
SOME REMARKS ON THE UNIVERSAL COEFFICIENT THEOREM IN
KK-THEORY

MARIUS DADARLAT

Abstract. If a nuclear separable C*-algebra A can be approximated by C*-subalgebras
satisfying the UCT, then A satisfies the UCT. It is also shown that the validity of the UCT for
all separable nuclear C*-algebras is equivalent to a certain finite dimensional approximation
property.

1. Introduction

Consider the category with objects separable C*-algebras and set of morphisms from A
to B given by the Kasparov group KK(A,B). Two C*-algebras that are isomorphic in this
category are called KK-equivalent. It was shown by Rosenberg and Schochet [13] that the
separable C*-algebras A KK-equivalent to abelian C*-algebras are exactly those satisfying
the following universal coefficient exact sequence

0 → Ext(K∗(A), K∗−1(B)) → KK∗(A,B) → Hom(K∗(A), K∗(B)) → 0

for any separable C*-algebra B. If A has this property we say that A satisfies the UCT.
While not all separable exact C*-algebras satisfy the UCT [15], it is an outstanding open

question whether all separable nuclear C*-algebras satisfy the UCT. The class of separable
nuclear C*-algebras satisfying the UCT is closed under inductive limits [13]. We use recent
results in classification theory [9], [11], [5], [2] to prove the following.

Theorem 1.1. Let A be a nuclear separable C*-algebra. Assume that for any finite set
F ⊂ A and any ε > 0 there is a C*-subalgebra B of A satisfying the UCT and such that
dist(a,B) < ε for all a ∈ F . Then A satisfies the UCT.

Kirchberg proved that the UCT holds true for all nuclear separable C*-algebras if and
only if any purely infinite simple unital separable nuclear C*-algebra with trivial K-theory
is isomorphic to the Cuntz algebra O2 [12, Cor. 8.4.6]. We prove an analogous result
for tracially AF algebras, with O2 replaced by the universal UHF algebra. The class of
tracially AF algebras was introduced in [9] and it includes both the class of real rank zero
AH algebras studied in [8] and the class of algebras constructed in [4]. A separable C*-
algebra A is called residually finite dimensional (abbreviated RFD) if it has a separating
sequence of finite dimensional representations. Equivalently, A embeds in a C*-algebra of
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the form
∏∞

n=1 Mk(n). The suspension of a C*-algebra A is denoted by SA = C0(0, 1) ⊗ A.

The C*-algebra obtained by adding a unit to A is denoted by Ã.

Theorem 1.2. The following assertions are equivalent.
(i) Every separable nuclear C*-algebra satisfies the UCT.
(ii) Every separable nuclear simple unital tracially AF algebra A with K0(A) ∼= Q (as

scaled ordered groups) and K1(A) = 0 is isomorphic to the universal UHF algebra.
(iii) For any separable nuclear RFD C*-algebra D with K∗(D) = 0, for any finite set

F ⊂ D and any ε > 0, there exist a representation π : D → Mk(C) and a finite dimensional

C*-subalgebra B of Mk+1(D̃) such that dist(

(
a 0
0 π(a)

)
, B) < ε for all a ∈ F .

The distance in the statement is computed in Mk+1(D̃).

2. Reduction to residually finite dimensional C*-algebras

The following proposition gathers a number of useful facts proven in [13].

Proposition 2.1. (1) A separable C*-algebra A satisfies the UCT if and only if A is KK-
equivalent to a commutative C*-algebra.

(2) If 0 → J → A → B → 0 is a semisplit exact sequence of separable C*-algebras and if
two of the C*-algebras J,A and B satisfy the UCT, then so does the third.

(3) Let (Bi, ηi) be an inductive system of separable C*-algebras and let B = lim−→ (Bi, ηi) be
its inductive limit. If each Bi satisfies the UCT and B is nuclear, then B satisfies the UCT.

Definition 2.2. A sequence (Ai)
∞
i=1 of C*-subalgebras of A is called exhausting if for any

finite set F ⊂ A and any ε > 0 there is i such that dist(a,Ai) < ε for all a ∈ F .

It is clear that any increasing sequence of C*-subalgebras of A whose union is dense in A
is exhausting. Theorem 1.1 can be rephrased as follows.

