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The K-theory of abelian subalgebras
of AF algebras

By M. Dddarlat at Los Angeles and T. A. Loring*) at Albuquerque

1. Introduction

C*-algebras are a special class of C-algebras with involution. Two of the best
understood classes of examples are the commutative C*-algebras and the AF algebras. (AF
stands for approximately finite-dimensional.) Typically, AF algebras are highly non-
commutative. Nevertheless, the commutative subalgebras of AF algebras form a rich
collection, telling us some surprising things about AF algebras.

Every finite-dimensional, unital C*-algebra is of the form M, ® --- ® M, . (Here
M, means M,(C).) A unital AF algebra is an inductive limit li_r»n A, of a sequence

A, & A, & -

of finite-dimensional C*-algebras, each unitally embedded in its successor. (The limit we

have in mind is a completion of the algebraic limit (] 4,.) Elliott [11] completely classified
n=1

these C*-algebras; the invariant is (essentially) the abelian group K, (A4), sometimes called

the dimension-group of A.

The typical abelian, unital C*-algebra is C(X), that is, the star-algebra of continuous,
complex-valued functions on a compact Hausdorff space X, (with pointwise operations
*(x) = f(x), fg(x) = f(x)g(x), etc.). Thus, when dealing with C*-algebras, one often
turns for inspiration to topology. For example, the K-theory groups K,(4) and K, (4),
defined for any C*-algebra A, are designed so that K;(C(X)) = K'(X).

Topology does not predict all phenomena in C*-algebras. We examine one such,
involving embeddings of the form C(X) < A, where A4 is AF. To see what is predicted by
topology, we examine the case where A is also abelian.

*) Partially supported by NSF grant DMS-9007347.
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Suppose that li_llx A, is abelian. Then each 4, is isomorphicto C® - @ C = C(Z,)

where Z, is finite. Inductive limits of C*-algebras correspond to inverse limits of spaces.
(More generally, “arrows reverse” as X — Y induces C(Y) — C(X), by composition.)
Indeed, A must be isomorphic to C (), with X a zero-dimensional space, specifically li(x_n Z,.

Thus the appropriate analog in topology is a continuous surjection X — X of a zero-
dimensional, compact metrizable space X onto a compact Hausdorff space X. These abound,
but are uninteresting. For example, if X is also a connected ANR, then one can show (for
example, using some shape theory, as in [20]) that all maps from ¥ to X are homotopic.
If X is only connected, the induced map K°(X) — K°(2) is zero, basically because the
positive-degree homology groups of a zero-dimensional space are zero.

By contrast, it was discovered in [18] that a unital embedding
¢:C(T? - 4
could be found where 4 was AF and the induced map
by Ko (C(T?) - Ko(4)
was injective. This implied immediately the non-triviality of [C(T?), 4],, (the homotopy
classes of unital *-homomorphisms). The existence of such an apparently pathological
embedding held consequences (cf. [18], §5) for any potential homology theory defined
for C*-algebras. Informally, it meant that at least this AF algebra could behave two-

dimensionally, not like the zero-dimensional non-commutative topological space it was
assumed to be.

It was later discovered, in [12], that many AF algebras exhibit this behavior. The
minimal choice, in some sense, was found to be

A=AF(Z[1/2]@® Z),

which is our notation for the unital AF algebra corresponding to the dimension group
(G, G*, u), where

G=7[1/2]®Z,
G*={0}u{(r,n)|r>0}.
u=(1,0).

(Of the two possible positive cones for Z[1/2] @ Z, this is the smaller one, and the only
one we shall use in this paper.) In this case, the resulting map

60, Z®Z » Z[1/2]1®Z

is a rational isomorphism.
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Left open was the question of whether something was special about dimension two.

We shall show that the answer is no. The pathology for 4 = AF(Z[1/2] @ Z) can be said
to be of “infinite even degree.”

In this paper, we manipulate known embeddings rather than construct embeddings
directly. For a more explicit understanding of our embeddings, the reader is referred to [12],
[19] and the two fine papers by Pimsner and Voiculescu that started this embedding research,

[21] and [22].
The results in [7] regarding
Hom (C(X), C(Y)® M,)
make it possible to manipulate an embedding of C (T 2) to produce AF embeddings of other

commutative C *-algebras which are also “minimal” and rational isomorphisms on K,,. The
following is our main theorem. It’s proof is broken up between the next two sections.

