
Things about computing I needed to learn over the years . . .

Bradley J. Lucier

The series of HAKMEMs (Hackers Memos) were produced at MIT beginning in the 1960s and

concerned themselves with how to compute things efficiently, but mainly at the word level, using

bit operations and other low-level techniques.

I’m starting this document to bring together high-level techniques, or just statements that

summarize things I’ve had to learn over the years, sometimes the hard way. Knuth’s “Seminumerical

Algorithms”, volume II of his “Art of Computer Programming”, has been in print for 35 years.

It would be nice to bring together some techniques that build on that material. Similarly, fast

and accurate computational methods for ordinary differential equations and partial differential

equations have been developed over the past 25 years: multigrid, multipole methods, symplectic

integrators. All these techniques offer vast improvements over what was used previously.

I hope other people will continue this text or correct the things that are wrong. I’ll find an free

license to publish it under.

Computing with integers: How it’s done. Computers work on what are called integer

“words” of various sizes—these are the objects they can add, subtract, multiply, etc., in a single

instruction. Large integers are represented as coefficients of powers of the word. If a word is 2k for

example, then a large positive integer a would be written as

a =

na∑
j=1

aj(2
k)j ,

where 0 ≤ aj < 2k and na is the number of words necessary to represent a. Negative numbers are

represented in a number of ways, the most common being sign-magnitude

a = (−1)ea
na∑
j=1

aj(2
k)j

where ea = 0 if a is positive and ea = 1 if a is negative, or twos-complement

a =

na∑
j=1

aj(2
k)j − 2k×na topbit(ana),

where topbit(d) = 1 if d ≥ 2k−1 and zero otherwise.

Adding and subtracting such numbers is easy—it takes O(max(na, nb)) operations to add two

numbers a and b. The naive multiplication one learns in school takes O(na × nb) operations to

compute a× b, which is quite time-consuming when a and b are large. (You begin to notice it when

a and b have a few thousand bits.) If a is small (fits in a word, say) and b is large, then there’s

really no faster way to do it—it takes O(bn) operations to calculate a × b. Multiplying by 2k is

easy, it reduces to a shift and takes O(max(na, k)) operations.

1

Note that if a = b, then the number of word operations to calculate a2 can be can be cut

roughly in half.

If a and b are large then some useful techniques come into play. The simplest is Karatsuba’s

decomposition: if we have a, b ≈ 22m and write

a = a1 × 2m + a0, b = b1 × 2m + b0 with 0 ≤ ai, bi < 2m

then

a× b = (a1 × b1)× 22m + [a1 × b1 − (a1 − a0)× (b1 − b0) + a0 × b0]× 2m + a0 × b0.

Note that we’ve reduced multiplying two 2m-bit numbers to the problem of three multiplications of

two m-bit numbers (which is still expensive) and four additions/subtractions (which is not). This

reduces the complexity of the multiplication when na ≈ nb to O(n
log 3/ log 2
a) < O(n2

a) operations

(see Knuth, Seminumerical Algorithms). Again, note that some simplification is possible if a = b,

since all the suboperations are squares. Once the subparts get small enough, you use the naive

algorithm again.

If you get really tricky, then you can use Fast Fourier Transforms to multiply a and b; it then

takes O(na log na) operations to calculate a× b when na ≈ nb. Again, see Knuth. Again, one can

cut the time somewhat when computing a2.

If either the quotient or the divisor of the division are relatively small (< a few thousands

bits, say), then the grade-school long division algorithm is still the best. Fast algorithms based on

Newton’s method are available for integer division and integer square root, where, given a > 0 and

b > 0, we want to find 0 ≤ q, 0 ≤ r < b, and d ≥ 0 such that

a = qb+ r and d2 ≤ a < (d+ 1)2.

See Knuth for the division algorithm, and the Gambit-C source code for the square root algorithm.

In each case, one gets that the number of word operations needed to divide a 2m-bit number by

an m-bit number, or to take the square root of a 2m-bit number, is bounded by a constant times the

number of word operations needed to multiply two m-bit numbers. Since Gambit-C implements

versions of all these tricky algorithms, we can find out approximately what that constant is for

Gambit-C running on a 2GHz PowerPC 970:

> (define a (expt 3 1000000)) ; calculate $3^{1,000,000}$

> (define b (expt 3 1000001))

> (define c (time (* a a))) ; time for a square

(time (* a a))

223 ms real time

220 ms cpu time (220 user, 0 system)

2 collections accounting for 9 ms real time (10 user, 0 system)

17871352 bytes allocated

no minor faults

no major faults

> (define d (time (* a b))) ; time for a multiply

(time (* a b))

320 ms real time

2

310 ms cpu time (310 user, 0 system)

1 collection accounting for 13 ms real time (10 user, 0 system)

21364376 bytes allocated

no minor faults

no major faults

> (define e (time (quotient c a))) ; time for a divide

(time (quotient c a))

1376 ms real time

1390 ms cpu time (1390 user, 0 system)

17 collections accounting for 94 ms real time (90 user, 0 system)

107019976 bytes allocated

no minor faults

no major faults

> (define f (time (##exact-int.sqrt c))) ; time for a sqrt

(time (##exact-int.sqrt c))

2616 ms real time

2610 ms cpu time (2610 user, 0 system)

40 collections accounting for 213 ms real time (280 user, 0 system)

225066744 bytes allocated

no minor faults

no major faults

There are two other important operations on nonnegative integers—the greatest common divisor

(GCD) of a and b and ab. GCD can be implemented as

(define (gcd x y)

(if (= y 0)

x

(gcd y (remainder x y))))

GCD can require many large remainder computations, so it can be very slow. GCD is slowest when

x and y are consecutive Fibonacci numbers, for which

remainder(Fn, Fn−1) = Fn−2.

