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Abstract

Let A and B be countable discrete groups and let G ¼ A � B be their free product. We show that

if both A and B are uniformly embeddable in a Hilbert space then so is G: We give two different

proofs: the first directly constructs a uniform embedding of G from uniform embeddings of A and

B; the second works without change to show that if both A and B are exact then so is G:
r 2003 Elsevier Inc. All rights reserved.

1. Introduction

The concept of uniform embedding into Hilbert space was introduced by Gromov
[Gro93]. It plays an important role in the study of the Novikov higher signature
conjecture [FRR95,STY00,Yu00].
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Let X be a countable discrete metric space and let d denote its metric; let H be a
separable and infinite-dimensional Hilbert space. A map F : X-H is a uniform

embedding [Gro93] if there exist non-decreasing functions r1 and r2 from Rþ ¼
½0;NÞ to R such that

(1) r1ðdðx; yÞÞpjjFðxÞ � FðyÞjjpr2ðdðx; yÞÞ; for all x; yAX ; and
(2) limt-þN riðtÞ ¼ þN; for i ¼ 1; 2:

The discrete metric space X is uniformly embeddable if it admits exists a uniform
embedding.
A countable discrete group G is exact if the functor given by the reduced crossed

product with G converts a short exact sequence of G-C�-algebras into a short exact
sequence of C�-algebras. Equivalently, the functor given by spatial tensor product
with the reduced C�-algebra of G converts one short exact sequence of C�-algebras
into another. The class of exact groups is closed under a number of operations
[KW99], including the formation of free products (both with and without amalgam)
[Dyk99,Dyk00].

Theorem. Let A and B be countable discrete groups and let G ¼ A � B be their free

product. If both A and B are uniformly embeddable in a Hilbert space then so is G; if

both A and B are exact then so is G:

We discuss the theorem from several different perspectives. We first give a direct
proof of the uniform embeddability result; given uniform embeddings of the factors
A and B we explicitly construct the required uniform embedding of G: Subsequently,
relying on recent characterizations of uniform embeddability and exactness
[GK02,Oza00], we give a unified proof of both statements in the theorem. Although
the statement concerning exactness is known, our proof is more elementary than
and unrelated to the original proof of Dykema and its successive refinements
[Dyk99,Dyk00].
The theorem leaves open the question of whether a free product A �G B with

non-trivial amalgamation is uniformly embeddable in a Hilbert space if each
of the factors A and B are. Indeed, this is proven by Dadarlat–Guentner
[DG02].

2. Preliminaries

We recall some elementary facts about length functions and metrics on discrete
groups and free products. An integer valued function c on a group G is a length

function if

(1) cðgÞ ¼ cðg�1ÞX0 for all gAG;
(2) cðeÞ ¼ 0;
(3) cðghÞpcðgÞ þ cðhÞ; for all g; hAG:
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A length function c is non-degenerate if cðgÞ ¼ 0 implies that g ¼ e: For any non-
degenerate length function c on G; we define the associated metric d on G by

dðg; hÞ ¼ cðg�1hÞ; for all g; hAG:

A length function c is proper if c�1ðSÞ is a finite set for every finite subset S ofN: A
group G admits a proper and non-degenerate length function if and only if it is
countable.

Remark. Although we do not require it, we point out that uniform embeddability of
a countable discrete group G; equipped with a metric associated to a proper and non-
degenerate length function, does not depend on the choice of the length function.