Theorem 1.1. Let X be a compact Hausdorff space with the homotopy type of a finite
CW-complex

(a) There exists a unital embedding

¢:CX) » 4
into an AF algebra with
¢y Ko(C(X)) - Ko(4)
rationally an isomorphism. If X is connected, then A can be the unique unital AF algebra
with
Ko()=2Z[1/21@ 2",
n = rank K°(X).

(b) There exists a unital embedding
¢:C(X) » (SA)~
into the unitalized suspension of an AF algebra with

¢*1K1(C(X)) I Kl((SA)N)

rationally an isomorphism.

In Theorem 1.1, and throughout this paper, we regard Z[1/2] @ Z" as the dimen-
sion group G with

G* ={0}u{(,n)|r>0},
u=(>1,0).
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With regard to (b), we remark that if
A= ll_lzlA'l’ A"= @M[ll,k]’
then
(S4)” = lim (S4,)
and

(S4,)" = D{fe C(S", M I f(DeC},

so the algebras used for part (b) fall into the context of limits of subhomogeneous
C*-algebras. Alternately, the theorem could have been stated using C(S!) ® 4.

Theorem 1.1 settles a question from [12]. The spherical homology [14] of
AF(Z[1/2]1® Z)

is zero in all degrees except zero. In section four, we discuss how our embeddings can be used
to produce new examples of almost commuting matrices and quasi-representations. In
addition, Theorem 1.1 has the following corollaries involving shape theory [10], [1] and
maximal abelian subalgebras (MASAs) in AF algebras.

Corollary 1.2. If X has the homotopy type of a finite C W-complex, and H"(X; Q) + 0
Jor some n = 2, then C(X) is not semiprojective in the sense of Effros and Kaminker.

Proof. First note that it suffices to prove this for X connected. By Theorem 1.1, there
is a unital embedding

o:C(X) » li_x’nB,n:B
where
¢, : K (C(X)) - K.(B)

is rationally injective, i = n(mod 2) and

B,= @M, or B,=@PDEM,,.) .
To show that ¢ is not homotopic to any map of C(X) to B,, it suffices to show that
v :C(X) - B, never induces a rational injection. For n even, this is true because p is

homotopic to a trivial (scalar-valued) homomorphism. For n odd, it follows from [7] that
there exists a nonzero x € K; (C(X)) ® @ such that g, (x) = 0 whenever

e:CX) - (SM,)".

(We will explain this more fully after Proposition 2.1.)
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Corollary 1.3. For any natural numbers n,,n,,... with Y n,= n<oo, the AF
algebra AF(Z[1/2] @ Z™) contains a maximal abelian subalgebra isomorphic to C (Y with

rank H2*(Y; Q) = n, .

Proof. Let¢:C(X) — A be asin Theorem 1.1. If C(Y) is any MASA containing
the image of ¢, we have a map

v:CX) » C(Y)

which is rationally injective on K|,. By the Chern character, we know that the corresponding
function f: Y —» X induces injections

[* H*(X,Q) - H*(Y; Q). O
Corollary 1.4. Let A be a rational AF algebra with unit (i.e. the tensor product of a

unital AF algebra with the UHF algebra with dimension group the rationals) and let X be a
finite, connected CW complex. Given a group homomorphism

7: Ko(C (X)) — Ko(4)
satisfying
y(D =011 and y(R°(X)) < (\ker(z,),

where t ranges over all bounded traces on A, there exists a unital *-homomorphism

¢:CX) » A
with K, (¢) = 7.

Proof. Since K,(A) ® @ is isomorphic to K,(4), y induces

1K (CX)®@Q - Ky(4).
Let
p:C(X) » AF(Z[1/2]1® Z™)

be any unital homomorphism inducing an isomorphism

v K(CX)®0 - s Q"
Define
f=7°9,1: Q0 Q" - Ky(4).

We now show that f is positive. For any re @ and se Q",

f(r,9) =r[1]1+1/q) ()
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for some integer ¢ and x € K°(X). If 7 is any trace, then

. (f(r9) =rt() +1/g) 7, (r() = rt(1).

If (r, s) is positive, then r is positive, and so by [9], Theorem 3, f(r,s) is positive. Since
f preserves order and order unit, there exists a unital homomorphism

2 AF(Q® Q") - 4

with K,(a) = f. The required homomorphism is ¢ = acioy, where i is the obvious
inclusion

AF(Z[1]/2]® Z") - AF(Q® Q™. O

This work was done while the first named author visited the University of New Mexico,
Albuquerque. He thanks Frank Gilfeather and Terry Loring for support and hospitality.