Theorem 2.3. Let A be a nuclear separable C*-algebra. Assume that there is an exhausting
sequence (Ai)

∞
i=1 of C*-subalgebras of A such that each Ai satisfies the UCT. Then A satisfies

the UCT.

Each Ai is exact but not necessarily nuclear.

Lemma 2.4. It suffices to prove Theorem 2.3 under the additional assumptions that A = S̃F

and Ai = S̃Fi where F is a unital RFD algebra and (Fi)
∞
i=1 is an exhausting sequence of unital

C*-subalgebras of F and each Fi satisfies the UCT.

Proof. Let A and (Ai) be as in the statement of the Theorem 2.3. The C*-algebra S̃A is
quasidiagonal and in fact by a result of Voiculescu [16] there is a unital completely positive

map θ : S̃A → ∏
Mk(n) such that the induced quotient map Θ : S̃A → ∏

Mk(n)/
∑

Mk(n) is
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a unital ∗-monomorphism. For each i consider the commutative diagram with exact rows

0 //
∑

Mk(n)
//
∏

Mk(n)
//
∏

Mk(n)/
∑

Mk(n)
// 0

0 //
∑

Mk(n)
//

?�

OO

F //?�

OO

S̃A
?�

Θ

OO

// 0

0 //
∑

Mk(n)
// Fi

//
?�

OO

S̃Ai

?�

OO

// 0

where the second and third row are successive pullbacks of the first row. The C*-algebra F
is nuclear as an extension of nuclear C*-algebras and F is RFD since it embeds in

∏
Mk(n).

Since both
∑

Mk(n) and S̃Ai satisfy the UCT, so does Fi by Proposition 2.1(2). Here we use
the fact that the third row is a semisplit extension being a pullback of a semisplit extension.

The sequence (S̃Fi) is exhausting in S̃F hence S̃F and also (by Proposition 2.1 (2)) F will

satisfy the UCT by assumption. Finally we obtain that S̃A hence A satisfy the UCT by
applying once more Proposition 2.1(2). ¤

3. The construction S̃F (Γ)

In this section we revisit a construction of [4] which embeds a given RFD algebra into a
simple tracially AF algebra.

Let F be a separable RFD algebra. Let

E = S̃F = {a ∈ C([0, 1], F ) : a(0) = a(1) = 0}+ C1 eF ⊂ C([0, 1], F̃ )

and construct a sequence of unital finite dimensional representations σn : E → Mr(n)(C)
such that

(iσ) σn is homotopic to the evaluation map at 0, σ0
n : E → Mr(n)(C), σ0

n(a) = a(0)1r(n).
(iiσ) For any m the set {σn : n ≥ m} separates the elements of E.
(iiiσ) If (h(n)) is defined by h(1) = 1, h(n + 1) = r(n) + 1, then h(n) is divisible by n.

The sequence (σn) can be constructed by taking σn to be of the form

(1) σn(a) = νn(a(tn))

with νn a unital finite dimensional representation of F̃ , tn ∈ [0, 1]. By adding a suitable
number of point evaluation maps to σn we may arrange that h(n) is divisible by n. Using
the inclusion Mr(n)(C) ⊂ Mr(n)(C1E) we construct a sequence of unital ∗-homomorphisms
γn : E → Mh(n+1)(E) by

(2) γn(a) =

(
a 0
0 σn(a)

)

Note that γn is homotopic to a unital ∗-homomorphism γ0
n where γ0

n(a) =

(
a 0
0 a(0)1r(n)

)
.
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Let H(n) = h(1)h(2) . . . h(n), En = MH(N)(E) and define Γn, Γ
0
n : En → En+1 by

Γn = idH(n) ⊗ γn, Γ0
n = idH(n) ⊗ γ0

n.

The systems of maps (γn) and (γ0
n) are denoted by Γ and Γ0, respectively. Let A = E(Γ) =

lim−→ (En, Γn) and A0 = E(Γ0) = lim−→ (En, Γ
0
n).

Assume now that (Fi)
∞
i=1 is an exhausting sequence of unital C*-subalgebras of F . The

construction which takes the pair E, Γ = (γn) to E(Γ) is functorial as described in [4,

Remark 4]. Thus since γn maps S̃F i into MH(n)(S̃F i) we obtain unital embeddings Ai =

S̃F i(Γ) ⊂ A = S̃F (Γ). Moreover it is clear that (Ai) is an exhausting sequence of unital
C*-subalgebras of A.

