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A STABLE ADAPTIVE NUMERICAL SCHEME FOR HYPERBOLIC
CONSERVATION LAWS*

BRADLEY J. LUCIERf

Abstract. A new adaptive finite-difference scheme for scalar hyperbolic conservation laws is introduced.
A key aspect of the method is a new automatic mesh selection algorithm for problems with shocks. We
show that the scheme is L-stable in the sense of Kuznetsov, and that it generates convergent approximations
for linear problems. Numerical evidence is presented that indicates that if an error of size e is required,
our scheme takes at most O(e-3) operations. Standard monotone diiterence schemes can take up to O(e-4)
calculations for the same problems.

1. Introduction. Our focus in this paper is the efficient solution of the hyperbolic
conservation law,

ut +f(u), O, x R, > O,
(c)

u(x, O) Uo(X), x R.

We introduce an adaptive finite-difference scheme that takes advantage of the structure
of the solution of (C) to reduce its computational complexity. We prove that the scheme
is L stable in the sense of Kuznetsov, and we offer numerical evidence that, because
of the dynamic mesh modification, asymptotic error decay rates are improved for some
problems. For linear problems we show that a version of our method converges if the
initial data’s first derivative is of bounded variation.

Our method is, generally speaking, in the class of viscosity methods, methods that
include monotone finite-difference schemes. Monotone schemes have been analyzed
by Harten et al. [13], Crandall and Majda [6], Kuznetsov [17], Sanders [22], and Lucier
[19]. These schemes converge to the entropy weak solution of the conservation law
(C), as formulated by Kruzkov 16]. Kuznetsov provided a general theory of approxima-
tion for approximate solutions of (C), and he used this theory to provide error estimates
for various approximation methods for (C), including monotone difference schemes
on uniform meshes. His techniques were used by Sanders and by Lucier to provide
error estimates for difference schemes with nonuniform meshes and nonlocal difference
operators respectively.

One of the considerations in developing our algorithm was that it must exhibit
nonlinear stability properties similar to those ofthe differential equation itself. Solutions
of (C) are stable in Ll(R) in the sense that, if u(x, t) and v(x, t) are solutions of (C),
then

IlU(’, t)--V( ", t)l{Lt(R) C[]u(’, 0)-t)( ", 0)[[L(R)

for all t> 0, with C 1. On the other hand, there is no C C(llu ., 0)]], IIv( ", 0)11, t)
such that the preceding inequality holds for any LP(R) with p > 1. In particular, since
the first derivatives of u are not, in general, in La, error analyses, such as those of
Dupont [10] and Davis and Flaherty [7], that rely on the L norms of the solutions of
(C) may not be applied to these problems. For this reason, we have emphasized an
L approach in this paper.
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Our approach may be conceptualized as follows. Beginning with a uniform mesh
in [a, b] [0, T] with a mesh spacing of At, meshpoints are removed where they are
not needed to achieve the required accuracy. A standard finite-difference operator is
used to advance the approximate solution from one timestep to the next. (Special
techniques are used when the mesh differs from one timestep to the next.) Our method
differs from previous ones in the mesh selection algorithm, the interpretation of the
approximate solution, and our specific choice of finite-difference operator.

Much previous work has been done in adaptive methods for evolution equations.
Davis and Flaherty’s adaptive method [7] is designed to solve general evolution
equations, generally with smooth solutions. Our mesh selection algorithm is similar to
theirs, in that it attempts to equidistribute a measure of the error among the meshpoints;
the difference lies in that our algorithm equidistributes a measure of the local error in
L rather than L2. Other general algorithms for evolution equations were proposed by
Miller [20] and Dupont [10]. Dupont supplies convergence analyses for his methods,
which are mainly finite-element algorithms with moving meshes. Gannon [12] intro-
duced an adaptive finite-element method for parabolic differential equations basbd on
theory for elliptic equations.

Our algorithm was also motivated by the work of Sanders [22], Douglas [8], and
Douglas and Wheeler [9] on monotone finite-difference schemes with nonuniform
grids. Sanders and Douglas prove convergence results for their methods on a fixed
grid. Douglas and Wheeler introduce an algorithm that uses grids that may change
from one timestep to the next, a true adaptive mesh method. While they do not provide
error estimates, they prove that their numerical solutions converge to the entropy
solution estimates, they prove that their numerical solutions converge to the entropy
solution ofthe conservation law. We compare our method with theirs in the final section.

When Sanders, Douglas, and Douglas and Wheeler considered a nonuniform mesh,
they interpreted their numerical solutions as piecewise constant in x, and they used a
conservative finite-difference operator that is, in general, inconsistent everywhere. As a
consequence, max (xi-xi_)/At must be bounded to achieve stability in time in [9].
Because our mesh selection algorithm can generate arbitrarily large spatial increments,
depending on the smoothness of the solution and the nonlinearity of f, we chose to
interpret the solution as a piecewise linear function, and so to take advantage of at least
some smoothness in the solution. We also use a consistent, but nonconservative,
difference operator that reduces to a well-known conservative operator wherever the
mesh is uniform. Because our mesh selection algorithm generates uniform spatial
increments where the approximate solution lacks the requisite smoothness, the finite-
difference operator is still conservative near shocks. Section 4 contains partial results
that bound the global mass error in a reasonable way for piecewise smooth solutions.
The numerical results of 5 show that, in actuality, the mass error behave as suggested
in 4.

Adaptive numerical methods for hyperbolic conservation laws have previously
been considered by Ohger [21] and his students. Hedstrom and Rodrigue [14] survey
some of the techniques that are used. Bolstad [2] presents a framework for methods
in one space dimension. His schemes incorporate locally varying, recursively defined
space and time increments. He uses Richardson extrapolation to estimate the local
truncation error of the finite-difference scheme, a quantity that determines the local
grid size. Berger [21] extends Bolstad’s work to two dimensions. Among other things,
she deals with strictly two-dimensional problems of shock capturing, subgrid orienta-
tion, and overlapping grids.

Oliger and his students employ locally varying timesteps as well as spatial mesh
increments; we do not, mainly because we were not able to prove stability and
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convergence results for the improved methods. Since asymptotic improvement in
convergence rates can be exhibited with fixed (small) timesteps, locally varying temporal
increments were not considered essential. When locally varying timesteps are used,
our algorithm’s implementation is close to Bolstad’s.

The paper continues as follows. A discussion of notation concludes this section.
Section 2 briefly describes the finite-difference operator used here. Section 3 presents
the mesh selection algorithm, and proves certain useful properties about the resulting
mesh. Section 4 contains proofs of the nonlinear stability of the algorithm. Section 5
shows that a variant of our method converges for solutions of linear problems. Section
6 details our implementation of the algorithm. And finally, 7 describes our computa-
tional results.

We will generally choose initial data from the class of functions whose value, or
first derivative, is of bounded variation. The bounded-variation seminorm of a function
u BV(R) is defined as lUlsv(R)= IR [U’(X)I dx, where the integrand is interpreted as a
finite measure. If u is in BV(R), then there are two bounded functions, u + and u-
such that u u++ u- and u+ is nondecreasing, u- is nonincreasing. We define u’=
u+-u-, the total variation function of u. We also define the maximum and minimum
operators u v v max (u, v), and u ^ v max (u, v).

Throughout he paper we assume the normalization that

]f(x)-f(Y)l<l

This can always be achieved with a change of the time scale, and is used only for
convenience in stating stability conditions.