2. Applying kk (Y, X)

The K-theory of maps C(X) - C(Y)® M, can be effectively computed for large
values of k by using the connective KK-theory of [7]. In this section, X and Y will be
connected, compact spaces with the homotopy type of a finite CW-complex, with
base-points x, and y,. By Cy(X) we mean C,(X \{x,}), and [4, B] refers to homotopy
classes of (possibly non-unital) *-homomorphisms.

A result of G.Segal (see [24] and [23]) provides us with a representation of the
reduced connective K-theory in terms of homotopy classes of *-homomorphisms:

k1(X) = [Co(S*™7), Co(S"X) @ A].

This formula holds for any g€ Z and any r = 0 such that g+ r = 1. As a natural gener-
alization, the formalism based on the group

kk(Y, X) = [Co(X), Co(Y) ® A]

was introduced in [7]. This has proven to be a useful tool in dealing with *-homomorph-
isms of matrix algebras over continuous functions. Composition with the Bott homo-
morphism C,(S?!) - C,(S?) ® M, gives rise to an operation

S:k1t2 o k9,

A rational version of [7], Corollary 3.4.8 shows that there exist isomorphisms C§ so
that the following diagram commutes:

20 5 XN
Leye le
@HHX;Q) o @D HTHX; Q).

jz1

i20
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When g = 0 or 1, we may make the identification

HX)®Q=K1(X)Q Q

and, as always,
K XN)®Q=K(C,(X)®Q=K,(C,(X)®A)R Q.
The result we need is a restatement of a universal coefficient theorem. Given
¢ € Hom (Co(X), Co(Y) ® '),

representing a homotopy class [¢] e kk(Y, X), we define

Lo[9] = (C & C}) o (6, ® idg) » (C ® C) ™' e Hom (H*(X; @), A*(Y; @)),
where ¢, is the induced map

¢, K*(X) » K*(Y).

We now define

I:kk(Y,X)® @ - Hom(H*(X; @), H*(Y; Q))

as the unique map through which I) factors. Note that if « belongs to the image of I', then
a suitable integer multiple of a belongs to the image of I,.

Proposition 2.1. The image of the homomorphism
I:kk(Y,X) - Hom(H*(X; Q), H*(Y; Q))

is the set of homomorphisms which send H(X; @) into @ H***/(Y; Q). (That is, the
jz20
homomorphisms which preserve parity and filtration by dimension.)

Proof. The Q-coefficient version of [7], Theorem 3.5.4 states that
kk(Y,X)® Q =[Cy(X),Co(Y)® X ]1® @ = Homgy, k*X)® Q,k*(Y)® Q).

The isomorphism sends the homotopy class of ¢ : Co(X) - C,(Y)® A to the induced
map on k*(X) ® Q. The module action of ¢ in @[] is given by S. Therefore

kk(Y,)® Q= {(@)e@Hom(@) Ao+ 236.@), @ A (Y @))
q j2 j2

&4+ 2 TESLrICtS tO éq}

g{€0®€1 E(H(X; @) @oH"”"(Y; @)}. o
j2

4 Journal fiir Mathematik. Band 432
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By the stabilization theorem [ 7], Theorem 6.4.2, we can replace " by M,, and the image

of I' will not change, for k large. (For small k, the image can be smaller.) To finish the proof of
Corollary 1.2, we note that

p:C(X) - (SM,)"
induces the same map on K, as the restriction
$:Co(X) » Co(SHQM,.

Let x € K, (C, (X)) be an element that C{ maps to a nonzero element of H"(X; @). Since
nx3,

b () € (C) ™' (H"(S!; @) = {0} .

Theorem 2.2. If X and Y are connected, compact spaces, with the homotopy type of a
finite CW-complex, and

rank H4(X; Q) = rank H1(Y; Q)
for g = 1 (respectively for q = 2, even, or for q = 1, odd) then for large k, there exists a unital
embedding

$:CX) » C(Y)® M,
with K, (@) (respectively K,(¢) or K,(p)) a rational isomorphism. If H*(X;Z) and
H*(Y; Z) (respectively H"*"(X; Z) and H**"(Y; Z), or H°*(X; Z) and H**(Y; Z)) are
torsion-free, ¢ can be chosen with K, (¢) (respectively K,(¢) or K, (¢)) an isomorphism.
Proof. Assume that, for all ¢ =1 (the even ¢, odd ¢ cases are similar),

rank H4(X; Q@) = rank HY(X; Q).