Next, we recall some elementary facts about free products. Let A and B be
countable discrete groups and let G ¼ A � B be their free product. Every element
gAG is uniquely expressed in normal form as a reduced word g ¼ x1yxp; where it is

understood that xiAA,B; xiae and if xiAA (or B) then xiþ1AB (or A), as
appropriate.
Let cA and cB be proper non-degenerate integer valued length functions on A and

B; respectively. Define an integer valued function c ¼ cG on G by

cGðgÞ ¼
Xn

1

cAðaiÞ þ
Xn

1

cBðbiÞ;

where we have written g ¼ a1b1yanbn as a product without cancellation and aiAA;
bjAB: It is easy to see that cG is a proper non-degenerate length function. Let dG be

the metric associated to cG: Quite explicitly, if g; g0AG we write g and g0 as products
without cancellation,

g ¼ hxx1yxn;

g0 ¼ hx0x0
1yx0

m; ð1Þ

where h is the common part of g and g0; xax0AA (or B) and x1;y; xn are alternately
elements of B and A (or A and B) and similarly for x0

1;y; x0
m; as is consistent with

normal form expressions. (We allow the degenerate cases (i) h ¼ e; xax0 and (ii)
h ¼ x ¼ x0 ¼ e; observe that in (ii) one of x1 and x0

1 is from A whereas the other is

from B:) Having done so, and with the convention that empty sums are zero, we
obtain

dGðg; g0Þ ¼
Xn

1

cA;BðxiÞ þ dA;Bðx; x0Þ þ
Xm

1

cA;Bðx0
jÞ; ð2Þ

where we have written cA;B to mean cA or cB as appropriate, and similarly for dA;B:
(In the degenerate case, h ¼ x ¼ x0 ¼ e the middle term does not appear.) Observe
that, since our length functions are integer valued, the number of non-zero terms in
this expression is not greater than dGðg; g0Þ:
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3. Construction of an embedding

Given uniform embeddings of A and B; we explicitly construct a uniform
embedding of their free product G: For the construction we require two lemmas.

Lemma 1. If a countable discrete metric space X is uniformly embeddable into Hilbert

space, then there exists a uniform embedding F : X-H and, for i ¼ 1; 2; non-

decreasing functions ri :Rþ-R such that

(1) r1ðdðx; yÞÞpjjFðxÞ � FðyÞjjpr2ðdðx; yÞÞ; for all x; yAX ;
(2) limt-þN riðtÞ ¼ þN for i ¼ 1; 2;
(3) r1ð1ÞX1:

Proof. Let F̃ : X-H be a uniform embedding and, for i ¼ 1; 2; let *ri be non-
decreasing functions on Rþ satisfying

(1) *r1ðdðx; yÞÞpjjF̃ðxÞ � F̃ðyÞjjp *r2ðdðx; yÞÞ for all x; yAX ;
(2) limt-þN *riðtÞ ¼ þN:

We define another uniform embedding as follows

F : X-H"l2ðXÞ; FðxÞ ¼ F̃ðxÞ"dx;

where dx is the Dirac function at the point x: Let

r1ðtÞ ¼
0; when t ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð *r1ðtÞÞ2 þ 1

q
; when t40

8<
:

and

r2ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð *r2ðtÞÞ2 þ 2

q
:

It is easy to verify that r1 and r2 satisfy the desired conditions. &

Lemma 2. If rðtÞ is non-decreasing function satisfying limt-þN rðtÞ ¼ þN and

rð1ÞX1; then there exists a non-decreasing function *rðtÞ such that limt-þN *rðtÞ ¼
þN and such that for all nAN and ðtiÞn

1AN we have

Xn

i¼1
rðtiÞX *r

Xn

i¼1
ti

 !
:

Proof. Define *rðtÞ ¼ min

ffiffi
t

p

2
; r

ffiffi
t

p

2

	 
	 

: The only non-trivial condition to check is

that *r satisfies the above inequality. Let n and ti be as in the statement; denote

N ¼
Pn

i¼1 ti:
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Case np
ffiffiffi
N

p

2
: In this case, there exists a natural number i0pn such that ti04

ffiffiffi
N

p

2
;

otherwise

Xn

i¼1
tip

ffiffiffiffiffi
N

p

2

ffiffiffiffiffi
N

p

2
¼ N

4
oN;

contradicting the assumption. Therefore,

Xn

i¼1
rðtiÞXrðti0ÞXr

ffiffiffiffiffi
N

p

2

	 

¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ti

p
2

 !
X *r

Xn

i¼1
ti

 !
:

Case n4
ffiffiffi
N

p

2
: In this case, we have

Xn

i¼1
rðtiÞ4

ffiffiffiffiffi
N

p

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ti

p
2

X *r
Xn

i¼1
ti

 !
;

since rð1ÞX1 and
Pn

i¼1 ti ¼ N: &

Proof of the Theorem (Embeddability). Let A and B be countable discrete groups.
Equip A; B and G with proper non-degenerate length functions as described above.
Denote by WA the set of those elements of G whose expression as a reduced word
begins with A; similarly WB: By convention e is an element of both WA and WB:
Notice that the union WA,WB is G and that the intersection WA-WB is feg:
Assume that A and B are uniformly embeddable and let FA : A-H and

FB : B-HB be uniform embeddings. By Lemma 1, we can assume that there are
non-decreasing functions r1 and r2 with limt-þN riðtÞ ¼ þN; i ¼ 1; 2; such that
r1ð1ÞX1 and such that

r1ðdða; a0ÞÞpjjFAðaÞ � FAða0Þjjpr2ðdða; a0ÞÞ;
r1ðdðb; b0ÞÞpjjFBðbÞ � FBðb0Þjjpr2ðdðb; b0ÞÞ;

for all a; a0AA and b; b0AB: Adjusting each of FA and FB by a unitary isomorphism if
necessary we further assume that HB ¼ H; and that FAðeÞ ¼ FBðeÞ ¼ 0:
Define a new Hilbert space HG by

HG ¼ "
WA

H

	 

" "

WB

H

	 

:

Observe that HG is not quite the direct sum of copies of H indexed by the elements
of G; an element of HG has a component in H at every element of the disjoint union
of WA and WB: We write an element xAHG as x ¼ xA"xB where xA ¼ "hAWA

xh

and xB ¼ "hAWB
xh; and record the fact that for x; yAHG we have

jjx � yjj2 ¼
X

hAWA

jjxh � yhjj2 þ
X

hAWB

jjxh � yhjj2:

ARTICLE IN PRESS
X. Chen et al. / Journal of Functional Analysis 205 (2003) 168–179172



Next define a uniform embedding F : G-HG: We define FðeÞ ¼ 0: If g is a non-
identity element of G write g as a reduced word g ¼ x1yxp; where the xiae are

alternately elements of A and B; for definiteness in the subsequent formula we
assume that x1AA: In this case, the components of FðgÞ at elements of WB will be
zero; its components at elements of WA are defined, with the convention that an
empty product is e; as follows:

FðgÞA ¼ "
hAWA

FðgÞh; FðgÞh ¼
FAðx2kþ1Þ; (kX0 such that h ¼ x1yx2k;

FBðx2kÞ; (kX1 such that h ¼ x1yx2k�1;

0; otherwise:

8><
>:

In particular, FðgÞe ¼ FAðx1Þ; FðgÞx1
¼ FBðx2Þ; FðgÞx1x2

¼ FAðx3Þ;y : Note that

the component of FðgÞ at hAWA is non-zero precisely when hag and the reduced
word of h is an initial segment (possibly empty) of the reduced word of g: A similar
formula is used and similar remarks apply when the reduced word expression of g

begins with an element of B:
It remains to show that F is indeed a uniform embedding. Let g; g0AG and write

g ¼ hxx1yxn and g0 ¼ hx0x0
1yx0

m as products without cancellation as in (1). We

have, with the convention that empty sums are zero:

jjFðgÞ � Fðg0Þjj2 ¼
Xn

1

jjFA;BðxiÞjj2 þ jjFA;BðxÞ � FA;Bðx0Þjj2 þ
Xm

1

jjFA;Bðx0
jÞjj

2; ð3Þ

where we have written FA;B to mean either FA or FB as appropriate. (In the case

h ¼ x ¼ x0 ¼ e the middle term does not appear.) Considering this expression we

bound jjFðgÞ � Fðg0Þjj2 above by

jjFðgÞ � Fðg0Þjj2p
Xn

1

r22ðcA;BðxiÞÞ þ r22ðdA;Bðx; x0ÞÞ þ
Xm

1

r22ðcA;Bðx0
jÞÞ

p dGðg; g0Þr22ðdGðg; g0ÞÞ;

recalling that, since our length functions are integer valued, the number of non-zero

terms on the right is not greater than dGðg; g0Þ: Defining Z2ðtÞ ¼
ffiffi
t

p
r2ðtÞ we therefore

have

jjFðgÞ � Fðg0ÞjjpZ2ðdGðg; g0ÞÞ:

Again considering (3) we bound jjFðgÞ � Fðg0Þjj2 below by

jjFðgÞ � Fðg0Þjj2X
Xn

1

r21ðcA;BðxiÞÞ þ r21ðdA;Bðx; x0ÞÞ þ
Xm

1

r21ðcA;Bðx0
jÞÞ:
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Define Z1ðtÞ ¼
ffiffiffiffiffiffiffiffi
*rðtÞ

p
; where *r is as in Lemma 2 applied to r ¼ r21: By Lemma 2, we

obtain

jjFðgÞ � Fðg0ÞjjXZ1ðdGðg; g0ÞÞ: &

4. Uniform embeddability and exactness

We will use the following characterizations of uniform embeddability and
exactness [GK02,Oza00]. A countable discrete group G is uniformly embeddable if
and only if for every e40 and every C40 there exists a Hilbert space valued function
x : G-H; ðxaÞaAG such that jjxajj ¼ 1 and

(1) jjxa � xbjjoe if dða; bÞpC;
(2) for all #e40 there exists R40 such that j/xa; xbSjo#e if dða; bÞXR:

A countable discrete group G is exact if and only if for every e40 and every C40
there exists a Hilbert space valued function x : G-H; ðxaÞaAG such that jjxajj ¼ 1 and

(1) jjxa � xbjjoe if dða; bÞpC;
(2) there exists R40 such that /xa; xbS ¼ 0 if dða; bÞXR:

We refer to conditions (1) and (2) as the convergence and support conditions,
respectively.
From the perspective of these conditions, uniform embeddability and exactness appear

to be very similar. Indeed, based on these characterizations we give below a unified proof
of both statements in the theorem. Further, as one might expect, the class of uniformly
embeddable groups shares, in nearly every case, the closure properties of the class of exact
groups; a systematic treatment of these ideas appears elsewhere [DG02].
In the proof of the theorem, we require one preliminary result. A tree T consists of

two sets, a set V of vertices and a set E of edges, together with two endpoint maps

E-V associating to each edge its endpoints. Every two vertices are connected by a
unique geodesic edge path, that is, one without backtracking. It is convenient to
define a metric on E by

dTðe; f Þ ¼ the number of vertices on the unique path in T from e to f :

Observe that dTðe; f Þ is simply half the number of edges on the unique path from e to
f viewed as vertices in the first barycentric subdivision of T : The following lemma is
a straightforward adaptation to the present situation of a well-known construction
(compare [Yu00]).

Lemma 3. Let T be a tree. For every NAN; there exists a Hilbert space valued

function tN : E-H such that jjtN;ejj ¼ 1; and

(1) if dT ðe; f ÞX2N then /tN;e; tN;f S ¼ 0;

(2) jjtN;e � tN;f jj2p2dT ðe; f Þ=N:
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Proof. Let H ¼ l2ðVÞ"l2ðNþÞ and let #v be a fixed vertex in V : Define

tN;e ¼
1ffiffiffi
N

p ðdve;1
þ?þ dve;N

Þ"0; Npk;

1ffiffiffi
N

p fðdve;1
þ?þ dve;k

Þ"ðd1 þ?þ dN�kÞg; N4k;