2. The finite-difference scheme. We use a standard upwind-difference scheme to
advance the approximate solution from time t" to "+l. We are given a suitable mesh,
chosen by the rules in the next section, to represent the solution at time t". It is
characterized by the meshpoints x’ and the values of the approximate solution Up at
those meshpoints. We interpret these points as determining a continuous piecewise
linear approximation to u(x, t"). An estimate of the solution at time "+l is calculated
by

n’+u, u, T(u,)-f+(u,-,) f-(u,+,)-f-(u,)
+" t- =0(2.1)

At

for all x (except the two endpoints of the interval), where h x -X_l. We have
decomposed f into its increasing (f+) and decreasing (f-) parts. If f is monotone
increasing or decreasing then this method is an upwind difference method previously
used by Engquist and Osher [11] on a uniform mesh.

The linear interpolant of the values U’+ at the points x is a function we call
Uh. The mesh selection algorithm of the next section, when applied to Uh, gives us a
new mesh x"+ and function values U’+. for the approximate solution of (C) at time
n+l"

This process is repeated until n+l-- T.

3. The mesh selection algorithm. This section describes our mesh selection
algorithm. Although, in our implementation, the mesh at time "+ is built from the
mesh at time , the method of approximation is general, and applies to any function
without reference to a time-stepping procedure. It is presented here in its general form.

Our method of mesh selection is similar to well-known algorithms for adaptive
linear approximation [3]. The mesh approximately equidistributes an estimate of the
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local error incurred by the finite-difference scheme, thus following methods used in
static problems [4] and other evolution equations [7]. Because the solutions of (C) are
stable in L, as described in the introduction, the mesh selection algorithm chooses to
equidistribute the error in L. Our specific choice of the mesh will allow us to prove
the stability results of 4, an important goal.

Let u be any bounded function defined on [a, b] that is constant outside of [a, b],
and let e be a small parameter. Choose the mesh according to the following algorithm.

ALGORITHM M. This algorithm chooses meshpoints at which to approximate an
arbitrary function u defined on [a, b].

1. The meshpoints consist only of the points a and b and the centers of admissible
intervals. Admissible intervals are defined by (2) and (3) below.

2. The interval [a, b] is an admissible interval.
3. For any admissible interval I, let 31 {x[dist (x, I) infy, Ix Yl < [II}. IflI[->- e

and

(3.1) [I[ [ [[u,[+lf"(u)lu2] dx >- e,
./3

then the left and right halves of I are admissible intervals. The above integral
is finite if u,, is a finite measure; it is to be interpreted as c otherwise. Note
that 31 is an open interval.

When this algorithm is used for our adaptive method, At e/4, so that At
min,,, (x x,%).

A minimal interval is an admissible interval that contains no proper admissible
subintervals. It is clear that the width of any given admissible interval is 2-k(b--a)
for some nonnegative k. Also, ]I[ >= e/2. It follows that the mesh is a subset of

S {a + m2-k(b a)lm =0, 1,. ., 2k, and (b- a)2-k >= e/4 > (b a)2-k-1}.
Some lemmas about the structure of the mesh generated by this algorithm follow.

LEMMA 3.1. IfA and B are two adjacent minimal intervals, then

Ial
2-1 1-

Proof We let IBI>2]A[, and derive a contradiction. Since the width of any
admissible interval is (b a)2-k for some k -> 0, [B[ => 4[A[. Consider now the admissible
interval from which A was derived by Step 3, and call it C. Since C was divided into
two admissible subintervals, the integral in Step 3 is greater than e. However, [B ->_ 2[ C[
and 3C c 3B, so that the corresponding integral for B must also be greater than e, a
contradiction to the minimality of B. V1

Except for the two points a and b, the set of meshpoints has the natural structure
of a tree. The point (a + b)/2 is the root of the tree. You can also think of the interval
[a, b] as the root of the tree. (Since there is a one-to-one correspondence between the
meshpoints and the set of admissible intervals, we will describe the structure of the
mesh equivalently in terms of intervals or meshpoints.) If an interval I is divided into
two admissible subintervals by Step 3, then these two intervals are the left and right
children of/, and I is their parent. A meshpoint with no children (the center of a
minimal interval) is a leaf

LEMMA 3.2. Every second meshpoint is a leaf
Proof The statement of the lemma is true after Step 2, and it is left invariant by

Step 3. [3
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This implies the obvious result that there is a unique covering of [a, b] with
minimal intervals.

LZMMh 3.3. Ifthe set ofmeshpoints is {xi} with hi xi xi-1 >= O, then 1/2 <= hi/hi+l <---- 2.
Proofi If xi is a leaf, then hi hi+l. If xi-l and xi/l are leaves, then the result

follows from Lemma 3.1.
The linear interpolant u of u is defined by requiring that u(xi) u(xi) for all

and that u be a linear function between the meshpoints so that u is continuous on
[a, hi. The function u has the following approximation properties (cf. [3]).

LEMMh 3.4.

minimal

Proof. If I (x_, x+) is minimal and [/I e e then Step 3 implies that
Ill lu xl dx . The L(I) error for linear interpolation at the points X_l, x, and x+
is bounded by

luxl dx II .
32 32

Summing over all I gives the first term in the expression. The second term contains
all the inteals not yet considered.

There are two interesting cases when the second term is known to be small.
LZMMh 3.5. (a) If u is a continuous, piecewise linear function such that u is

discontinuous only at the points in S, then the second term in (3.2) is zero.
(b) If u is in BV(R) then the second term in (3.2) can be bounded by

Here we assume, without loss of generality, that

u (x) lim u (t) dt for all x.
hO d x-h

Proo (a) Since u is linear on each half of the minimal intervals I with
u u on the intervals.

(b) It is an exercise to show that Ilu-1,,1111(,. Since u is in BV(R),
we may add these individual bounds to obtain the lemma.

A few other stability propeies will be used in the sequel.
LEMMA 3.6. IlUl[nv(,,b3N IlUllnV(,b3, and
Proo It is clear that linear interpolation has these propeies.

4. Stability properties. The numerical method presented here has several stability
propeaies that mimic those for conservation laws. In brief, solutions of the numerical
method satisfy a maximum principle, are total variation diminishing, and are stable
in time. Although the numerical scheme is not conservative, one can bound the mass
error for most problems.

Boundary effects will be analyzed in the following way. Outside of [a, b] the mesh
will be extended so that all the mesh intervals to the left of a are of the same width
as the mesh inteal immediately to the right of a, denoted by h,. A similar extension
will be made to the right of b. We assume that the function U is constant to the right
and to the left of [a, b]. The mapping from U7 to U+ is now divided into three paas:
the finite-difference scheme (2.1) transforms U7 on the extended mesh to U; the
values at the points a and b are reset to their original values; and the remeshing
procedure, applied to the mesh values in [a, hi, yields U+.
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For the method to work properly, some criterion is needed to decide when a shock
or other disturbance is getting too close to the boundary of the interval. Throughout,
we will assume that the minimal intervals adjacent to the boundary points a and b
have diameters greater than e. This is a simple and effective criterion. If this criterion
is in danger of being violated, the interval [a, b] is to be enlarged.