So GCD(Fn, Fn−1) takes about n remainders, which takes as long as n divisions. For example, we

can define Fn by

(define (fib n) ; works for $n\geq 2$

(let loop ((i 2)

(fib_i-1 1)

(fib_i 1))

(if (= i n)

fib_i

(loop (+ i 1) fib_i (+ fib_i-1 fib_i)))))

With this code we get the following timings:

> (define a (fib 100000))

> (define b (fib 100001))

> (time (gcd a b))

(time (gcd a b))

13013 ms real time

12900 ms cpu time (12900 user, 0 system)

2894 collections accounting for 3620 ms real time (3450 user, 0 system)

1313462832 bytes allocated

no minor faults

no major faults

1

3

By contrast, 2100,000 and 3100,000 are quite a bit bigger than F100,000 and F100,001, yet we have

> (define a (expt 3 100000))

> (define b (expt 2 100000))

> (time (gcd a b))

(time (gcd a b))

11000 ms real time

11060 ms cpu time (11060 user, 0 system)

2370 collections accounting for 2996 ms real time (3150 user, 0 system)

1096108560 bytes allocated

no minor faults

no major faults

1

You can see that GCD can take a long time, longer than quotient or sqrt. For our usual test integers

we have:

> (define a (expt 2 1000000))

> (define b (expt 3 1000000))

> (time (gcd a b))

(time (gcd a b))

1288572 ms real time

1225680 ms cpu time (1225680 user, 0 system)

94755 collections accounting for 287789 ms real time (273560 user, 0 system)

107397872656 bytes allocated

no minor faults

no major faults

1

(Sometime later . . .) Someone on the comp.lang.scheme newsgroup pointed out that one can use

GCD(α × 2j , β × 2k) = 2min(j,k) GCD(α, β)

to speed up the computation of the GCD for integers with large powers of 2 in their factorization.

With this optimization, we have

> (define a (expt 2 1000000))

> (define b (expt 3 1000000))

> (time (gcd a b))

(time (gcd a b))

0 ms real time

0 ms cpu time (0 user, 0 system)

no collections

80 bytes allocated

no minor faults

no major faults

1

This optimization speeds up the conversion of floating-point numbers to exact rationals by about

a factor of two in Gambit-C.

After one abandons the naive algorithm for exponentiation based on the recursion

ab = a× (ab−1),

there are two natural ways to implement exponentiation

(define (expt1 a b)

(define (square x) (* x x))

4

(cond ((= b 0) 1)

((even? b)

(square (expt1 a (quotient b 2))))

(else

(* a (square (expt1 a (quotient b 2)))))))

(define (expt2 a b)

(define (square x) (* x x))

(cond ((= b 0) 1)

((even? b)

(expt2 (square a) (quotient b 2)))

(else

(* a (expt2 (square a) (quotient b 2))))))

based on the recursions

ab =


1, b = 0

(ab/2)2, b even, and

(a[b/2])2 × a, b odd,

and ab =


1, b = 0

(a2)b/2, b even, and

(a2)[b/2] × a, b odd,

respectively, where [x] is the largest integer no greater than x. The first formula saves all the

squarings for last, when the numbers are biggest; the second one does squaring on the smallest

numbers. Remember, squaring integers is faster than multiplying two nonidentical numbers. One

can see a difference in the timings:
> (define a (time (expt1 3 1000000)))

(time (expt1 3 1000000))

208 ms real time

200 ms cpu time (200 user, 0 system)

5 collections accounting for 32 ms real time (40 user, 0 system)

17846656 bytes allocated

no minor faults

no major faults

> (define b (time (expt2 3 1000000)))

(time (expt2 3 1000000))

1281 ms real time

1320 ms cpu time (1320 user, 0 system)

13 collections accounting for 69 ms real time (80 user, 0 system)

92484064 bytes allocated

no minor faults

no major faults

> (= a b)

#t

> (define a (expt 3 1000000))

> (define b (time (* a a)))

(time (* a a))

244 ms real time

200 ms cpu time (200 user, 0 system)

2 collections accounting for 17 ms real time (20 user, 0 system)

17871352 bytes allocated

no minor faults

no major faults

Multiplication and division by numbers divisible by a power of 2 can be computed more quickly,

because multiplication by a power of 2 can be implemented with shifts, which take time proportional

to the size of the result. For example if a = α2j and b = β2k for odd α and β, we have

a× b = (α× β)2k+j .

5

If α and β are much shorter than a and b, then the latter multiplication, using the usual tricks,

can be executed much more quickly that a× b.
Division is a bit more tricky. If we have b = β × 2k and a = α× 2k + r, 0 ≤ r < 2k and

α = q0β + r0, 0 ≤ r0 < β

then

a = 2kα+ r = 2kq0β + 2kr0 + r = q0 × b+ 2kr0 + r.

Now

2kr0 + r < 2k(r0 + 1) ≤ 2kβ = b,

so the remainder when dividing a by b is 2kr0 + r and the quotient of a by b is truly q0. Gambit-C

applies this optimization to when 22k ≥ b.
Without this optimization we have

> (define a (expt 10 10000000))

> (define b (expt 2 10000000))

> (define c (time (quotient a b)))

(time (quotient a b))

539 ms real time

480 ms cpu time (480 user, 0 system)

7 collections accounting for 90 ms real time (80 user, 0 system)

83784128 bytes allocated

no minor faults

no major faults

while with it we have

> (define a (expt 10 10000000))

> (define b (expt 2 10000000))

> (define c (time (quotient a b)))

(time (quotient a b))

28 ms real time

20 ms cpu time (20 user, 0 system)

1 collection accounting for 2 ms real time (10 user, 0 system)

6652648 bytes allocated

no minor faults

no major faults

To summarize: For any integers a and b, the number of operations required are O(max(na, nb))

for addition and subtraction; O(na × nb) for multiplication when at least one of a and b are small

(< 1000 bits, say) and O(na log na) when na ≈ nb are large; squaring has the same complexity

as multiplication, but a smaller constant; division and square roots take a constant multiple of

multiplication; exponentiation takes about as long as the final squaring; GCD is quite expensive.