Then clearly there is an isomorphism
n:H*(X; Q) - A*(Y; Q)

preserving the grading, and thus preserving parity and filtration. By Proposition 2.1,
there exists

$:Co(X) » Co(Y)® M,,

for any large k, with I' ([¢] ® (1/m)) = n for some integer m. Then I,([¢]) = mn, and
as mn is an isomorphism, K (¢) is a rational isomorphism.

Since X and Y are connected, we can extend ¢ so that
$:CX) > C(YY® M,

is unital and still have K, (¢) a rational isomorphism. However, ¢ may not be injective.
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If ¢ is not injective, choose null-homotopic maps g;: Y = X such that

X=g(Y)ug,(Y)u-ug(Y).
Then
$:CX) » C(Y)®M,,,,
defined by
PN=6(NS(f2)D  ®(f-g)

is injective, and has the same K-theory as ¢.

The same proof works in the torsion-free case, except using Corollary 3.4.8, Theorem

3.5.5 and Corollary 6.4.4 of [7]. O
3. Constructing the embeddings
Our starting point is the unital embedding
$,:C(S?*) > AF(Z[1/21® 2),
from [12], which induces the natural inclusion
K (C(SH)=ZDZ o Z[1/2]DZ.
Composing the obvious inclusion
C(S*™ o C(S?x%...x8?

with ¢ ® - ® ¢ leads to an embedding which is only injective on K.

Lemma 3.1. The homomorphism

Zi/2ezeZi/2ljez) » zZM1)21e 2,

(r,m)® (s,n) — (rs, mn)

preserves order and order unit.

Proof. The order and order unit that we put on G, ® G,, is that derived from the
isomorphism

G,® G, = Ko (AF(G,) ® AF(G,)).
If
AF(G,) = lim 4,,

AF(G,) = lim B,
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for finite-dimensional algebras 4, and B,,
AF(G;®G,) = li_r’nAn®Bn'

The positive cone of G; ® G, is generated by the minimal projections of 4, ® B,. Each
minimal projection of 4, ® B, is equivalent to a simple tensor of minimal projections.
Therefore, (G, ® G,)* is generated by

{8, ®g,l8:€G}.
Of course, the order unit is the tensor product of order units.

In the case at hand, we need only check that (rs, mn) is positive when (r, m) and (s, n)
are positive. Since (r, m) and (s, n) nonzero and positive means r > 0 and s> 0, this is
obvious. O

Lemma 3.2. If X is a finite wedge of compact oriented manifolds, then a *-homo-
morphism to any C*-algebra, ¢ : C(X) — A, which is rationally injective on K, = K, ® K|,
is itself injective.

Proof. A non-injective ¢ will factor through C(Y), where Y is X with some small
open disk D removed. In the case that X is a compact oriented n-dimensional manifold, it
is easy to use de Rahm cohomology to show that

H"(X; R) > H"(X\D; R)
sends the fundamental class to zero. Therefore, in the general case,
H"(X; R) - H"(X\D; R)
is not injective. The result now follows via the Chern character. O
Remark. The proof of Lemma 3.2 shows that we need only assume
¢, (ch™* ([X])) + 0
with [X'] denoting the fundamental class, to conclude that ¢ is injective.
Lemma 3.3. For all n = 1, there is an embedding
10 C(S?™) - AF(Z[1/21® 2)
Sfor which K,(¢,,) is the canonical embedding

K,(CES™)=Z®Z  Z[1/2]®Z.
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Proof. By Lemma 3.2, it suffices to find any homomorphism with the correct K-
theory. The base-case, ¢,, is provided by [12]. Given ¢,,, we let ¢,,4, be the com-

position
C(S2n+2) o C(SZ")®C(S2) M AF(Z[1/2] @ Z2)®?

l
AF(Z[1/21® 2).

The vertical map is any unital homomorphism inducing the map of Lemma 3.1 (which exists

by [11]). The first map is induced by any degree-one continuous function from $2" x §2
onto $2"*2, 0

Lemma 3.4. For any natural numbers k and | such that k + | is a power of two, the
homomorphism

Z'® (Z[1/21 @ 2)® - z[1/21e Z',

(my,....m)@ (r,5) @ @ (r,5,) — (m1+ S +rl’31’---’sl>

k+1

preserves order, and order unit.