We will follow the development of [9] for many of our proofs.
The following simple lemma will have important applications.
LEMMA 4.1. Ifg is f+,f offt, and u is the linear interpolant of the points (x’],

then

(4.1)
g(u,"+,) g( g(UT) g(Uin__,)

i+1 h
Xi+l

<- [[ul/[f"(u)lu] dx.
xi-

Note that this is a multiple of the quantity that we use as a subdivision criterion.
Proof Since g has a bounded, piecewise continuous second derivative,

g(uin+l) g(UT) + h,%g’( UT)
u,"+- uT)

i+1
I (x,"+,- x)g(u(X))x dx.

x7,7+)

Now, g’(u) is bounded by 1, and for x(x’,xi"+l), g(u),x=g"(u)u2, since uxx=0.
Also, Ig"l is either If"l or 0, The previous equation and a similar one for g(Ui"-l) can
be rearranged and summed to yield

g( Ui"+l)- g(U’) g( uT)- g(
i+, h’

2ul + If’(u)l Ux dx.

Here we have expressed the difference of the left and right derivatives of u at x’ as
the integral of the second derivative "delta" measure.

The sharper bound

(4.2)

/(Uin+l)-/(U) /(U)-/(Uin__l)
i+1

+ I.(u,L,)-f-(uT) f-(uT)-f-(.
hin+l hi

I(xT_,,XT+l) [I[ + If"()l x] ax

may be derived by noting that f=f++f-, and if the first or second derivative of
f+(u(x)) is nonzero at x, then the first and second derivatives off-(u(x)) are zero there.

THEOREM 4.1. For all n > 0, supi U7 _-< supi U,..
Proof By (2.1),

-/(U-I)UT+I UT At
h’

_[._.V UiL f-
h

Since f+ is increasing, f- is decreasing, [[ftl[Lp<= 1, and At/hT<= 1, the preceding
equation yields

U+1< U-At[f+(U’) -f+( Ui"_, v U’ v Ui"+,)+f-(U"_,vU’vUi"+,)-f-( U’)]h’ hin+l
<- Ui +f’( Uin--1 V g V Ui+I)-f(U’)

Uin._l V U V UT+ 1.
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Therefore, the finite-difference scheme satisfies a maximum principle. Resetting the
values of U’ at a and b does not violate a maximum principle. Lemma 3.6 states that
the subsequent transformation to U"+ satisfies a maximum principle.

THEOREM 4.2. For all n > 0, U" []lv(li) <-- Ulltiv(li).
Proof If we let 6j7=f+(UT)-(U,%), then

U7+l- UTl= U Ui_ -At 6-I

Because ff and ff are monotone, f’ =ff-if, lif’iip and At hp 1, we can take
absolute values, and sum:

21vr*’- s#l 2 or- g5,- h[f’(Ur) -f’( US1)] + } +

E IS7- s,,l.

Thus the mapping Un- U"+ is total variation diminishing. Resetting the values at
the endpoints does not increase the total variation. Since the remeshing process is
variation diminishing, by Lemma 3.6, the theorem is proved.

THEOREM 4.3. un+l- u"llvro,a<--(11Ull.v.+(b-a)l 8) At+2 Ate.
Proof First, since the mesh is graded,

(h7 +u+’- Ull’(,b)At Z IU+- UI 2

N--2 (Ur)-(U)I +]

]

3t
2

3At
2

When the boundary values are restored, we commit an error at the left endpoint
of at most Atl U’- Ug[. Under the assumption that the width of the minimal interval
adjacent to a is bigger than e, Step 3 of the mesh construction allows us to bound the
error by Ate.

Finally, we may apply Lemmas 3.4 and 3.5 to yield

un+l u"+’ I1,’(,)<= (b- a) Atl8.
Because a consistent but nonconservative finite-difference operator is used for the
time-stepping, there will, in general, be some mass balance error. The following theorem
bounds the mass error with an estimate that involves the number of minimal intervals
of width greater than e. It may be shown that, for functions whose first derivative is
of bounded variation on an interval I, the mesh selection algorithm generates on the
order of ce-/iiu’iiv(, meshpoints in I (see, for example, de Boor [3]). Consequently,
the number of large minimal intervals may be seen as an estimate of the size of the
second derivative of the function. Similarly, it may also be shown that, if the initial
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data for (C) is piecewise smooth and of bounded variation, there are fewer than Ce -I/2

meshpoints in the smooth regions. We have observed in all computational tests that
as the integration in time progresses this bound on the number of large minimal
intervals continues to hold. We have therefore applied this hypothesis in a number of
theorems. When applied to the following mass error bound, it implies a mass balance
error of O(e /2), the expected convergence rate of the method, and a rate which matches
the observed rates in 7 (see especially Example 5).

THEOREM 4.4. Assume [a, b] LJj Sj (5 (_Jj Rj where m disjoint regions Rj are
made up of minimal intervals of width less that e, and are surrounded by m regions Sj
that are covered by minimal intervals whose width is greater than e. Assume that there
are no more than k minimal intervals in S.i. Then

(4.3)

Proof Using the notation of Theorem 4.2, we have

[ u"+’(x) U"(x) dx
At j

8fT,+,’ h’] + h,+,
hi+l/ 2

.l(f/h+l ..}_
lf;+l h)=..[f+(u(a))+f-(u(a))-(f+(u(b))+f-(u(b)))]-,. \ h’ h

We will show that the first sum minus 1/2(ff(u(a))-ff(u(b))) can be bounded as in
the statement of the theorem.

Pick a particular Sj with left.and right endpoints Xl and Xr and consider the sum

(4.4) E h’ ’+"

Since every minimal interval contained in S is more than e wide, Step 3 of Algorithm
M and Lemma 3.5 show that (4.4) is equal to

E , h",+,+M= 2 -h-fh +M,X;’=XI hi+! x+l

where MI is less than e(r-1+ 1).
Any interval R consists of minimal intervals of width less than e. Perforce, all

the intervals must have the same width. Thus, if xt and x, are the left and right
boundaries of

;,= h’] hi+i hi.
X;-=XI+I

Matching these results gives

Here, M] =< 2ke, since t3 Sj is covered by k minimal intervals. The remark following
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Lemma 4.1 implies that the same bound holds when the terms incorporating f- are
also included. The first sum on the right of (4.5) is equal to f+(u(b))-f+(u(a)).

For the interval Sj, assume 16f+l/h"+l- 6f[/h’l Kj, for some positive Kj. Then,
without loss of generality, we may assume that 3+1/hT+l K/2. Lemma 4.1 and Step
3 of the mesh construction imply that l+/h-6/hTlN if x7 S. Also, hT e/2
for x7 e S. Therefore,

e eK

Thus, the last sum in (4,5) is bounded by

K(2em)/= g 8 (2em[l(S I[())

Since ]](U")]v(m + ](S)ll) the theorem is proved. S
Unfounately, there is no a priori bound on the number of meshpoints in a mesh

generated by Algorithm M for a general function in BV(R); because we have a priori
bounds only on the variation of u, e -1 meshpoints may be needed to approximate it.
The numbers k and m can be calculated during the course of the algorithm in a
negligible amount of computer time, however, and (4.3) may be used as an a posteriori
bound.

Theorem 4.4 does not consider the mass error generated by the adjustment of the
function values at the points a and b. Theorem 4.3 shows that this error is O(t) if
the minimal intervals next to a and b have width greater than e.

Estimate (4.3) does not include the mass error caused by the remeshing process.
Such an error occurs when admissible intervals in the mesh at time t" are no longer
needed, and do not appear in the mesh at time "+. Lemma 3.4 is sharp for any given
time step; the mass error for a time step of size t can be comparable to t. Using
this bound over the interval [0, T] gives an estimate of an O(1) mass error, a totally
unacceptable result.