Computing with rationals: How it’s done. Rationals are represented in the usual way,

p/q with GCD(p, q) = 1, and the usual arithmetic operations are also done in the usual way:

p

q
× r

s
=
pr/(GCD(pr, qs))

qs/(GCD(pr, qs))
and

p

q
± r

s
=

(ps± rq)/(GCD(ps± rq, qs))
qs/(GCD(ps± rq, qs)) .

6

No GCD is necessary to compute and normalize (p/q)2. GCDs on large integers are expensive, so

we rewrite the first formula as

p

q
× r

s
=

(p/(GCD(p, s))× (r/GCD(r, q))

(q/GCD(r, q)) × (s/(GCD(p, s))
,

since we know that GCD(p, q) = GCD(r, s) = 1.

A somewhat extreme example of the difference between the first and second formulas is given

below; with the first, we get

> (define a (/ (expt 2 10000) (expt 3 10000)))

> (define b (/ (expt 3 10000) (expt 5 10000)))

> (define c (time (* a b)))

(time (* a b))

431 ms real time

410 ms cpu time (410 user, 0 system)

278 collections accounting for 98 ms real time (100 user, 0 system)

48577608 bytes allocated

no minor faults

no major faults

while with the second we get

> (define a (/ (expt 2 10000) (expt 3 10000)))

> (define b (/ (expt 3 10000) (expt 5 10000)))

> (define c (time (* a b)))

(time (* a b))

115 ms real time

110 ms cpu time (110 user, 0 system)

115 collections accounting for 34 ms real time (10 user, 0 system)

19227216 bytes allocated

no minor faults

no major faults

Gambit-C uses the second formula.

Exponentiation of rationals should use the formula(p
q

)n
=
pn

qn

to avoid the unneeded GCDs to normalize the result. Inversion of rationals and addition and

subtraction between rationals and integers need no GCDs:

x± p

q
=
xq ± p
q

.

So we come up with another way to compute the nth Fibonacci number:

(define (fib-ratio n)

(if (= n 1)

1

(+ 1 (/ (fib-ratio (- n 1))))))

(define (fib n)

(numerator (fib-ratio n)))

which gives

7

> (time (fib 1000))

(time (fib 1000))

4 ms real time

10 ms cpu time (10 user, 0 system)

1 collection accounting for 2 ms real time (0 user, 0 system)

363544 bytes allocated

no minor faults

no major faults

703303677114228158218352548771835497701812698363587327426049050871545371181969

335797422494945626117334877504492417659910881863632654502236471060120533741212

73867339111198139373125598767690091902245245323403501

Computing sums and products: Binary splitting. A simple program to calculate n! is

given by

(define (factorial n)

(let loop ((i 1)

(result 1))

(if (> i n)

result

(loop (+ i 1)

(* i result)))))

We can assume that n fits in a single word (or else we could not store the result), so each of

the n multiplications (* i result) multiplies a single word by an increasingly large number; the

execution time is at least quadratic in n:

> (define a (time (factorial 1000)))

(time (factorial 1000))

4 ms real time

10 ms cpu time (10 user, 0 system)

no collections

1027032 bytes allocated

no minor faults

no major faults

> (define a (time (factorial 10000)))

(time (factorial 10000))

543 ms real time

550 ms cpu time (550 user, 0 system)

74 collections accounting for 152 ms real time (170 user, 0 system)

70965288 bytes allocated

no minor faults

no major faults

> (define a (time (factorial 100000)))

(time (factorial 100000))

102263 ms real time

102040 ms cpu time (102040 user, 0 system)

9252 collections accounting for 25011 ms real time (25060 user, 0 system)

9039052936 bytes allocated

no minor faults

no major faults

If for some 1 < m < n we write n! as

n! =

(
m∏
i=1

i

)
×
(

n∏
i=m+1

i

)
,

8

compute both subproducts separately and multiply them together, then we will be able to use the

machinery for multiplying large numbers together much faster than quadratically in the size of the

numbers. We can then apply this idea recursively to each of the subproducts, etc. If the number

of the terms in the product is small enough, then we should just multiply them together without

worrying about the recursion. If at each point we break the product into roughly equal numbers

of terms, we have

(define (partial-factorial m n)

;; computes the product (m+1) * ... * (n-1) * n

(if (< (- n m) 10)

(do ((i (+ m 1) (+ i 1))

(result 1 (* result i)))

((> i n) result))

(* (partial-factorial m (quotient (+ m n) 2))

(partial-factorial (quotient (+ m n) 2) n))))

This results in significantly reduced computational time for large n:

> (define a (time (partial-factorial 0 1000)))

(time (partial-factorial 0 1000))

6 ms real time

10 ms cpu time (10 user, 0 system)

1 collection accounting for 3 ms real time (0 user, 0 system)

201112 bytes allocated

no minor faults

no major faults

> (define a (time (partial-factorial 0 10000)))

(time (partial-factorial 0 10000))

55 ms real time

60 ms cpu time (60 user, 0 system)

5 collections accounting for 8 ms real time (20 user, 0 system)

5018240 bytes allocated

no minor faults

no major faults

> (define a (time (partial-factorial 0 100000)))

(time (partial-factorial 0 100000))

1209 ms real time

1200 ms cpu time (1200 user, 0 system)

91 collections accounting for 174 ms real time (210 user, 0 system)

111991776 bytes allocated

no minor faults

no major faults

Similarly, one can split sums and remove common factors to work with smaller integers and

rationals and hence speed computations. For example, we have

e ≈
n−1∑
k=0

1

k!
=

m−1∑
k=0

1

k!
+

n−1∑
k=m

1

k!
=

m−1∑
k=0

1

k!
+

1

m!

n−1∑
k=m

1

(m+ 1)(m+ 2) · · · k ,

and the error is a bit bigger than 1/n!.