1
Proposition 3.5. If X is a finite-wedge of even-spheres X = \/ S, with n; 2 1,
then there exists a unital embedding j=t

¢:C(X) - AF(Z[1/2]® 7}
such that K, () is the natural inclusion
K,(CX)=ZadZ'c Z[1/2]® Z".

Proof. C(X) sits inside @ C(S*™) in an obvious fashion. Choose k such that k + /
is a power of two. Adding on k one-dimensional representations of C(X) produces an
embedding

CX) o Cre® P C(S™)

which is an isomorphism on K°. The required embedding is the above followed by

Ct® (_D C(san) id@D @z, D D Py R AF(Z"@ (Z[1/2]1® Z)l)

l
AF(Z[1/2]1® Z").

The vertical map is provided by Lemma 3.4 and [1]. O
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We now turn to the proof of Theorem 1.1. First we prove (a) for X a connected, finite
CW-complex. Let Y be a wedge of even spheres, with rank A2¢(X; @) copies of S24, for
q = 1. Theorem 2.2 provides an embedding

CX)o C(Y)® My
that is a rational isomorphism on K,,. Proposition 3.5 now gives an embedding
CX) o Mu(AF(Z[1/2]1® Z™)
which is a rational isomorphism on K. This looks like the wrong AF algebra, but
Mu(AF(Z[1/2]1@® Z") = AF(Z[1/21© Z"),
the isomorphism given, at the dimension group level, by
(r,m) = (r2 % m).

For X not connected, just express C (X) as the direct sum of C(X;) and embed each C (X))
separately.

We need only prove (b) for X a connected, finite CW-complex, by the same argu-
ment. Let Y be a finite C W-complex with

rank H24(Y; Q) = rank H>**1 (X; Q)

for ¢ = 0. In general, Y will not be connected. A wedge of even-spheres, including zero-
spheres, will do. By part (a),

¢:C(Y) - B,

a unital AF embedding, exists, with K, (¢) a rational isomorphism. Suspending, we get an
embedding

SC(Y) - SB,
a rational isomorphism on Xj. Since

(SC(Y)) " =C(2)
with
Z=RxY)u{pt},

we have, for all ¢,
rank H29*1(Z; Q) = rank H29(Y; Q) = rank H*?*1(X; Q).
Theorem 2.2 provides an embedding

Co(X) = Co(Z2)® M,
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which is rationally isomorphic on K,. By composition, we have an embedding, rationally
isomorphic on K|,

Co(X) > M,® SB =S4,

where A4 is the AF algebra M, ® 4. Adding units, we have proven part (b).

4. Quasi-representations and asymptotically commuting matrices

We now consider the implications of our embeddings with respect to finite matrices.
Connes, Gromov and Moscovici [5] define a quasi-representation of a unital C*-algebra

A to be a positive, unital map o: 4 — M,. To measure lack of multiplicativity, they
introduce

llollr = sup{llo (ab) — o (a) s (b)ll|a, be F}
(F a finite subset of A). Given x,, ..., x, € K,(4), choose representatives
(pl-[91=x
where p; and g; are projections in M, (4). For some finite F and positive ¢,
llollr<e = llo(p)* —a(p)ll <1/4
(cf. [5], Proposition 5). We define a “push-forward” of x; by ¢ to Z =~ K,(M,) by
o, (x;) = Trace (P;) — Trace (Q;)
where P, respectively Q,, is the spectral projection for o (p,), respectively a(g;), corre-
sponding to the set {z||z — 1| < 1/2}. Different representatives for the x; lead to the same
values for o, (x;) when ||o||; < ¢’ for some finite F' 2 F and ¢ = &' > 0. See [17] for a

specific example of pushing a projection over C(T?) forward to a matrix that is
approximately a projection.

Theorem 4.1. Suppose X has the homotopy type of a finite CW-complex, and
e K°(X) is non-torsion. Then there is a sequence of positive, unital, linear maps

v, C(X) - M,
such that
1w, (f8) — wa (N (DI = 0,

for all f, ge C(X) and, for large n,y, (e) 0.
Proof. This follows from Theorem 1.1 and the following lemma. O
Remark. These quasi-representations cannot be approximated by representations,

since ¢,,(¢) =0 for any representation ¢,: C(X) — M,. By approximate, we mean

16, (f) — wu (NIl = 0 for all fe C(X).
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Remark. By [5], Proposition 8, each yp, induces an associated element of cyclic
cohomology, which must be nontrivial by [5], Proposition 9. The existence of quasi-
representations that extract non-trivial topological information is to be expected in view of
the E-theory of Connes and Higson [6] whose cocycles are based on asymptotic
homomorphisms.