Computational experience with piecewise smooth solutions of the differential
equation has shown that over the interval [0, T] there is a constant C such that fewer
than C2 intervals of width 2-(b-a) are removed from the mesh in [0, T]. That is,
a minimal inteal is not subsumed into a larger minimal interval for a period of time
propoional to its width. If this propey holds, an argument similar to that of Lemma
3.4 shows that the mass error due to mesh changes on [0, T] is bounded by
C t log (t-) for some C. Combining our previous hypotheses, we have the following
theorem.

THEOREM 4.5. For an interval [0, T], assume that there are constants C, C2, and

C3 such that for any e > 0:
(a) there are no more than C1 e-/2 minimal intervaiS of width bigger than e for any

t" in [0, T];
(b) there are never more than C2 disjoint regions covered by minimal intervals of

width less than e; and
(c) at most C32k admissible intervals ofwidth (b- a)2- are removedfrom the mesh

in [0, T].
en there exists a constant C, depending on C1, C, C, and ]]ulv(m, such that

the mass error of the numerical approximation (2.1) can be bounded by Ce /.
The conditions (a), (b), and (c) can easily be checked a posteriori; they have been

observed to hold for all the experiments in 7.
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5. Convergence for linear problems. In this section we prove that solutions of the
linear problem

/’/t -- O/’/x O, X R, > O,
(5.1)

u(x, 0) Uo(X), x R

are approximated well by variants of our adaptive mesh algorithm. If the initial data
is in BV(R), a posteriori bounds will be given on the error, and if the initial data is
slightly smoother, with duo/dx BV(R), a priori bounds are available. Formal justifica-
tion of the mesh selection criteria used in Algorithm M is also given.

Consider first when Uo BV(R). Our algorithm is as follows:
1. Pick e >0, and let u= q.Uo, where q(x) is e -1/2 when Ixl-_< e/2/2 and 0

otherwise.
2. Using u as the initial data, follow the algorithm in 2 to find u. This will be

our approximation to u.
It is easily shown that
uoll
The following theorem applies to such problems. See the discussion following

Theorem 4.3 regarding the suitability of the hypotheses of the following theorem.
THEOREM 5.1. If, at each timestep, there are never more than Ce-/ minimal

intervals of width greater than e; and if the total L([a, b]) error due to mesh changes is

O(e/2), then

(5.2) []U(t)--U(t)llD([,b]) <= C2(t-F 1)E1/2(IIUo[[nv(R)’+" 1).

Furthermore, the computational complexity of the scheme is O( e-3/).
Theorem 5.1 gives a posteriori estimates of the error and computational complexity

of the scheme. Our computational experience suggests that the conditions of the
theorem are always satisfied. We suspect that the structure of solutions of the conserva-
tion laws ensures this. The computational bound is better than for standard monotone
methods; for these mehods the error is O(At 1/2) but the complexity is O(At-2).

The proof of this theorem relies on a number of lemmas.
LEMMA 5.1. If tl BV(R) and v is the linear interpolant of u on some mesh, {xi},

then v, v(R)----< Ux V(l).

Proof. Since

u)c(t) dt for x e (Xi_l, Xi)Dx(X)
Xi--Xi--I

the result follows immediately.
LEMMA 5.2. If U is generated by Algorithm M and (2.1), then

Proof. Since (5.1) is linear, vT=(uT-u,_,)/h, satisfies the same difference
equation as UT. Hence w /’ll
v"/rllv. The result then follows by induction. E1

Our analysis views upwind finite-difference schemes for conservation laws in a
way that is very close to that used by Courant, Isaacson, and Rees in [5]. In particular,
if U’ and U7+ are interpreted as piecewise linear functions, then the equation (2.1)
defining U7+ is equivalent to the following algorithm.

To obtain U+1, shift U7 to the right by a At (if a is positive) and interpolate
the shifted function at the points x’. The calculation is illustrated in Fig. 1.
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n

U

x x x x x
i-2 i-1 i+l i+l

FIG. 1. The error caused by timestepping. The dashed line represents tr( U").

Note that error occurs only in the interpolation process; there is no error in the values
of the U7+l themselves if the values of the U7 are exact.

Our interpretation is somewhat different from the piecewise constant upwind-
difference scheme, in that our scheme averages the first spatial derivative of the solution
at the advanced time level to get the new approximation, while the piecewise constant
method averages the solution itself. Whereas the local error of the piecewise constant
method depends on the variation of the solution, it will be shown that the local error
in our scheme depends on the variation of the solution’s first derivative. (Piecewise
linear approximations for conservation laws were previously used by van Leer [23].
Leveque 18] exploits the idea of difference schemes as projections of an exact solution
onto a finite-dimensional vector space.)

Proof of Theorem 5.1. We first define tr(v)(x)=v(x-aAt). If e,=
llu(n At)-- u"llco, then

e. <= Ilu(n At)-o-( Un-l)liLl([a,b])’aL 11(7"(un-1) unitLl([a,b])
II(u((n- l) At))-o’( u"-l)li,(to,3 + I1( u"-’)- u" IlLl(ta, bl)
e._ +

where 5, is the local error IIo’(un-1) Un[ld(a,bl). We define 5U7 (UT-U,"_l)/h’.
Now, from Fig. 1,

g/1- (gn)lllo,3>- 2. ath h’ ]15Ui 6Ui-ll
xi

(5.3) =<2a At2 E ItU- tU,n--ll
hn<2At

+a At 2 hTl6UT-
h 2A

By using Lemmas 5.1 and 5.2, one can bound the first term by

c Atoll U7,11 -< C’/=lluoll)At.
Because of Step 3 of Algorithm M, and our assumption about the number of intervals
of width greater than e, the second term can be bounded by

a Ate Ce -1/2= CE 1/2 At.

Thus u"+’ ( un)llLl([a,b]) C at’/=(llollv,,) / ).
Summing this expression over n <= t/At gives one term of (5.2). We have assumed

that

Y u"/’- u"+llld(ta,3-< cell2.
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As stated previously, IlUo-u;ll /211uoll(.). Lemmas 3.4 and 3.5 show that

e(b-a)u < /- lluollUo 32 2

The error bound is proved.
The complexity of the scheme is O(t-1N) where N is the maximum number of

meshpoints in any mesh {xT}, since the amount of work is linear in the number of
meshpoints. By hypothesis, there are fewer than Ce-/ minimal intervals of width
greater than e. Fuhermore, since 3i [Uxxl dx > if I < e, there must be fewer than
311u2ll3e-1/=lluollv( minimal intervals of width less than e. Because every
second meshpoint is the center of a minimal interval, the theorem is proved.

We now consider the case when u is smoother. Let L’=(R)=
{um L(R) BV(R)Iu BV(R)}. Although functions in L’2(R) have first derivatives
of bounded variation, they need not be C l; in fact, their first derivatives may be
discontinuous on a countable, dense set.

We define here a modification of Algorithm M for functions in Ll’2().
ALGORITHM M’.
1. The points a and b are meshpoints. The center of every admissible interval (to

be defined below) is a meshpoint.
2. The interval [a, b] is an admissible interval.
3. If I is an admissible interval, III 4 At, 3I {x[dist (x, I)< I[}, and

III f3 luxxl dx >

then the left and right halves of I are admissible intervals. As before, u is to
be interpreted as a measure.

This new mesh algorithm makes the smallest admissible intervals the same size
as the "average" interval, which occurs where u is bounded. Since u L’(R), the
very small spatial and temporal mesh increments of the previous method are not
needed. The following adaptive algorithm is therefore a true "smooth solution"
algorithm.