(

where ve;1;y; ve;k ¼ #v are the vertices along the unique path from e to #v: The
assertions are easily verified. &

Proof of the Theorem (Embeddability and exactness). We concentrate on the
statement about uniform embeddability; nevertheless, our proof applies equally well
to the statement concerning exactness, on which we comment briefly at the end. Let
e40 and C40 be given. As in the characterization of uniform embeddability above
obtain a Hilbert space valued function a : A-H such that jjaajj ¼ 1; and

(1) jjaa � aa0 jjoe=2C; if cAða�1a0ÞpC;
(2) 8#e40 (R40 such that j/aa; aa0Sjo#e; if cAða�1a0ÞXR:

Similarly, obtain a Hilbert space valued function b :B-HB: It is convenient to
assume, as we may by applying an appropriate unitary operator HB-H; that
b : B-H satisfies ae ¼ be and

(1) jjbb � bb0 jjoe=2C; if cBðb�1b0ÞpC;
(2) 8#e40 (R40 j/bb; bb0Sjo#e; if cBðb�1b0ÞXR:

We view H as a pointed Hilbert space with distinguished vector o ¼ ae ¼ be:
Using the Bass–Serre tree TG of G we define a single Hilbert spaceHG: Recall that

the vertex set of TG is VG ¼ G=A,G=B; and that its edge set is EG ¼ G: Associate to
each vertex v the Hilbert space Hv ¼ H and define

HG ¼ lim
FCVG
finite

#
vAF

Hv:

A few remarks concerning this definition are in order. First, if FCG are finite subsets
of VG the map #vAF Hv-#vAG Hv is given by inserting the distinguished vector o
for those vAG \F : Second, these maps are isometries so that the algebraic direct limit
of the #vAF Hv is an inner product space in a natural way. Finally, HG is obtained
by completion. For notational convenience, we shall regard the formal infinite tensor
product r ¼ #vAVG rv; where all but finitely many of the rv ¼ o; as an element of

HG: Such elements span a dense linear subspace of HG: If s is another such element
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then we have

/r; sS ¼
Y

vAVG

/rv; svSHv
; jjr� sjjp

X
vAVG

jjrv � svjjHv
;

where in the expression for the norm we assume that the components of r and s have
norm not greater than 1: Observe that all but finitely many of the terms in the infinite
product and sum are 1 and 0; respectively.
Define g : G-HG by the formal infinite tensor product expression

gg ¼ #
vAVG

gg;v;

where the component gg;v of gg at the vertex v is defined recursively: ge;v ¼ o; and

ggx;v ¼
gg;v; vagA;

ax; v ¼ gA;

(

where gx is a product without cancellation and eaxAA: A similar formula is used
when eaxAB: Equivalently, consider the normal form expression g ¼ x1yxp; and

assume for definiteness that x1; xpAA: In this case, the recursive expression for gg is

best understood by considering the following portion of the Bass–Serre tree for G:

For vertices on the path from e to g; the components of gg are given according to

ax1#bx2
#ax3#?#axp

AHA#Hx1B#Hx1x2A#?#Hx1yxp�1A:

For vertices not on this path, we have gg;v ¼ o: Again, similar formulas hold in the

cases when one or both x1; xpAB:

The function g will in general not satisfy the support condition. In order to remedy

this, let NX8Ce�2 and obtain t ¼ tN : G-H as in Lemma 3. Define

x : G-HG#H; xg ¼ gg#tg:

It is clear that jjxgjj ¼ 1: We verify the support and convergence properties.