One can split each of the sums on the right hand side in a similar way, until we get to sums

that are so small that it is more efficient to just compute them directly. So we write the following

code:

(define (binary-splitting-partial-sum m n

partial-term

9

common-factor-ratio)

;; sums (partial) terms from m to n-1

;; (partial-term n m) is the term at n with the common factors of terms >= m removed

;; (common-factor-ratio m n) is the ratio of the common factor of terms >= n divided by

;; the common factors of terms >= m

(if (< (- n m) 10)

(do ((i m (+ i 1))

(result 0 (+ result (partial-term m i))))

((= i n) result))

(+ (binary-splitting-partial-sum m

(quotient (+ m n) 2)

partial-term

common-factor-ratio)

(* (common-factor-ratio m (quotient (+ m n) 2))

(binary-splitting-partial-sum (quotient (+ m n) 2)

n

partial-term

common-factor-ratio)))))

(define (binary-splitting-sum n partial-term common-factor)

(binary-splitting-partial-sum 0 n partial-term common-factor))

(define (binary-splitting-compute-e n)

(binary-splitting-sum n

(lambda (m n) (/ (partial-factorial m n)))

(lambda (m n) (/ (partial-factorial m n)))))

With these definitions we obtain

> (define a (time (binary-splitting-compute-e 1000)))

(time (binary-splitting-compute-e 1000))

423 ms real time

420 ms cpu time (420 user, 0 system)

141 collections accounting for 164 ms real time (190 user, 0 system)

61860008 bytes allocated

no minor faults

no major faults

> (exact->inexact a)

2.718281828459045

> (integer-length (partial-factorial 0 1000))

8530

> (define e (time (binary-splitting-compute-e 10000)))

(time (binary-splitting-compute-e 10000))

52582 ms real time

52670 ms cpu time (52670 user, 0 system)

13326 collections accounting for 17987 ms real time (17980 user, 0 system)

5857017928 bytes allocated

no minor faults

no major faults

> (integer-length (partial-factorial 0 10000))

118459

So we compute about 8500 bits of e in .42 seconds and over 100,000 bits of e in 52.670 seconds.

This can be compared with the naive algorithm for the first sum for the approximation to e.

(define (naive-compute-e n)

(do ((k 0 (+ k 1))

(sum 0 (+ sum (/ (partial-factorial 0 k)))))

((= k n) sum)))

> (define b (time (naive-compute-e 1000)))

(time (naive-compute-e 1000))

10

58813 ms real time

58900 ms cpu time (58900 user, 0 system)

17730 collections accounting for 22228 ms real time (21970 user, 0 system)

7693043896 bytes allocated

no minor faults

no major faults

> (= a b)

#t

One may think that if we computed a running product for each term then things might improve

significantly, but we find

(define (still-naive-compute-e n)

(do ((k 0 (+ k 1))

(term 1 (/ term (+ k 1)))

(sum 0 (+ sum term)))

((= k n) sum)))

> (define c (time (still-naive-compute-e 1000)))

(time (less-naive-compute-e 1000))

57566 ms real time

57480 ms cpu time (57480 user, 0 system)

17658 collections accounting for 22222 ms real time (22460 user, 0 system)

7606985264 bytes allocated

no minor faults

no major faults

> (= a c)

#t

Similar techniques can be used to compute π, even from the formula

π

4
= 4arctan

1

5
− arctan

1

239
.

For we have

arctan x =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
=

m−1∑
n=0

(−1)n
x2n+1

2n+ 1
+ x2m+1

∞∑
n=m

(−1)n
x2n−2m

2n + 1

so using our binary-splitting technique we have

(define (binary-splitting-compute-atan n x)

;; here we just consider the common factor to be x^(2n+1)

(* x ;; common factor for all terms

(binary-splitting-sum n

(lambda (m n) (/ (expt x (* 2 (- n m)))

(* (if (odd? n) -1 1) (+ (* 2 n) 1))))

(lambda (m n) (expt x (* 2 (- n m)))))))

This is an alternating series with terms in decreasing absolute value, so the error has the same sign

as and has absolute values less than the first omitted term. If we use n terms in the approximation

to arctan 1/5, then, because

> (/ (log (/ 239)) (log (/ 5)))

3.4027181226574648

we need about one-third as many terms in the approximation to arctan 1/239. So we write

(define (binary-splitting-compute-pi n)

(* 4 (- (* 4 (binary-splitting-compute-atan n 1/5))

11

(binary-splitting-compute-atan (quotient (* n 10) 34) 1/239))))

With these definitions we get

> (exact->inexact (binary-splitting-compute-pi 100))

3.141592653589793

> (define pi-1000 (time (binary-splitting-compute-pi 1000)))

(time (binary-splitting-compute-pi 1000))

913 ms real time

930 ms cpu time (930 user, 0 system)

304 collections accounting for 375 ms real time (410 user, 0 system)

128265800 bytes allocated

no minor faults

no major faults

> (define pi-1000 (time (binary-splitting-compute-pi 10000)))

(time (binary-splitting-compute-pi 10000))

63466 ms real time

63540 ms cpu time (63540 user, 0 system)

16514 collections accounting for 22288 ms real time (22640 user, 0 system)

7170210536 bytes allocated

no minor faults

no major faults

> (integer-length (* (expt 5 20001) 20001))

46456

So here we computed over 46,000 bits of π in 63.5 seconds. To be fair to this method, we should

really compile the code. Very high-precision methods for computing π can be based in more

sophisticated series.