Our new algorithm is as follows"
o(a) Given Uo(X), find x using Algorithm M’ and choose U using piecewise linear

interpolation of Uo.
(b) For each timestep: Given meshpoints {x} and function values { U} defined

at those meshpoints, calculate U+ using (2.1). (Equation (2.1) reduces to the upwind
differencing scheme in this case.) Interpreting U as a continuous, piecewise linear
function, use algorithm M’ to find a new mesh {x+} for U+ and define U+ on
that mesh by linear interpolation of U+.

The following result holds.
THZOZM 5.2. Let Uo L’2(R) and u(x, t) be the solution of (5.1). If n At T, and

U" is the solution of the adaptive mesh algorithm above, then

Ilu(T)-U 3(T+

Proof As in Theorem 5.1.

at2 E I uT- uT-,l+ At Z hTl uT- UT-,I.
h?<2At h?2At

The first term is bounded by 2a At211ull.v() because of Lemmas 5.1 and 5.2. By using
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Step 3 of Algorithm M’, the second term can be bounded by

nat Y h7
h.>--2At h.>=2At

I/2
< ( At(b a) ’/ At UIIa(/,(b-a

Thus un+l--0"(u")ll,(t,,) 3c mt=llu’ollv().
Finally, let S be the set of all minimal intervals in the mesh at time "+1 that are

not minimal at time t". Then, because of Lemma 3.4 and Step 3 of Algorithm M’, the
expression for the error in the trapezoid rule yields

xI

< AtOll u;,llv(,) At=
32(b a) is

Thus, , <-3 Atllullnv<a>. After calculating the error caused by the approximation of
Uo, the theorem follows by induction. 13

The same analysis can be used formally for nonlinear problems: estimate the
difference, now nonzero, between the values U+ and s,(u")(xT), (sa, advances
the solution of (C) by time At) and then separately estimate the interpolation error as
in Fig. 1. The error in U+ is bounded formally by

(5.4) At If( g"(x, t"))xxl dx + O(A/2).

The L error on (x_, x+) is therefore bounded by (h + h7+)/2 times (5.4), bounded
in turn by C At times the integral in (3.1).

Thus, if u+lllv,) CII UZllv,)for each minimal interval I, the error caused
by the nonlinearity is of the same order as the error caused by the dissipation in the
difference scheme. Thus, our mesh selection criterion achieves a balance between errors
caused by nonlinearity and dissipation.

6. Implementation details. Our scheme was implemented using the programming
language Pascal. The resulting programs were run on a VAX 11/780 with a floating
point accelerator under the VMS 2.5 operating system and Pascal 1.2 compiler, and
under the Berkeley Unix 4.1 operating system with its Pascal compiler. In this section,
we describe the algorithms and data structures used in our implementation. We show
that the integrals in (3.1) can be evaluated exactly, and hence that the stability results
ofthe previous section hold without a separate theory describing the effects of numerical
quadrature. We also estimate the computational complexity of the scheme.

The following steps advance the approximate solution from one timestep to the
next. First, the finite-difference formula advances Uh from t" to "+ on the mesh {x}.
Secondly, the integrals in (3.1) are calculated for the mesh {xT}. In our implementation,
the integrals are first calculated over the (open) inteal I instead of 3L and the integral
over 3I is constructed when it is needed. Finally, the mesh {x+} is constructed. To
do this, the union of the meshes {xT} and {x7+} is built up by adding the appropriate
meshpoints to {x}. The values of the integrals (3.1) are derived for the new meshpoints
as they are introduced. A second pass is made to remove points in {x} that are not
needed in {xT+l}.
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Because the mesh is defined recursively by subdividing admissible intervals into
two subintervals at each step, the mesh is naturally organized as a (threaded) binary
tree (see Knuth [15]). Each admissible interval (or, equivalently, the meshpoint at its
center) is a node in the tree; the interval [a, b] is the root of the tree. If an admissible
interval is subdivided into two admissible subintervals, then these subintervals are the
left and right children of the interval. A node without children is a leaf, and corresponds
to a minimal interval. Nodes that are not leaves are interior nodes. The parent of an
interval is the admissible interval from which it was derived.

We first describe the information stored in a node corresponding to a meshpoint
x7 at the center of an interval I (Xl, Xr). This information consists mainly of numeric
variables and pointer variables, each of which either points to the beginning of a block
of computer store allocated to a node, or is nil. A pointer has the value nil when it
points to "nothing", i.e. it does not point to the memory location of a node. For
example, the pointer "parent" points to the information for the parent node of xT.
The numeric variables contain such information as the value UT, the value of the
integral (3.1) on the interval I, etc. Figure 2 contains the description of a node.

The function f is an auxiliary function intoduced to calculate the integral (3.1).
For all R, we define f,(c)= If’()l. It follows that

XT+
(6.1)

x?
ul / If"( u’)l(u2) dx U,+,hT- U, (f(U,%,) -f(UT)),

since Ux is 0 for all x (xT, XT+l). For each minimal interval, we use (6.1) to calculate
right.integral and left.integral; for each interior node, left.integral and right.integral
are the values of this.integral for the left and right children of the node. For any node,
we calculate this.integral by adding the difference of the left and right derivatives of
u at the meshpoint x7 to the sum of left.integral and right.integral.

Node:
x

isaleaf {true if this node is a leaf}
left.child, right.child {pointers to (x’ + x)/2 and (x’ + Xr)/2 if this node is not a leaf}
parent {pointer to parent of this node}
isaleftehild {true if this node is a left child}
depth {distance, in nodes, from this node to the root node}
left.neighbor, right.neighbor {pointers to xi

_
and xin+

left.boundary, right.boundary {pointers to xt and
left.sibling, right.sibling {pointers to the nearest nodes at the same depth as xT, to the left and right,

respectively, of x}
this.integral, left.integral, right.integral {the integral (3.1) over (x, Xr), (Xl, x’), and (x’, Xr), respec-

tively}

hi+l hi

left.ux, right.ux {if this node is a leaf, U U

_
)/ h and Ui"+ U)/ h+

fluxplus, fluxminus, fluxbar {f+(U’), f-(U’), f( U’)}
deitatoverh, hinverse, eritiealvalue {At/(x’ xt), 1/(x’ x), e (xr x)}

FIG. 2. Definition of a node corresponding to x in the interval (xt, x).

In each node we have included pointers and numerical variables whose values
can be calculated from already available information. For example, in each leaf node
x7 we save h7 and At/h’. These values are needed often in the scheme, and change
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only when the mesh is changed. Our experience with the scheme has shown that, on
average, less than one node is added to or subtracted from the mesh at each time step.
Thus, using the saved values reduces execution time significantly. Because a new mesh
is constructed at each timestep, we also require that the structural information necessary
to derive a new mesh be readily available at each node. Again, extra storage reduces
execution time. Since, for many problems, many fewer nodes are necessary to obtain
a satisfactory error with this method than with standard first order methods, the extra
storage requirements are not deemed critical.

The special nodes a and b are the left and right boundaries of [a, b], the root
node. In addition, supplemental meshpoints are added to the left and to the right of
the interval [a, b] so that the pointers left.sibling and right.sibling will not be nil for
any node in the tree headed by [a, b]. The complete data structure is shown in Fig. 3.
The lines in Fig. 3 illustrate only the children and sibling relationships of the nodes.

a u (x) b
0

FIG. 3. Initial datum Uo(X with generated mesh (tic marks). The data structure, indicating sibling
relationships (dashed lines) and parent-child relationships (solid lines), is drawn for this mesh. Each node in

the tree corresponds to the meshpoint below it.