For the support property let #e40 be given and obtain R40 such that conditions
(2) hold for both a and b: Let g; g0AG be such that dGðg; g0ÞX2NR: We show that

/xg; xg0S ¼ /gg; gg0S/tg; tg0S
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has absolute value less than #e: Each of the terms in this product has absolute value
not greater than 1: Also, according to the lemma if dT ðg; g0ÞX2N we have
/tg; tg0S ¼ 0: Therefore, it suffices to show that /gg; gg0S has absolute value less

than #e under the assumption that dTðg; g0Þo2N: In order to show this, write
g ¼ hxx1yxn and g0 ¼ hx0x0

1yx0
m as products without cancellation as in (1). With

the convention that empty products are 1 we have

/gg; gg0S ¼
Yn

1

/gxi
;oS

 !
/gx; gx0S

Ym
1

/o; gx0
j
S

 !
; ð4Þ

where g’s on the right-hand side stand for a’s and b’s as appropriate and consistent
with expressions (1). (Again, in the degenerate case h ¼ x ¼ x0 ¼ e the middle term
does not appear.) Indeed, assume for definiteness that x; x0AA and that xn; x0

mAA

and consider the following portion of the Bass–Serre tree:

Bearing in mind their recursive descriptions, we see that the components of gg and gg0

agree for all vertices other than those on the paths from hA to gA and to g0A: The
components at the vertex hA are ax and ax0 ; respectively, and contribute the term
/gx; gx0S: The components at the vertex hxB are bx1

and o; respectively, and
contribute the term /gx1

;oS: The other vertices are similar.

Now, each term in product (4) has absolute value not greater than 1 and we
conclude by showing that at least one term has absolute value less than #e: Assume
this is not the case. Then each of the dTðg; g0Þ non-zero terms in the expression (2) for
dGðg; g0Þ would necessarily be less than R and we would have

dGðg; g0ÞpdTðg; g0ÞRo2NR;

a contradiction.
For the convergence property let g; g0AG be such that dGðg; g0ÞpC: Observe that

jjxg � xg0 jjpjjgg � gg0 jj þ jjtg � tg0 jj:
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hx

hx’

hxx1

hxx1x2

hx’x’1

hx’x’1x’2

g

g’

e
hA

gB

g’B

h

hxB

g’A

gA
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Again write g and g0 as products without cancellation as in (1) and consider
expression (2) for dGðg; g0Þ: Recalling that our length functions and distances are
integer valued, the number dT ðg; g0Þ of non-zero terms in (2) is not greater than C:
According to the lemma we obtain jjtg � tg0 jjoe=2: Further, arguing as above, and

with the convention that empty sums are 0; we obtain

jjgg � gg0 jjp
Xn

1

jjgzi
� ojj

 !
þ jjgx � gx0 jj þ

Xm

1

jjgz0
i
� ojj

 !
:

(Again, when h ¼ x ¼ x0 ¼ e the middle term does not appear.) Since no term in
expression (2) for dGðg; g0Þ is greater than C each of thesepC terms is less than e=2C

and jjgg � gg0 jjpe=2:
The proof in the case of exactness is largely the same, the only difference being

with the support condition. Essentially, instead of showing that product (4) is less
than #e we are to show it is 0: However, with the strengthened hypothesis that

/aa; aa0S ¼ 0; if cAða�1a0ÞXR; and similarly for b; the proof proceeds as for uniform
embeddability. &

Remark on non-trivial amalgamation. All the methods in this note can be used to
prove corresponding results when the free product is replaced by the amalgamated
free product of A and B over a finite subgroup G: Indeed, we replace cA and cB by

new length functions *cA on A and *cB on B such that

(1) *cAðgÞ ¼ 0; for every gAG;
(2) *cA is equivalent to cA; that is, there exist positive constants c and c0 and a non-

negative constant d such that for every aAA;

c*cAðaÞ � dpcAðaÞpc0 *cAðaÞ þ d;

(3) *cAðgahÞ ¼ *cAðaÞ; for all aAA; and g; hAG:

Similar properties are required of *cB: A proof of existence of such length functions
can be found in Jolissaint [Jol90]. Having done so, the methods above apply to the
free product of the metric spaces A=G and B=G; which is quasi-isometric to A �G B:
The case of arbitrary amalgamation is somewhat more difficult and is treated by

Dadarlat–Guentner [DG02].
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