Computing in fixed-point arithmetic. If you want to compute π to a million digits, say,

then it may be useful to use an iterative method that computes with numbers of the form

x = nβ−k

where k is fixed and n is an integer. This is a fixed-point representation with k base-β fractional

digits. If x = mβ−k and y = nβ−k are two numbers represented in this way, then we can compute

k-digit approximations to the usual arithmetic operations using the formulas

x± y = mβ−k ± nβ−k = (m± n)β−k,

x× y = (m× n)β−2k ≈ [(m× n)/βk]β−k,

x/y = (m/n) ≈ [(m× βk)/n]β−k,
√
x =

√
mβ−k ≈

[√
m× βk

]
β−k,

where [z] is the integer part of z. We can write functions to implement these operations, where we

compute and keep only the integer multiple of β−k:

(define (fixed.+ x y)

(+ x y))

(define (fixed.- x y)

(- x y))

(define (fixed.* x y)

(quotient (* x y) beta^k))

(define (fixed.square x)

12

(fixed.* x x))

(define (fixed./ x y)

(quotient (* x beta^k) y))

(define (fixed.sqrt x)

(##exact-int.sqrt (* x beta^k)))

and functions to convert between regular numbers and fixed numbers:

(define (number->fixed x)

(round (* x beta^k)))

(define (fixed->number x)

(/ x beta^k))

Here we assume that beta^k is a global variable to be defined appropriately.

We can use these functions to compute a high-precision approximation to π using the Brent-

Salamin iteration for π, adapted from code in Gambit-C’s benchmark suite:

(define (pi-brent-salamin)

(let ((one (number->fixed 1)))

(let loop ((a one)

(b (fixed.sqrt (quotient one 2)))

(t (quotient one 4))

(x 1))

(if (= a b)

(fixed./ (fixed.square a) t)

(let ((new-a (quotient (fixed.+ a b) 2)))

(loop new-a

(fixed.sqrt (fixed.* a b))

(fixed.- t (* x (fixed.square (fixed.- new-a a))))

(* 2 x)))))))

With these definitions we get the following timings:

> (define beta^k (expt 10 60))

> (define c (pi-brent-salamin))

> c

3141592653589793238462643383279502884197169399375105820970795

> (define beta^k (expt 10 10000))

> (define c (time (pi-brent-salamin)))

(time (pi-brent-salamin))

1061 ms real time

1040 ms cpu time (1040 user, 0 system)

241 collections accounting for 234 ms real time (220 user, 0 system)

137051936 bytes allocated

no minor faults

no major faults

> (define beta^k (expt 10 1000000))

> (define c-10 (time (pi-brent-salamin)))

(time (pi-brent-salamin))

282664 ms real time

281090 ms cpu time (281090 user, 0 system)

1230 collections accounting for 14994 ms real time (15000 user, 0 system)

16580654288 bytes allocated

no minor faults

no major faults

Using β = 2 should give some speedup, but then you need to add the time to convert the binary

fixed-point answer to decimal digits:

> (define k (+ 1 (inexact->exact (round (* 1000000 (log 10) (/ (log 2)))))))

> k

13

3321929

> (define beta^k (expt 2 k))

> (define c-2 (time (pi-brent-salamin)))

(time (pi-brent-salamin))

232626 ms real time

228870 ms cpu time (228870 user, 0 system)

1278 collections accounting for 13713 ms real time (13590 user, 0 system)

14898725848 bytes allocated

no minor faults

no major faults

> (define c-2->10 (time (quotient (* c-2 (expt 10 1000000)) beta^k)))

(time (quotient (* c-2 (expt 10 1000000)) beta^k))

1476 ms real time

1480 ms cpu time (1480 user, 0 system)

7 collections accounting for 83 ms real time (90 user, 0 system)

80875976 bytes allocated

no minor faults

no major faults

> (define d (- c-10 c-2->10))

> d

-2035084

Using β = 2 didn’t help so much. Out of a million digits, the two answers differ in the last 7.

Computing with sequences: Streams.

The errors of iteration formulas in floating-point arithmetic. Floating-point arithmetic

is not real arithmetic, it’s an approximation to real arithmetic. With IEEE double-precision arith-

metic as implemented on all RISC machines (Sparc, PowerPC, MIPs, . . .), but not the default

arithmetic on the x86 architecture (Pentium X, X=1,2,3,4, Athlon, . . .)

x� y = (x · y)(1 + ε) and x⊕ y = (x+ y)(1 + ε),

where |ε| ≤ 2−53. We can examine some coarse effects of these errors in iterations.

A well-known example is to calculate In =
∫ 1

0
xnex−1 dx, for which 0 < In < 1 for all n. We

might use the iteration

In+1 =

∫ 1

0

xn+1ex−1 dx = xn+1ex−1
∣∣1
0
− (n+ 1)

∫ 1

0

xnex−1 dx = 1− (n+ 1)In,

combined with the fact that

I1 = xex−1
∣∣1
0
−
∫ 1

0

ex−1 dx = 1− (1− 1/e) = 1/e.

So we try it:

(do ((n 1 (+ n 1))

(I_n (exp -1) (- 1 (* (+ n 1) I_n))))

((> n 20))

(display (list "For n = " n ", I_n = " I_n #\newline)))

which gives the output

For n = 1, I_n = .36787944117144233

14

For n = 2, I_n = .26424111765711533

For n = 3, I_n = .207276647028654

For n = 4, I_n = .17089341188538398

For n = 5, I_n = .14553294057308008

For n = 6, I_n = .1268023565615195

For n = 7, I_n = .11238350406936348

For n = 8, I_n = .10093196744509214

For n = 9, I_n = .09161229299417073

For n = 10, I_n = .0838770700582927

For n = 11, I_n = .07735222935878028

For n = 12, I_n = .07177324769463667

For n = 13, I_n = .06694777996972334

For n = 14, I_n = .06273108042387321

For n = 15, I_n = .059033793641901866

For n = 16, I_n = .05545930172957014

For n = 17, I_n = .05719187059730757

For n = 18, I_n = -.029453670751536265

For n = 19, I_n = 1.559619744279189

For n = 20, I_n = -30.19239488558378

For this iteration, any error we may have made or accumulated in In is multiplied by n + 1 when

computing In+1. So the relative initial error in I1, which is bounded by

> (abs (exact->inexact (- (inexact->exact (exp -1)) (/ (binary-splitting-compute-e 100)))))