Figure 4 presents the procedure criteria that calculates the nodal values needed
to build the new mesh. On each invocation, criteria calculates the nodal parameters
for all nodes in the subtree headed by p. Indirection is indicated by a caret (^). The
with statement means that all unqualified nodal variables belong implicitly to the node
to which the pointer "p" points. For example, "right.neighbor^.left.ux refers to p’s
right.neighbor’s left.ux. Each timestep, the nodal values for a and b are calculated
first, and then criteria(root) is called. The following lemma outlines a proof that the
procedure is correct.

LEMMA 6.1. Criteria(p) calculates the values ofright.integral, left.integral, uxx, and
this.integral for all nodes in the subtree headed by p. Furthermore, criteria(p) calculates

left.ux and right.ux for all leaves in the subtree headed by p.
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procedure criteria(p: nodepointer)"
begin

with p^ do begin
fluxbar := fbar(u)"
if isaleaf then begin

left.ux := (u left.neighbor^. u) * hinverse;
left.integral := abs(left.ux,(left.neighbor^.fluxbar-fluxbar))
right.ux := (right.neighbor^.u-u) * hinverse"
right.integral := abs(right.ux, (right.neighbor^.fluxbar fluxbar))"
uxx := abs(|eft.ux right.ux)
this.integral := left.integral + right.integral + uxx

end else begin {p does not point to a leaf}
criteria(left.child)"
criteria(right.child)"
right.integral := right.child^.this.integral ".

left.integral := left.child^.this.integral
uxx := abs(right.neighbor^.left.ux- left.neighbor^.right.ux)
this.integral := left.integral + right.integral + uxx

end {if isaleaf then else ...}
end {with p^ do...}

end" {criteria}

FIG. 4. Procedure for calculating the integral (3.1).

Proof First one shows that f(UT) is calculated for the left and right boundary
points of p before criteria(p) is called. This easily proved by noting that it is true
initially for the root node, and that if it is true for p’s parent, then it is true for p. The
proof of the lemma then follows by induction on the height of the subtree headed by
p. [3

To construct the mesh {xn+l } from {xi }, points are first added to {x’} at the leaves
to obtain {xT}{xT+}. In the second pass, certain subtrees of interior nodes are
removed from the union to leave only {x7+1}. Since the set of points that are tested
on each pass are for the most part disjoint (only nodes with newly added children are
tested twice), this two pass algorithm does not add too much to the arithmetic
complexity of the scheme. A one pass algorithm could surely be devised.

It remains to find a suitable way to calculate (3.1) from the information stored in
the nodes. An argument similar to that in lemma 3.1 shows that, in any mesh constructed
using Algorithm M, a node’s parent will always have adjacent left and right siblings.
If {xT} {x7+1} is formed from {xT} by adding all meshpoints of one depth before
proceeding to the next, then this property also holds for all meshes intermediate to

n+l{xT} and {x’} U {xi }. Thus, we add or remove nodes in a breadth first ordering, and
calculate (3.1) for an interval that is a left child, for example, by adding
p^.parent^.this.integral p^.parent^.left.sibling^.right.integral, and p^.left.boundary^.uxx.
Fig. 5 illustrates the calculation. A similar expression holds for nodes that are right
children.

The above calculation is the reason that each admissible interval has a meshpoint
at its center, and that the integral (3.1) is calculated over the left and right halves of
each admissible interval.

Note that our algorithm removes unnecessary subtrees at once, instead of removing
one meshpoint at a time. In practice, however, we have not observed the removal of
any but the trivial subtrees consisting of only one node.

We use a simple and efficient memory management scheme, which may, however,
fragment memory usage in a virtual memory system. When a node is no longer needed
and is removed from the tree, it is appended to a free list of nodes. When a node is
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.__PI"leFt’bundary
.--- .... --------.

p’.porent left s

3I
FIG. 5. The calculation of the integral (3.1).

needed for addition to the tree, it is taken from the free list if the list is not empty. If
the free list is empty, a call to the operating system allocates enough storage for the
new node.

The complexity of the scheme can be measured by counting the number of floating
point operations that are done, on average, for each meshpoint x7 at each time t".
More operations are performed for leaf nodes than for interior nodes. We assume that
an evaluation off+, f-, or f requires two additions (or subtractions), two multiplica-
tions, and two comparisons. This would be the case, for example, if these functions
were defined as piecewise quadratic functions over four intervals. Our assumptions yield

Complexity per meshpoint 17 additions + 9.5 multiplications + 7 comparisons.

This may be compared with a complexity estimate of 8 additions, 4 multiplications,
and 4 comparisons for a careful implementation of a uniform mesh algorithm with
the same spatial difference operator and At h. If an arbitrary variable spaced mesh
is chosen every timestep, the standard algorithm will require 10 additions, 5 multiplica-
tions, 2 divisions, and 4 comparisons per meshpoint. This does not include, whatever
calculations are necessary to choose the mesh. Thus, the special placement of the
meshpoints in our algorithm no more than doubles the work per meshpoint.

Nonarithmetic operations must be included in .any complexity estimate of these
algorithms. It is more difficult to quantify this nonarithmetic complexity, what may be
considered "overhead." We give empirical results in the next section that show that
the nonarithmetic overhead is about the same for the fixed and adaptive mesh
algorithms.

A more serious difficulty in comparing the efficiency of these algorithms is that
the fixed mesh algorithm converges at different rates for differing fluxes f These
convergence rates depend on whether the flux is uniformly convex, or linear, or possibly
whether it has a point of inflection; the rates also depend on the smoothness of the
solution. While some of these results are well known, we present them all in the next
section. We will find that for the problems for which the fixed mesh algorithm performs
relatively well, the new algorithm compares poorly. The problems for which the fixed
mesh algorithm performs poorly, however, are solved with surprising success by our
algorithm.
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7. Computational results. The Pascal implementation of our algorithm was run
on two Digital Equipment Corporation VAX 11/780 computers with floating point
accelerators under the VMS 2.5 and Berkeley Unix 4.1 BSD operating systems. Both
programs use double precision (64 bit) floating point numbers. We only needed to
change real constants from double precision to single precision notation to move the
program from VMS to Unix; no other changes were needed.

We chose computational examples to highlight the strengths of our method as
well as point out directions for improvements. The biggest omission was of problems
with smooth solutions. (We did not implement the algorithm for smooth solutions
given in 5). It may be shown that for monotone uniform grid methods, the work
expended to achieve an accuracy of 3 at time T is proportional to 3 -2. When given a
problem with a smooth solution, the present implementation of our method will achieve
the same accuracy, but will take timesteps that are much smaller than the average
mesh spacing. In fact, we show in the discussion of the second numerical experiment
that the work for our method will be proportional to 3 -3 This shortcoming will be
taken up in a broader context below. We have compared the methods for problems
with shocks, contact discontinuities, and expansion waves following shocks. These
comparisons lead Us to believe that our mehod is superior to fixed mesh monotone
methods when the discontinuities in the solutions of (C) are smeared across more than
a fixed number of mesh intervals by the monotone schemes.

In these examples, our method is compared with a finite difference scheme with
a fixed, uniform, spatial grid. This scheme’s difference operator is

v7+’- v7 F( vT) f+( v,"_,) f-( v,"+,) f-( v’;)
+" + =0.

At h h

Always At h to avoid any divisions or multiplications in this part of the algorithm.
A careful implementation ofthe comparison scheme uses only two function evaluations,
three subtractions, and one addition per meshpoint per timestep.