Lemma 4.2. Let A be a nuclear, unital C*-algebra and let lilr) B, be an inductive
limit of a system of C*-algebras with unital, injective connecting maps. Any completely
positive, unital map p: A — li_rP B, can be approximated by completely positive, unital
maps p,: A — B, with p,(a) — w(a) for all ae A.

Proof. Consider the C*-algebras

[®(B,) = {(b)X-1|b,e B, and sup||b,|| < o},
¢o(B,) = {(by)r=1lb, € B, and lim||b,|| = 0}.

If b= lim b,, for b,€ B,, then

n— o

A(a) = (by)y=y + ¢o(B,) €17 (B,)/co(B,)

gives a well-defined *-homomorphism. Now apply the Choi-Effros [3] lifting theorem to
produce a completely positive, unital map ¥ with the following commutative diagram:

4 — I*(B,)

! !
lim B, —s 12 (B,)/co(B,)-

It is clear that composing ¥ with the projection onto B, produces the desired y,. O
Remark. One may check that
K= @) S T K, @)
is a subgroup of the infinite product,
K, (17 (B,)/co(By) = K, (I*(B,))| D K (B,)
and 4 induces injections on K-theory.

Our embeddings also produce examples of asymptotically commuting matrices that
are fundamentally different from any discovered previously. Given two sequences of
matrices S,, T, € My, we call (S,) and (T,) asymptotically commuting matrices if

lim ||[S,, T,1I| = 0.

n-—* o



Daddrlat and Loring, AF algebras 53
If (T,Y), ..., (T,®) are pairwise asymptotically commuting and self-adjoint (by which we

mean (T,)* = T, for all n and j), then we define their joint-spectrum o(T7, ..., T,®)
as the spectrum of the unital C*-algebra generated by

(T + S,...,(TP) + 5
in &/ /S, where

o ={(R)-y|R,€ My, and sup||R,|| < o},
I = {(R)s=1|R, € My, and lim [|R,|| = 0} .

Examples of asymptotically commuting matrices have been found which cannot be
approximated by commuting matrices. The joint spectrum for Voiculescu’s example [25] is a
torus, while for Davidson’s [8] it is a sphere. Many other examples are possible. To be
specific, we have the following result.

Corollary 4.3. For any g, there exist self-adjoint, asymptotically commuting matrices

A4,,B,, C,.e M,.,

with joint-spectrum equal to a g-hole torus, such that there exists no sequences A,, B,, C,
of self-adjoint matrices with

(4,, B,]1=[A4,,C]1=[B,,C]1=0
and

lim|| 4, — A,|| = lim || B, — B;|| = lim||C,— C;|| =0.
Proof. The AF algebra A = AF(Z[1/2] ® Z) can be written as
A =lim M, © My @ My @ M, .
(See [12].) As in the proof of Lemma 4.2, define
A:A - A|F (N(n) =24,

By the remark above, A is injective on K,(4). Passing to a subsequence, and applying
Theorem 1.1, we have a unital star-homomorphism

$:C(X) > |F (N(n)=2",
which is injective on K, (C (X)), where X is the g-hole torus. Any homomorphism
CX) » M,.
must send K°(X) to zero. The same must hold for any homomorphism

CX) » «.
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Therefore ¢ does not lift to .

Since X can be embedded in R3, there are self-adjoint elements a, b and ¢ which
generate C(X). Let 4,, B, and C, be self-adjoint matrices such that

b@)=4,)+7,
¢(b)=(B)+ 4,
d(c) =(C)+ 5.

These are asymptotically commuting. By Lemma 3.2, ¢ must be injective, so the joint-
spectrum of (4,), (B,) and (C,) must be homeomorphic to X, and we now identify these
two spaces. If 4,, B,, C, are commuting self-adjoint matrices close to 4,, B,, C, for some
n, then o (4,, B,, C,) is close to X. A small perturbation, found using the joint functional

”

calculus, produces matrices A4,,, B,, C,’ with joint spectrums contained in X. Therefore, the
existence of commuting, self-adjoint approximating sequences to (4,), (B8,) and (C,) would
imply that ¢ can be lifted, a contradiction. O

Remark. The g-hole torusin Corollary 4.1 can be replaced by any compact, oriented,
even-dimensional manifold, but more sequences of matrices are needed.
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