbitrary monotone function
is very rough, in that one can say very little, a priori, about the size and distribution
of discontinuities in the interval [0, 1], for example, except that the sum of the jumps
is bounded.

Thus, the convex hull of the solutions u( · , t) of (C) for our chosen u0 contains
functions that are quite rough. It is shown in §4 that these rough functions cannot

arise as solutions to (C) if u0 and f are smooth enough. It is in this sense that one
discards information when one concludes that the solution of (C) at any particular
time t has exactly the same smoothness as all functions in the convex hull of u( · , t)
for t > 0. I conclude that it is better to measure the smoothness of solutions of (C)
in spaces whose “unit balls” are not convex.

3. Approximation spaces and Besov spaces. Smoothness will be defined by
how well a function can be approximated by piecewise polynomials with free knots.
This section summarizes results in [7] and [8], which are given as general references
for this section.

Consider the approximation of functions in Lp(I) for 0 < p < ∞ and a finite
interval I ⊂ R. For any f ∈ Lp(I) and any positive integers r and N , let

Er
N (f, Lp(I)) = inf ‖f − φ‖Lp(I),

where the infimum is taken over all discontinuous, piecewise polynomial functions φ
defined on I of degree less than r with N − 1 free interior knots. In other words, for
each function f and number N one picks the best set of knots to minimize ‖f−φ‖Lp(I).

For each positive number α choose an integer r > α. For any q ∈ (0,∞], define
Aα

q (Lp(I)) to be the set of functions for which

‖f‖Aα
q (Lp(I)) = ‖f‖Lp(I) +

(

∞
∑

N=1

[NαEr
N (f, Lp(I))]qN−1

)1/q

<∞.

(In this and all later cases, make the usual modification when q = ∞.) It can be
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shown that all values of r greater than α specify the same space. Note that α is
the primary determinant of smoothness: If α1 > α2, then no matter the value of
q1 and q2, Aα1

q1
(Lp(I)) ⊂ Aα2

q2
(Lp(I)). However, if α1 = α2 = α and q1 > q2, then

Aα
q1

(Lp(I)) ⊃ Aα
q2

(Lp(I)).
The spaces Aα

q (Lp(I)) are not as strange as they might seem. If one denotes
by Aα

q (Lp(I), free) the spaces described above, and by Aα
q (Lp(I), uniform) the similar

spaces defined by considering approximation using only uniform knot sequences, then
the space Aα

q (Lp(I), uniform) is the Besov space Bα
q (Lp(I)) given below (cf. [7]). Also,

if α is not an integer and 1 ≤ p < ∞, then Aα
p (Lp(I), uniform) is the Sobolev space

Wα,p(I) (cf. [1, p. 223]). Thus, there is a strong connection between approximation
spaces and more classical function spaces.

Aα
q (Lp(I)) can be characterized as the interpolation space of Lp(I) and certain

Besov spaces using the real method of interpolation. For α ∈ (0,∞) and q ∈ (0,∞],
define the Besov space Bα

q (Lp(I)) as follows. Pick any integer r > α; let ∆r(f, h)(x) be

the rth forward difference of f at x with interval h;1 and let Ih = {x ∈ I | x+rh ∈ I}.
Define

wr(f, t)Lp(I) = sup
|h|<t

‖∆r(f, h)‖Lp(Ih).

The Besov space Bα
q (Lp(I)) is defined to be the set of functions f for which

|f |Bα
q (Lp(I)) ≡

(
∫ ∞

0

[t−αwr(f, t)Lp(I)]
q dt/t

)1/q

is finite. Set ‖f‖Bα
q (Lp(I)) = ‖f‖Lp(I) + |f |Bα

q (Lp(I)). I specifically require the case

when p and q are less than one.
The real method of interpolation using K-functionals can be described as follows.

For any two spaces X0 and X1 contained in some larger space X , define the following
functional for all f in X0 +X1:

K(f, t,X0, X1) = inf
f=f0+f1

{‖f0‖X0
+ t‖f1‖X1

},

where f0 ∈ X0 and f1 ∈ X1. The new space Xθ,q = (X0, X1)θ,q (0 < θ < 1,
0 < q ≤ ∞) consists of functions f for which

‖f‖Xθ,q
= ‖f‖X0+X1

+

(
∫ ∞

0

[t−θK(f, t,X0, X1)]
q dt/t

)1/q

<∞,

where ‖f‖X0+X1
= K(f, 1, X0, X1). Using results of Petrushev [19], [20], the following

theorem is proved in [8].
Theorem 3.1 (DeVore and Popov). When 0 < p < ∞, 0 < q ≤ ∞, and 0 <

α < β, define σ = 1/(β + 1/p). Then

Aα
q (Lp(I)) = (Lp(I), Bβ

σ (Lσ(I)))α/β,q,

and if q = 1/(α+ 1/p),
Aα

q (Lp(I)) = Bα
q (Lq(I)).