For all examples but the sixth, f-- 0, so that each difference operator reduces to
the standard upwind-difference scheme. The initial values U were chosen to interpolate
the initial data Uo at the points ih. The solution of the fixed mesh method was interpreted
as a piecewise linear function taking on the values U’ at the points (ih, n At). The
difference in L[a, b] between the approximate solution and the piecewise linear
interpolant of the true solution u(x, t) was recorded as the error of the both schemes.

Table presents the fluxes f and the initial and final values of u for the com-
putational experiments. Table 2 contains the errors and execution times, respectively,
corresponding to various values of At. For the purposes of comparing the methods,
the parameter 3, a measure of the average mesh spacing where the solution is smooth,
is introduced. The parameter 3 has the value x/At for the adaptive mesh method,
and At for the fixed mesh method. Table 3 tabulates an expression of the error as
error Cz and error C 3 for each test, where - denotes the CPU time for the run.

The CPU times in Table 2 are the "user" times reported by the Unix operating
system. The "system" time, which measures the time spent by the operating system to
service the program, was not included. The system time varied greatly, depending on
the system usage, so it was not deemed a reliable measure of the methods’ resource
needs. The user times corresponded well with the CPU times measured on the VMS
operating system on a lightly loaded machine. The error decay rates in Table 3 are
based on a log-log least squares fitting of the data. They were calculated from the data
in Table 2, but with the full accuracy of the data, which is truncated in Table 2.
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TABLE
Flux, initial and final values of u(x, t).

f(u) Uo(X) u(x, 4)

(u+u2)/4

(u+u2)/4

u/2

u/2

1-(l-u) if u=>1/2
u if u _-< 1/2

1--(l--u) if u--1/2
-2u3+3u-u/2 if u<_-1/2

ifxN1 {1 ifx<=3,
0 ifx>l 0 if x>3.

i
ifl--<x--<2

-x if2_-<x-3

otherwise

u(x+2, 4)

ifx<_-I

0 if x>

1/x/ ifxl
0 otherwise

(10 ifx-<-I
otherwise

x-2)/3 if2-<_x<2+x/g,
otherwise.

20-41x-31 if[x-3l 1/2,
otherwise.

if x-<_3,
0 ifx> 3.

I/x/ ifx N 9-4x/,
0 otherwise.

ifx<_--l,
1-(x-1)/8 if _<-- x_<- 9-4,,/,
0 otherwise.

TABLE 2
Computational results.

Test 1. Test 2.

2
4
8
16
32
64
128

Adaptive mesh

1.252-1
3.237-2
8.093-5
2.023-3
5.058-4
1.264-4
3.161-5

0.12
0.88
5.25

26.33
132.65
625.68

2988.28

Fixed mesh Adaptive mesh

0.13
1.18
8.88

58.85
383.15

2560.93
17678.77

Fixed mesh

2.258-1 0.02
1.252-1 0.07
6.456-2 0.27
3.237-2 1.07
1.618-2 4.37
8.093-3 17.65
4.046-3 71.25

2.468-1
1.174-1
5.449-2
3.169-2
1.771-2
9.547-3
5.129-3

3.419-1
2.079-1
1.119-1
6.276-2
2.852-2
1.308-2
6.782-3

0.02
0.07
0.28
1.07
4.48
17.22
69.95

Test 3. Test 4.

2
4
8
16
32
64
128

2
4
8
16
32
64
128

Adaptive mesh

8.727-1
4.010-1
1.374-1
5.532-2
2.747-2
1.348-2
6.091-3

0.12
1.22

10.62
73.72

493.65
3168.97

20316.55

Fixed mesh

Test 5.

1.116-0
8.627-1
6.139-1
3.954-1
2.302-1
1.229-1
6.243-2

0.02
0.05
0.25
1.00
4.02
16.07
64.45

Adaptive mesh

3.611-1
1.904-1
1.022-1
5.429-2
2.942-2
1.532-2
7.898-3

0.10
0.88
6.45

42.57
299.60

2235.78
17124.27

Test 6.

Fixed mesh

4.560-1
3.425-1
2.530-1
1.846-1
1.335-1
9.592-2
6.860-2

0.02
0.07
0.23
1.00
3.98
16.00
64.40

Adaptive mesh

1.091-1
4.051-2
1.863-2
6.475-3
2.404-3
1.222-3
6.676-4

0.12
0.92
5.27

29.25
154.78
858.48

4927.42

Fixed mesh

2.803-1
1.088-1
8.775-2
3.872-2
3.043-2
1.614-2
8.462-3

0.02
0.10
0.33
1.20
4.68
19.08
71.83

Adaptive mesh

2.018-1
9.276-2
4.633-2
2.174-2
1.069-2
5.440-3
2.716-3

0.12
0.92
6.45

41.32
253.40
1594.37

10267.05

Fixed mesh

4.234-1
1.969-1
1.477-1
7.532-2
5.345-2
2.983-2
1.644-2

0.02
0.07
0.30
1.18
4.68
18.87
75.70
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TABLE 3
Error decay rates.

Test Adaptive mesh Fixed mesh

e .027 T-’826 e .508( 1.995

e .1217.-.326 e .419t "915

e .377 7.-.418 e 1.86461.2oo
e .1797.-’319 e .684t "915

e .037 7.-.481, e .21361.207,
e .0917.-.38 e .397 61.034

e .0337.-.493 e .4726 .975

e .0577.-’487 e --.7706 "961

e .506 7.--.499* e .246 6.995
e .1837.-.233 e .643 t "457

e .0507.-’440. e .488 t "864.

e .0877.-.376 e --.652t "749

* See text.

In general, the computational tests show that solutions of the adaptive numerical
method converge to the solution of the conservation law at least to within order At /2.
This implies, in particular, that shock speeds are correct to within that order. The
computations also show that the mass balance errors are within the bounds predicted
by Theorems 4.4 and 4.5; it is also true, but not reported in the tables, that the
hypotheses of these theorems were satisfied by the experiments. Furthermore, it is
interesting to note that for Riemann problems with uniformly convex fluxes or linear
fluxes, the shock speed and mass balance errors were of order At.

Test presents our method in the best light. This is a Riemann problem with a
quadratic nonlinearity, similar to that of Burgers’ equation, that keeps the shock width
to within a few of the small (O(At)) mesh intervals. The shock speed is also correct
to within one small mesh interval. At the same time, the numerical solution is nearly
constant outside the shock region, so only O(-log (At)) meshpoints are necessary to
accurately represent the solution. The result is an error of O(At) with a computational
complexity of O(-log (At)/At).

Test 2 is perhaps the worst comparison between the fixed mesh and adaptive mesh
methods. The adaptive method gives no more than O(e /2) accuracy in the regions
where the solution is smooth. To do so, it uses O(e -/2) meshpoints. Coupled with a
time step of O(e), we achieve a complexity bound of O(e-3/2), a decidedly inferior
result when compared with the fixed mesh. This predicament strongly suggests a method
where the local timesteps are proportional to the local meshsize. Such methods have
been used by Oliger [21], Bolstad [2], Berger [1], and others (see references in [14]).
With such a scheme, the error will still be O(e/2), but the complexity of the scheme
will be reduced to O(e). This is the same relationship between error size and complexity
that applies for the fixed mesh method, which does suprisingly well for this problem.

When applied to the third test problem, the fixed mesh method behaves in a
different way when the meshsize is small than when it is large. This is because of the
large second derivatives in the solution. The fixed mesh method exhibits an error of
order At, with a decidedly less than one, when the rneshsize is large (greater than
1/32). When the meshsize is small, however, the mesh can adequately resolve the large
gradients and the error is of order At. Because we are mainly interested in exhibiting
"asymptotic" error rates, we have computed the error for the fixed mesh method for
At as small as l/1024, and our error decay rates in Table 3 are derived from the smaller
timesteps.