1.2428753672788363e-17

> (/ (log (/ 1.2428753672788363e-17 .36787944117144233)) (log 2))

-54.71640093873723

or well less than 2−53 has been multiplied by 20! or

> (* 1.2428753672788363e-17 (partial-factorial 0 20))

30.237939769659597

which is very close to the absolute value of the observed error in I20:

(do ((n 1 (+ n 1))

(E_n (/ (binary-splitting-compute-e 100)) (- 1 (* (+ n 1) E_n)))

(I_n (exp -1) (- 1 (* (+ n 1) I_n))))

((> n 20))

(display (list "n = " n ", E_n = " (exact->inexact E_n)

", I_n = " I_n

", |E_n - I_n| = "

(abs (- (exact->inexact E_n) I_n)) #\newline)))

n = 1, E_n = .36787944117144233, I_n = .36787944117144233, |E_n - I_n| = 0.

n = 2, E_n = .26424111765711533, I_n = .26424111765711533, |E_n - I_n| = 0.

n = 3, E_n = .20727664702865392, I_n = .207276647028654, |E_n - I_n| = 8.326672684688674e-17

n = 4, E_n = .1708934118853843, I_n = .17089341188538398, |E_n - I_n| = 3.0531133177191805e-16

n = 5, E_n = .14553294057307858, I_n = .14553294057308008, |E_n - I_n| = 1.4988010832439613e-15

n = 6, E_n = .12680235656152844, I_n = .1268023565615195, |E_n - I_n| = 8.93729534823251e-15

n = 7, E_n = .11238350406930084, I_n = .11238350406936348, |E_n - I_n| = 6.264433416447446e-14

n = 8, E_n = .10093196744559327, I_n = .10093196744509214, |E_n - I_n| = 5.0112691774018e-13

n = 9, E_n = .09161229298966059, I_n = .09161229299417073, |E_n - I_n| = 4.51014225966162e-12

n = 10, E_n = .08387707010339417, I_n = .0838770700582927, |E_n - I_n| = 4.5101464229979626e-11

n = 11, E_n = .0773522288626642, I_n = .07735222935878028, |E_n - I_n| = 4.961160787742003e-10

n = 12, E_n = .07177325364802956, I_n = .07177324769463667, |E_n - I_n| = 5.953392889779252e-9

n = 13, E_n = .0669477025756157, I_n = .06694777996972334, |E_n - I_n| = 7.739410763651922e-8

n = 14, E_n = .06273216394138015, I_n = .06273108042387321, |E_n - I_n| = 1.0835175069390246e-6

n = 15, E_n = .059017540879297774, I_n = .059033793641901866, |E_n - I_n| = 1.6252762604092308e-5

n = 16, E_n = .0557193459312356, I_n = .05545930172957014, |E_n - I_n| = 2.600442016654561e-4

n = 17, E_n = .05277111916899476, I_n = .05719187059730757, |E_n - I_n| = .004420751428312809

15

n = 18, E_n = .050119854958094255, I_n = -.029453670751536265, |E_n - I_n| = .07957352570963053

n = 19, E_n = .0477227557962091, I_n = 1.559619744279189, |E_n - I_n| = 1.51189698848298

n = 20, E_n = .045544884075818054, I_n = -30.19239488558378, |E_n - I_n| = 30.237939769659597

Here E_n is an approximation to the answer that uses a rational approximation with an error of

1/100! to the initial value 1/e of In. So E_n is not really exact, of course, but is is accurate to

20!/100! or about 464 bits when n = 20. with

So, indeed, the error in In is close to 20! times the error in our initial floating-point approxi-

mation of e−1 = I1.

Note that for large n we have that In ≈ 1/(n + 1), since xn is going to be close to 0 unless

x ≈ 1, where ex−1 ≈ 1. So

In =

∫ 1

0

xnex−1 dx ≈
∫ 1

0

xn dx =
1

n+ 1
.

To see how good our rough approximation is, we have I20 = .045544884075818054, while 1/21 =

.047619047619047616.

Given (an approximation to) In+1, we can find (an approximation to) In with

In =
1− In+1

n+ 1
or In−1 =

1− In
n

.

Note that this formula multiplies any error in In+1 by 1/(n + 1) to calculate In, i.e., it decreases

any previously accumulated error before adding new errors for the floating-point subtraction and

division. So we can rewrite the formula with I39 ≈ 1/40 = 0.025 to get

> (do ((n 39 (- n 1))

(I_n 0.025 (/ (- 1 I_n) n)))

((< n 1))

(display (list "n = " n ", I_n = " I_n #\newline)))

n = 39, I_n = .025

n = 38, I_n = .024999999999999998

n = 37, I_n = .025657894736842105

n = 36, I_n = .02633357041251778

n = 35, I_n = .027046289710763394

n = 34, I_n = .027798677436835333

n = 33, I_n = .028594156545975434

n = 32, I_n = .02943654071072802

n = 31, I_n = .03033010810278975

n = 30, I_n = .03127967393216807

n = 29, I_n = .0322906775355944

n = 28, I_n = .03336928698153123

n = 27, I_n = .03452252546494532

n = 26, I_n = .035758424982779806

n = 25, I_n = .03708621442373924

n = 24, I_n = .03851655142305043

n = 23, I_n = .0400618103573729

n = 22, I_n = .04173644302794031

n = 21, I_n = .043557434407820894

n = 20, I_n = .045544884075818054

n = 19, I_n = .0477227557962091

n = 18, I_n = .050119854958094255

n = 17, I_n = .05277111916899477

16

n = 16, I_n = .0557193459312356

n = 15, I_n = .059017540879297774

n = 14, I_n = .06273216394138015

n = 13, I_n = .0669477025756157

n = 12, I_n = .07177325364802957

n = 11, I_n = .0773522288626642

n = 10, I_n = .08387707010339417

n = 9, I_n = .09161229298966059

n = 8, I_n = .10093196744559327

n = 7, I_n = .11238350406930084

n = 6, I_n = .12680235656152844

n = 5, I_n = .1455329405730786

n = 4, I_n = .17089341188538426

n = 3, I_n = .20727664702865395

n = 2, I_n = .26424111765711533

n = 1, I_n = .36787944117144233

So you see that by the time you get to n = 20, any initial error in I39, together with any error

added by subsequent floating-point operations, has been damped so much that you get a correctly

rounded result for I20. Even if you use 0 as an initial guess for I39, the result of I20 is perfect with

this iteration:

> (do ((n 39 (- n 1))

(I_n 0. (/ (- 1 I_n) n)))

((< n 1))

(display (list "n = " n ", I_n = " I_n #\newline)))

n = 39, I_n = 0.

n = 38, I_n = .02564102564102564

n = 37, I_n = .02564102564102564

n = 36, I_n = .026334026334026334

n = 35, I_n = .027046277046277045

n = 34, I_n = .0277986777986778

n = 33, I_n = .028594156535333006

n = 32, I_n = .029436540711050514

n = 31, I_n = .03033010810277967

n = 30, I_n = .0312796739321684

n = 29, I_n = .032290677535594385

n = 28, I_n = .03336928698153123

n = 27, I_n = .03452252546494532

n = 26, I_n = .035758424982779806

n = 25, I_n = .03708621442373924

n = 24, I_n = .03851655142305043

n = 23, I_n = .0400618103573729

n = 22, I_n = .04173644302794031

n = 21, I_n = .043557434407820894

n = 20, I_n = .045544884075818054

n = 19, I_n = .0477227557962091

n = 18, I_n = .050119854958094255

n = 17, I_n = .05277111916899477

n = 16, I_n = .0557193459312356

n = 15, I_n = .059017540879297774

n = 14, I_n = .06273216394138015

n = 13, I_n = .0669477025756157

n = 12, I_n = .07177325364802957

n = 11, I_n = .0773522288626642

n = 10, I_n = .08387707010339417

n = 9, I_n = .09161229298966059

17

n = 8, I_n = .10093196744559327

n = 7, I_n = .11238350406930084

n = 6, I_n = .12680235656152844

n = 5, I_n = .1455329405730786

n = 4, I_n = .17089341188538426

n = 3, I_n = .20727664702865395

n = 2, I_n = .26424111765711533

n = 1, I_n = .36787944117144233

Things are more subtle when you have iterations

an+1 = an + bn or an+1 = an(1 + cn) + dn,

where |bn| and |dn| are significantly less than |an| and |cn| is significantly less than one. We examine

some examples of these cases here.

It often happens that if you do a lot of operations, the associated ε are roughly uniformly

distributed in the interval [−2−53, 2−53]. (This doesn’t happen all the time, though.) So if you

have an iteration

(1) an+1 = an + bn

and |bn| ≪ |an|, the error accumulates roughly as the sum of n uniform [−2−53, 253] random

variables, i.e., the standard deviation of the error is proportional to
√
n2−53.

On the other hand, if the iteration is

(2) an+1 = an(1 + cn) + dn,

where bn = an · cn + dn with |cn|≪ 1 and |dn|≪ |an|, the error will grow roughly linearly in n if

cn < 0 and quadratically in n if cn > 0. I don’t know how to prove these two statements, but here

are some examples.

For example, when calculating Fast Fourier Transforms, it is nice to find a fast way to calculate

sj = sin(2jπ/N) and cj = cos(2πj/N), j = 0, 1, 2, . . . ,N.

If we let ∆ = 2π/N then trigonometry gives us

(3)
sj+1 = sj cos(∆) + cj sin(∆)

cj+1 = cj cos(∆)− sj sin(∆)

Note that (3) is roughly of the form (2) when sj and cj are O(1), since cos(∆) ≈ 1 and sin(∆) ≈ ∆.

This is the formula that Numerical Recipes uses to compute its trigonometry tables.

Now

sin2 ∆ =
1− cos(2∆)

2
or cos ∆ = 1− 2 sin2(∆/2),

so we can rewrite (3) as

(4)
sj+1 = sj(1− 2 sin2(∆/2)) + cj sin(∆) = sj + (cj sin(∆)− sj × 2 sin2(∆/2))

cj+1 = cj(1− 2 sin2(∆/2)) − sj sin(∆) = cj − (sj sin(∆) + cj × 2 sin2(∆/2)).

18

Formula (4) requires two more additions to calculate sj+1 and cj+1 from sj and cj , but it is in the

form of (1) (at least when sj and cj are O(1)), and we shall see that it has less error than (3).

Finally, there is the so-called Goertzel Algorithm, which uses a two-term recursion for sj and

cj separately:

(5)
sj+1 = 2cos(∆)sj − sj−1

cj+1 = 2cos(∆)cj − cj−1,

which again can be verified by trigonometry. Here we use only two multiplications and two additions

to compute sj+1 and cj+1, but we are multiplying any previous error in sj and cj by 2, which

magnifies it. If we assume that the error in sj is j2ε for some ε, then we have the error in sj+1 is

about

2 cos(∆)j2ε− (j − 1)2ε = ((2 cos(∆)− 1)j2 + 2j − 1)ε ≈ (j2 + 2j + 1)ε−∆2j2ε− 2ε ≈ (j + 1)2ε

as long as ∆2j2 ≈ 1, which it will be if we compute for 0 ≤ j ≤ N and ∆ = 2π/N . So the error in

sj+1 will be about (j + 1)2ε. (Do not try this induction with your undergraduate students!)

So we try to compute the errors of each formula (3), (4), and (5) as accurately as possible.