Thus, there is a two-parameter family of spaces Aα
q (Lp(I)) that are Besov spaces,

albeit with q possibly less than 1.

1 Set ∆0(f, h)(x) = f(x) and ∆r(f, h)(x) = ∆r−1(f, h)(x + h) − ∆r−1(f, h)(x).
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Although there is not now an exact characterization of all the spaces Aα
q (Lp(I))

in terms of Besov or other spaces, the above theorem allows one to make rather
precise statements about inclusions of these spaces in Besov spaces. For example, if
0 < q < 1/(α+ 1/p), β > α, β̃ = 1/(β + 1/p), and α̃ = 1/(α+ 1/p), then

Bβ

β̃
(Lβ̃(I)) = Aβ

β̃
(Lp(I)) ⊂ Aα

q (Lp(I)) ⊂ Aα
α̃(Lp(I)) = Bα

α̃(Lα̃(I)).

There is an atomic decomposition for functions in Bα
q (Lp(I)); see [7] for details.

4. Regularity for scalar conservation laws. I modify several results in [17]
to prove Theorem 4.2, which is the major result of this paper. The definitions from §3
will be used, assuming always now that Lp = L1. First, I prove the following lemma.

Lemma 4.1. There is a constant C1 such that for all u0 in BV(R) with support in

[0, 1] and for any N , the best L1([0, 1]), discontinuous, piecewise linear approximation

with N − 1 free interior knots v0 to u0 satisfies |v0|BV(R) ≤ C1|u0|BV(R).

Proof. Let {τi}N
i=0, with τ0 = 0 and τN = 1, be the ordered set of knots of

v0. Consider now only one interval Ii = (τi, τi+1); let ∆τ = τi+1 − τi, and let u =
supx∈Ii

u0(x), u = infx∈Ii
u0(x), and ∆u = u− u. Let s be the slope of v0 in Ii.

If |s|∆τ > ∆u, then it is easily calculated that the L1(Ii) difference between u0

and v0 is at least

|s|
4

(

∆τ − ∆u

s

)2

,

which is simply the area of the set of points that are greater than u but less than v0 plus
those points that are less than u but greater than v0. If |s| > 2(1 +

√
3)∆u/∆τ , then

this error is greater than the error of the constant approximation v0 ≡ (u+ u)/2 = ũ,

so one must conclude that |s| ≤ 2(1 +
√

3)∆u/∆τ . Thus

VarIi
v0 = |s|∆τ

≤ 2(1 +
√

3)∆u

≤ 2(1 +
√

3)VarIi
u0.

So
∑

i VarIi
v0 ≤ 2(1 +

√
3)|u0|BV(R).

Consider now the jump |v0(τ+
i )−v0(τ−i )|. Subscript the quantities s, u, u, ũ, ∆τ ,

and ∆u to indicate the interval Ii to which they pertain. Without loss of generality,
assume that si−1 > 0 and si > 0. Then v0(τ

−
i ) ≤ ũi−1 +(1+

√
3)∆ui−1 and v0(τ

+
i ) ≥

ũi − (1 +
√

3)∆ui. So

|v0(τ+
i ) − v0(τ

−
i )| ≤ |ũi−1 − ũi| + (1 +

√
3)(|∆ui| + |∆ui|)

≤ VarIi−1∪Ii
u0 + (1 +

√
3)VarIi−1∪Ii

u0

≤ (2 +
√

3)VarIi−1∪Ii
u0.