Test 4 was the problem that motivated the design of the adaptive method. It
corresponds to a contact discontinuity in gas dynamics. The fixed mesh method has
an accuracy of order At /2, because it smears the discontinuity over O(At-1/2) intervals.
The time complexity of the fixed mesh method is O(At-2), so the error of the method
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is of order 7"-1/4. The adaptive method puts O(At-/2) intervals of size At near the
discontinuity, and the same number of size At/2 away from it, while achieving an
accuracy of At /2. Because there are O(At-) timesteps, the complexity of the adaptive
scheme is of order At-3/2; the error is of order z-/3. In other words, if one wants an
error of order e, it takes order e -4 work for the fixed method, and order e -3 work for
the adaptive method.

The solutions of Tests 5 and 6 exhibit behavior similar to the solutions of the
Buckley-Leverett equation, which is used as a model in petroleum reservoir simulation
(see Douglas and Wheeler [9]). In general, solutions of these equations consist of a
shock followed by a smooth expansion wave. Test 5 examines how well the shock
itself is tracked, while Test 6 investigates the complete system, shock and expansion
wave.

In Test 5, the fluid behind the discontinuity is moving at the same speed as the
discontinuity, whereas the fluid in front of the shock is moving at a slower speed. One
may suspect, therefore, that behind the shock the adaptive scheme will act as for a
linear flux, as in Test 4, and before the shock it will act as for a uniformly convex flux,
as in Test 1. This is indeed the case; here the lack of conservation is most severely
felt. The following description of the solution seems to hold as the stepsize is reduced.
Numerical diffusion erodes the wave front behind the shock, as for the linear problem,
while the nonlinearity at the front of the shock holds the discontinuity sharp at u 0.
The height of the wave immediately behind the front is reduced by a factor of O(At/2),
and since the shock speed depends on the height of the wave, the shock speed is
reduced by O(Atl/2), thereby incurring a mass balance error of O(At/2). There are
O(At--/2) minimal intervals of width less than e behind the shock, and O(At-1/)
minimal intervals of width greater than e behind the small intervals, as for the linear
problem. These errors for the mass balance and shock speed are exactly of the order
predicted by Theorem 4.5 if the assumptions of Theorem 4.5, which seem completely
plausible and which have been observed for the values of At used here, are accepted.
The conservation of the fixed mesh scheme ensures that its shock speed is correct, and
that since the shock speed is greater than the downwind fluid velocity, the shock
transition is sharp, and the error is O(At).

The error rates reported in Table 3 for Test 5 were calculated using the values of
6 down to 1/256 for the adaptive method and values of 6 down to 1/1024 for the
fixed mesh problem. The calculated error is not a very smooth function of , because
the final shock position, 9- 4x/, never lies on a meshpoint; the error depends not only
on how well the shock speed is approximated, but also on how closely one can
approximate the final shock position on the mesh. The description of the structure of
the adaptive solution was developed using the solutions with the four smallest mesh-
sizes, for which it seemed that the asymptotic regime was reached.

Test 6 incorporates an expansion wave that follows the shock. The fixed mesh
solution exhibits an accuracy of order At3/4, instead of At for the problem with only
the shock. The tests indicate that the relationship between complexity and error is the
same for the adaptive method and the fixed mesh method. Changing the adaptive
method to use locally varying timesteps as well as mesh spacing would greatly decrease
the CPU time for this problem.

The results of Tests through 6 suggest that our new method is effective when
discontinuities in the solutions are smeared across many mesh intervals by the fixed
mesh method.

An alternate approach to developing an adaptive mesh method is presented in
[9]. There, the motivation is to use an implicit scheme with a large timestep and to
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refine the mesh near roughness in the solution. Unfortunately, this strategy does not
asymptotically decrease the error; heuristically, this is because one cannot drag a shock
or discontinuity across many meshpoints in one timestep without smearing the discon-
tinuity. This effect is illustrated in Table 4 for two problems, each of which has the
solution u(x)=1/2(1-sgn(x-t/2)). The fluxes are f(u)=1/2u and f( U) 1/4( U -F U2),
respectively. By running each problem with h, the mesh spacing, equal to At and At2,
our choice is not to adapt the mesh, but to use a uniformly fine mesh everywhere, so
that our results do not depend on any particular mesh refinement strategy. The error
for the first problem is of order At 1/2 and the error for the second problem is of order
At, regardless of the choice of mesh. Thus, it appears that spatial mesh refinement,
without a corresponding refinement of the temporal increments, is not effective in
solving these problems.

TABLE 4
Errors using implicit upwind-difference scheme.

Test 1. Test 2.
At h At h At h zt h At

0.500000 7.8550e-01 9.5360e-01 5.1312e-01 6.7648 e-01
0.250000 4.8564e-01 6.8264e-01 2.3904e-01 4.1525 e-01
0.125000 3.1453 e-01 4.8564e-01 1.0772 e-01 2.3833 e-01
0.062500 2.1129 e-01 3.4444e-01 4.9128 e-02 1.2741 e-01
0.031250 1.4529e-01 2.4393e-01 2.3225e-02 6.4799e-02
0.015625 1.0124e-01 1.7261 e-01 1.1274e-02 3.2443 e-02

In the previous section, we showed that the arithmetic complexity of the adaptive
mesh algorithm was no more than twice that of the fixed mesh algorithm per meshpoint
per timestep. The algorithms differ greatly in their implementations, however. The
fixed mesh algorithm is almost trivial to implement, while the adaptive method uses
sophisticated data structures and pointer manipulation. We therefore set out to quantify
the amount of nonarithmetic overhead in each method.

We proposed to measure the proportion of the CPU time spent in arithmetic
computations as compared with nonarithmetic computations for both implementations.
We had available two VAX’s running identical software, one of which did not have a
floating point accelerator (FPA). A simple program consisting mainly of an equal
number of nontrivial memory to register floating point additions and multiplications
was run and timed on both machines. A speedup of a factor of five was observed on
the machine with the FPA. We then compared the CPU times for the same implementa-
tions of the two algorithms on both machines. The ratios of the CPU times are given
in Table 5. Assuming that only floating point operations were speeded up by the FPA

TABLE 5
Nonarithmetic overhead.

Adaptive mesh Fixed mesh
CPU time Overhead CPU time Overhead

Test ratio FPA No FPA ratio FPA No FPA

4 0.728 91% 66% 0.678 88% 60%
6 0.699 89% 63% 0.715 90% 64%
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(a faulty assumption, for some integer arithmetic is also faster), we calculated the
fraction of time spent in nonarithmetic operations by both programs on both machines.
For Test 6, with nontrivialj, f-, and f, around 90% of the time spent on nonarithmetic
operations on the machine with the FPA for both problems. The figure is similar to
Test 4, with trivial f+, f-, and

To discover the effects of the Pascal compiler, we implemented the fixed mesh
algorithm in FORTRAN and ran this program on the machine with he FPA. For some
reason, the FORTRAN compiler generated much superior code for index calculations.
Function calls were slightly cheaper because the FORTRAN program, not being block
structured, did not maintain a "display" of the currently accessible data areas. The
computation time of the FORTRAN program was 80% of its Pascal counterpart. This
still leaves us with an overhead figure of about 87%. These tests indicate that the
overhead is similar, and large, for each algorithm.
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