First, we calculate an approximation to 2π/N and call that approximation ∆. Then we compute

2π−N∆ to high precision, convert that to a floating-point number and compute its sin and cosine,

since

sin(N∆) = sin(N∆− 2π) and cos(N∆) = cos(N∆ − 2π).

We use this as our “exact” value for sin(N∆) and cos(N∆). (Note that this does not change

the expected value for cos(N∆) since the slope of cos at N∆ is basically 0, but it does affect

the correct value of sin(N∆).) We then compute the iterations defined by (3), (4), and (5) and

compute the errors for at N∆ for N = 1, 10, 100, . . . 10,000,000. Because the operations in the loop

are very simple (small-integer and floating-point arithmetic) we compile the program and add some

declarations for speed:

(declare (standard-bindings)(extended-bindings)(block)(not safe))

(define-macro (FIX . body)

‘(let ()

(declare (fixnum))

,@body))

(define-macro (FLOAT . body)

‘(let ()

(declare (flonum))

,@body))

(define (fixed.+ x y)

(+ x y))

(define (fixed.- x y)

(- x y))

(define (fixed.* x y)

(quotient (* x y) beta^k))

(define (fixed.square x)

(fixed.* x x))

(define (fixed./ x y)

(quotient (* x beta^k) y))

19

(define (fixed.sqrt x)

(##exact-int.sqrt (* x beta^k)))

(define (number->fixed x)

(round (* x beta^k)))

(define (fixed->number x)

(/ x beta^k))

(define (pi-brent-salamin)

(let ((one (number->fixed 1)))

(let loop ((a one)

(b (fixed.sqrt (quotient one 2)))

(t (quotient one 4))

(x 1))

(if (= a b)

(fixed./ (fixed.square a) t)

(let ((new-a (quotient (fixed.+ a b) 2)))

(loop new-a

(fixed.sqrt (fixed.* a b))

(fixed.- t (* x (fixed.square (fixed.- new-a a))))

(* 2 x)))))))

(define beta^k (expt 10 1000))

(define two*pi (* 2 (fixed->number (pi-brent-salamin))))

(define (square x) (* x x))

(define (multiples-of-2^53 x)

(inexact->exact (round (* x (expt 2 53)))))

(do ((N 1 (* N 10)))

((> N 10000000))

(let* ((Delta (exact->inexact (/ two*pi N)))

(N*Delta-2*pi (exact->inexact (- (* N (inexact->exact Delta))

two*pi)))

(correct-sin (sin N*Delta-2*pi))

(correct-cos (cos N*Delta-2*pi))

(sin-Delta (sin Delta)) ; for formula (3)

(cos-Delta (cos Delta))

(two*sin^2-Delta/2 ; for formula (4)

(* 2 (square (sin (/ Delta 2)))))

(two*cos-Delta (* 2 cos-Delta))) ; for formula (5)

(let loop ((j 0)

(s_j-3 0.0) ; from formula (3)

(c_j-3 1.0)

(s_j-4 0.0) ; from formula (4)

(c_j-4 1.0)

(s_j-5 0.0) ; from formula (5)

(s_j-1-5 (sin (- Delta)))

(c_j-5 1.0)

(c_j-1-5 (cos (- Delta))))

(if (FIX (< j N))

(FLOAT

(loop (FIX (+ j 1))

(+ (* s_j-3 cos-Delta)

(* c_j-3 sin-Delta))

(- (* c_j-3 cos-Delta)

(* s_j-3 sin-Delta))

(+ s_j-4

(- (* c_j-4 sin-Delta)

(* s_j-4 two*sin^2-Delta/2)))

(- c_j-4

(+ (* s_j-4 sin-Delta)

20

(* c_j-4 two*sin^2-Delta/2)))

(- (* two*cos-Delta s_j-5)

s_j-1-5)

s_j-5

(- (* two*cos-Delta c_j-5)

c_j-1-5)

c_j-5))

(begin

(display (list

"N = " N

;", sin = " correct-sin

;", cos = " correct-cos

", E-s-3 = " (multiples-of-2^53 (- correct-sin s_j-3))

", E-c-3 = " (multiples-of-2^53 (- correct-cos c_j-3))

", E-s-4 = " (multiples-of-2^53 (- correct-sin s_j-4))

", E-c-4 = " (multiples-of-2^53 (- correct-cos c_j-4))

", E-s-5 = " (multiples-of-2^53 (- correct-sin s_j-5))

", E-c-5 = " (multiples-of-2^53 (- correct-cos c_j-5))

#\newline)))))))

N = 1, E-s-3 = 0, E-c-3 = 0, E-s-4 = 0, E-c-4 = 0, E-s-5 = 0, E-c-5 = 0

N = 10, E-s-3 = -2, E-c-3 = 0, E-s-4 = -2, E-c-4 = 0, E-s-5 = 2, E-c-5 = 0

N = 100, E-s-3 = 0, E-c-3 = 0, E-s-4 = 4, E-c-4 = 4, E-s-5 = -67, E-c-5 = -12

N = 1000, E-s-3 = 8, E-c-3 = 129, E-s-4 = 14, E-c-4 = -12, E-s-5 = -22416, E-c-5 = -90

N = 10000, E-s-3 = -8, E-c-3 = 3770, E-s-4 = -20, E-c-4 = 6, E-s-5 = -5898748, E-c-5 = 5307

N = 100000, E-s-3 = -5, E-c-3 = 32310, E-s-4 = -157, E-c-4 = -22, E-s-5 = -518196750, E-c-5 = 32342

N = 1000000, E-s-3 = 187, E-c-3 = 13825, E-s-4 = -125, E-c-4 = -52, E-s-5 = -2101377384, E-c-5 = 33712137

N = 10000000, E-s-3 = -1284, E-c-3 = 526760, E-s-4 = -152, E-c-4 = 20, E-s-5 = -815709884965, E-c-

5 = 44649467

21