So,
∑

i |v0(τ+
i ) − v0(τ

−
i )| ≤ (4 + 2

√
3)|u0|BV(R). Adding these two constants will

give the required value of C1.
The previous argument can be extended to show that the ranges of u0 and all

best piecewise linear approximations v0 are uniformly bounded and contained in some
interval, here denoted by Ω.
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Theorem 4.1 (Approximation). Let u0 ∈ BV(R) have support in the interval

I = [0, 1]. Assume that f ′′ ≥ 0 and that f ′ and f ′′′ are bounded on Ω. Then u( · , t)
has support in It = [infξ∈Ω f

′(ξ)t, 1 + supξ∈Ω f
′(ξ)t], |u( · , t)|BV(R) ≤ |u0|BV(R), and

for any N ≥ 1,

(4.1) E2
F (N)(u( · , t), L1(It)) ≤ E2

N (u0, L
1(I)) +

t

4N2
|u0|BV(R)‖f ′′′‖L∞ ,

where F (N) = ⌊(C1|u0|BV(R) + 4)N + 4⌋ and C1 is given in Lemma 4.1.
Proof. I will not discuss the first two conclusions of the theorem, which are clas-

sical. The proof of the third part models very closely the proofs of Theorems 3 and
4 in [17]. However, for the sake of completeness, I will recall the major parts of that
paper.

Let v0 be the best L1(I), discontinuous, piecewise linear approximation withN−1
free knots to u0. Then, as shown in Lemma 4.1, |v0|BV(R) ≤ C1|u0|BV(R). Consider

the C1, piecewise quadratic function g with knots at the points j/N , j ∈ Z, that is
defined by: g′(j/N) = f ′(j/N) and g(0) = f(0). In [17] I constructed an explicit
solution to the perturbed problem

(P)
vt + g(v)x = 0, x ∈ R, t > 0,

v(x, 0) = v0(x), x ∈ R,

provided that one augments the knots of v0 by putting a new knot at each isolated
point x for which v0(x) = j/N for some j. (If v0 is discontinuous at x, and there are
k values of j such that min(v0(x

−), v0(x
+)) < j/N < max(v0(x

−), v0(x
+)), then add

k knots at the point x.) Although these knots are not needed for the definition of v0,
the solution v( · , t) of (P) may develop discontinuities in its first derivative (“kinks”)
at these new knots for positive times.

The new knots number no more than (2 + |v0|BV(R))N + 1, by the following
argument. Let the original knots of v0 be τ0 = 0 < τ1 < · · · < τN = 1, let σ2i =
σ2i+1 = τi for i = 0, . . . , N , and consider the B-spline basis for v0 with the knots
{σi}. (See de Boor [2, Chap. 9] for this construction.) For each i, let ki denote
the number of original intervals (σj , σj+1) that had i new knots added. The value
of
∑

i iki is to be bounded. Now,
∑

i ki = 2N + 1. But if i points are added in
an original interval (σj , σj+1), the variation of v0 in that interval must be at least
(i − 1)/N , so

∑

i(i − 1)ki/N ≤ |v0|BV(R), or
∑

i(i − 1)ki ≤ N |v0|BV(R). Adding
these two known inequalities shows that

∑

i iki ≤ (2 + |v0|BV(R))N + 1, as claimed.
Thus, the total number of knots in v0 (counting the points σi and the new points,
all of which may travel along different characteristics for t positive) is bounded by
(4 + C1|u0|BV(R))N + 3.

It is shown in [17] that v( · , t) is piecewise linear for all time and that the number
of knots decreases monotonically, because f ′′ is nonnegative. Theorem 3 of [17] shows
that

‖u( · , t) − v( · , t)‖L1(R) ≤ ‖u0 − v0‖L1(R) + t‖f ′ − g′‖L∞ |u0|BV(R).

Because of the way g is constructed, ‖f ′ − g′‖L∞ ≤ ‖f ′′′‖L∞/(4N2), so (4.1) follows
immediately.

The proof can be easily modified to cover the case where f ∈ C1 and is piecewise
C3 on intervals Ij with inf |Ij | positive.

Theorem 4.1 can be used to prove the following main result of this paper.
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Theorem 4.2 (Regularity). Assume that there is an α ∈ (0, 2) and a q ∈ (0,∞]
such that u0 has support in [0, 1] and u0 ∈ BV(R) ∩ Aα

q (L1([0, 1])). Assume that

f ′′ ≥ 0 and that f ′ and f ′′′ are bounded on Ω. Then u( · , t) has support in It =
[infξ∈Ω f

′(ξ)t, 1 + supξ∈Ω f
′(ξ)t] and u( · , t) ∈ BV(R) ∩ Aα

q (L1(It)).
Proof. Inequality (4.1) shows that the error in approximation (by piecewise linear

functions) of u( · , t) is no more than the error in approximation of u0 plus something
of O(N−2), and that the number of knots remains O(N) for all later times. This is
sufficient to show that u( · , t) ∈ Aα

q (L1(It)) if α < 2.

By combining Theorem 4.2 and the characterization of the spaces Aα
q (L1(It)) in

terms of Besov spaces, the following corollary is obtained.
Corollary 4.1. Let 0 < α < 2, and set q = 1/(α + 1). If u0 has support

in I = [0, 1] and u0 ∈ BV(R) ∩ Bα
q (Lq(I)), f ′′ ≥ 0 and f ′ and f ′′′ are bounded on

Ω, then u( · , t) has support in It = [infξ∈Ω f
′(ξ)t, 1 + supξ∈Ω f

′(ξ)t] and u( · , t) ∈
BV(R) ∩Bα

q (Lq(It)).
Thus, there is a one-parameter family of Besov spaces that are invariant under

the action of the semigroup St that takes u0 to u( · , t).
Theorem 4.2 and Corollary 4.1 are of interest only when α is greater than one,

because any function in BV([0, 1]) can be approximated to within O(N−1) in L1([0, 1])
by piecewise constant functions with N − 1 uniformly spaced knots, so BV([0, 1]) ⊂
Aα

q (L1([0, 1])) when 0 < α < 1, or when α = 1 and q = ∞.

5. Approximation spaces and BV. In this section I give examples of the
known fact that A ≡ Aα

q (L1([0, 1])) * BV([0, 1]) and, if α is greater than one,

BV([0, 1]) * A.
First, I present an increasing function φ in BV([0, 1]) but not in A for any α

greater than one. The function φ will take the value 0 to the left of 0 and will take
the value π2/6 to the right of 1. Its definition is as follows.

The jumps of φ will be at the points p/2k for p an odd integer between 1 and
2k − 1 with k a positive integer. For each k, the size of the jump at the point p/2k

will be 1/(k22k−1). Between the jumps, φ will be constant, so that if one arbitrarily
defines φ to be right continuous, φ is given by the formula

φ(x) =
∑

p/2k<x

k>0, 0<p<2k, p odd

1

k22k−1
.

Because for each k there are 2k−1 odd integers p between 0 and 2k, φ(1), which is the
sum of the jumps, is indeed π2/6. Figure 1 is a graph of φ(x)/φ(1).

Now consider the approximation of this function φ by possibly discontinuous
linear functions with 2M − 1 interior knots for some positive M . Because φ behaves
in exactly the same way on each interval (j/2M , (j+1)/2M), it can be shown that the
optimal placement of knots will be at the points j/2M for 0 < j < 2M . Because there
is a jump of height 1/((M + 1)22M ) in the center of each interval (j/2M , (j + 1)/2M)
and the width of the interval is 1/2M , the best linear approximation on this interval
will have error greater than C/((M + 1)222M ). Summing these errors over the 2M

intervals gives a global error of greater than C/((M +1)22M ), or, if one sets N = 2M ,
C/(log2(N)N). This quantity is asymptotically greater than C/Nα for any α greater
than one, so φ is not in A. Thus, one can conclude that if the conditions of Theorem
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Fig. 1. A function in BV([0, 1]) but not in Aα

q
(L1([0, 1])) for any α > 1.

4.2 hold with α > 1, then this function φ cannot be the solution u( · , t) of (C) for any
positive time t.

It is perhaps simpler to construct a function φ in A that is not of bounded
variation. For x between 0 and 1, define

φ(x) =

{

0 for 2−N ≤ x < 1.5 · 2−N , N > 0,

1 for 1.5 · 2−N ≤ x < 2−N+1, N > 0,

with φ(x) = 0 for other values of x. (See Fig. 2.) It is clear that φ(x) can be
approximated exactly by a piecewise constant function ψ with 2N knots for 2−N <
x < 1. By setting ψ(x) = 0 for x greater than 0 and less than 2−N , one obtains a
global error in L1(R) of less than 2−N with O(N) knots. In other words, this φ can
be approximated exponentially well by piecewise constant functions, and hence is in
A for any values of α and q, yet φ is not of bounded variation.

Thus, the class A says little about the size of the jumps by themselves, but more
about the combination of the size and distribution of the jumps in the functions. The
example of a function of bounded variation but not in A had its jumps distributed
uniformly in the interval [0, 1], thereby inhibiting good approximation by piecewise
linear functions. In contrast, the example of a function in A but not of bounded vari-
ation had its jumps concentrated in a very small region. One may conclude intuitively
that solutions of (C) that satisfy the hypotheses of Theorem 4.2 may be rough, but
they are rough only in very small regions. This intuition is quantified in the atomic
decomposition formula given in [7] for functions in Besov spaces.

6. Lack of smoothing. There is, in general, no smoothing in the spaces
Aα

q (L1(It)) for solutions of (C) as t progresses, even if the flux f is uniformly convex.
This follows because of the partial reversibility of (C), as described below.

Define initial data u0 as follows: Let u0(x) be zero for x less than 0 and greater
than R, and constant between 1 and R, where R is a large parameter to be chosen
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Fig. 2. A function in Aα

q
(L1([0, 1])) for all α > 1 but not in BV([0, 1]).

later. Between 0 and 1 define u0(x) by

u0(x) =
∑

p/2k<x

k>0, 0<p<2k, p odd

1

kr2βk
, r > 0, β > 1.

Then it can be shown that u0 is in any space Aα
q (L1([0, 1])) containing Aβ

1/r(L
1([0, 1])).

Therefore, u( · , t) ∈ Aα
q (L1([0, R])) for the same values of α and q.

Consider the solution u( · , t) of (C) for t between 0 and T for some T when
f(u) = u2. The increasing part of u0 between 0 and 1 spreads out into a series of
expansion waves, and there is a shock emanating from the point (R, 0) in (x, t) space.
For a fixed T , if R is big enough then these waves will not interact. Consider now the
solution of

vt + g(v)x = 0, x ∈ R, t > 0,

v(x, 0) = u(x, T ), x ∈ R,

with g(u) = −u2. It is easily seen that v(x, T ) = u0(x) for x between 0 and 1, while
the rest of v(x, T ) consists of constant states and a linear function representing a
rarefaction wave. It follows that v(x, 0) = u(x, T ) cannot have more smoothness than
u0 in the sense of these approximation spaces.

It is interesting to note that u( · , t) is piecewise C∞ for all positive t and is in the
Sobolev space W 1,∞([0, R]), yet it is not in the spaces Aα

q ([0, R]) if α is large enough.

7. Hamilton-Jacobi equations. A special Hamilton-Jacobi equation in one
space dimension is given by

(H-J)
wt + f(wx) = 0, x ∈ R, t > 0,

w(x, 0) = w0(x), x ∈ R.

Problems of existence and uniqueness of solutions of (H-J) were solved in papers by M.
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G. Crandall and P. L. Lions [3], [4], in which they showed that the notion of “viscosity
solution” of (H-J) led to well-posedness. Certain “structural” regularity results are
known for solutions of (H-J); see, for example, [14].

The problem (C) can be derived formally from (H-J) by setting u = wx and
differentiating (H-J) with respect to x. This association is more than formal, however,
because Crandall and Lions showed that the viscosity solution of (H-J) is the limit
as ǫ tends to zero of the solution of (H-J) with the right-hand side replaced by ǫwxx

(hence the name “viscosity solution”). The entropy solution of (C) is also the limit as
ǫ tends to zero of the equation with the right-hand side replaced with ǫuxx (see, e.g.,
[15]), so if w′

0 is in L1, then the formal calculations are in fact valid. Thus one can
immediately derive the following theorem from the results in §4.

Theorem 7.1. Let w0 have support in [0, 1], and assume that there is an α ∈
(0, 2) and a q ∈ (0,∞] such that w′

0 ∈ BV(R) ∩ Aα
q (L1([0, 1])). Assume also that

f ′′ ≥ 0, f(0) = 0, and that f ′ and f ′′′ are bounded on Ω (see the comment following

Lemma 4.1). Then w( · , t) has support in It = [infξ∈Ω f
′(ξ)t, 1 + supξ∈Ω f

′(ξ)t] and

wx( · , t) ∈ BV(R)∩Aα
q (L1(It)). In particular, when q = 1/(α+ 1) and w′

0 ∈ BV(R)∩
Bα

q (Lq(I)), then wx( · , t) ∈ BV(R) ∩Bα
q (Lq(It)).
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R. DeVore and V. Popov, and I am deeply indebted to them for their assistance.
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