4. F satisfies the UCT if and only if A = S̃F (Γ) does so

In this section we employ the construction S̃F (Γ) and an argument based on shape theory
to reduce the proof of Theorem 2.3 to a certain class of simple tracially AF algebras. Let F
be a separable nuclear RFD C*-algebra and let Γ = (γn) be constructed as above with (σn)
verifying the conditions (iσ)–(iiiσ) of Section 3.

Proposition 4.1. F satisfies the UCT if and only if A = S̃F (Γ) does so.

Proof. The diagram

En
Γn // En+1

En

Γ0
n // En+1

commutes up to homotopy. Therefore A is shape equivalent to A0 = S̃F (Γ0). It follows from
[3, Theorem 3.9] that A is isomorphic to A0 in the asymptotic homotopy category of Connes
and Higson. Since these algebras are nuclear, it follows that they are KK-equivalent [1].
Thus A satisfies the UCT if and only if A0 does so. We are now going to argue that A0

satisfies the UCT if and only if F does so. There is a commutative diagram

0 // MH(n)(SF )

Γ00
n

²²

// En

µn //

Γ0
n

²²

MH(n)(C) //

θn

²²

0

0 // MH(n+1)(SF ) // En+1 µn+1

// MH(n+1)(C) // 0

where θn is a unital ∗-homomorphism, µn : En = MH(n)(S̃F ) → MH(n)(C) is the evaluation
map at 0 and there is a permutation unitary un ∈ MH(n+1)(C) such that

Γ00
n (a) = un

(
a

0

)
u∗n.
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Passing to the inductive limit we obtain an exact sequence

(3) 0 → SF ⊗K → A0 → U → 0

where U is the universal UHF algebra.
From (3) and Proposition 2.1 we see that A satisfies the UCT if and only if F does so. ¤
Using the extension (3) and its construction we see that K∗(A) ∼= K∗(A0) ∼= K∗(SA) ⊕

K∗(U). The order on K0(A) ∼= K0(SF )⊕Q is given by

(4) K0(A)+ = K0(A
0)+ = {(x, r) ∈ K0(SF )⊕Q : r > 0} ∪ {0}.

This follows from the observation that if p, q are projections in (matrices over) En and the
rank of µn(p) is strictly greater than the rank of µn(q), then Γ0

n+r,n(p) Â Γ0
n+r,n(q) for some

large r. The description of positive elements is useful when we construct an AH algebra
whose ordered K-theory is isomorphic to that of A.

5. A = S̃F (Γ) is isomorphic to an AH algebra

Let F and (Fi) be as in Lemma 2.4 and let A = S̃F (Γ) and Ai = S̃Fi(Γ) be constructed
as in the previous section.

Let (ai) be a sequence dense in A. Since the sequence (Ai) is exhausting, after passing to

a subsequence, we may arrange that for each i there is a set {a(i)
1 , a

(i)
2 , . . . , a

(i)
i } ⊂ Ai such

that

(5) ‖aj − a
(i)
j ‖ < 1/i, for all 1 ≤ j ≤ i.

Assume that we are given a sequence ϕi : Ai → B of unital nuclear ∗-homomorphisms.
By nuclearity, for each i there are unital completely positive maps µi : Ai → Mk(i)(C) and

νi : Mk(i)(C) → B such that ‖ϕi(a
(i)
j ) − νiµi(a

(i)
j )‖ < 1/i for all 1 ≤ j ≤ i. By Arveson’s

extension theorem, µi extends to a unital completely positive map µ̃i : A → Mk(i)(C). Define
φi : A → B by φi = νiµ̃i. Then

(6) ‖φi(a
(i)
j )− ϕi(a

(i)
j )‖ = ‖νiµi(a

(i)
j )− ϕi(a

(i)
j )‖ < 1/i

for all 1 ≤ j ≤ i.

Lemma 5.1. (a) If xi ∈ Ai, x ∈ A and ‖xi−x‖ → 0, then ‖φi(x)−ϕi(xi)‖ → 0, as i →∞.
(b) If x, y ∈ A, then ‖φi(xy)− φi(x)φi(y)‖ → 0.

Proof. Since ϕi are ∗-homomorphisms, (b) follows from (a). To prove (a), for any ε > 0 we
are going to find n such that

(7) ‖φi(x)− ϕi(xi)‖ < 8ε for all i ≥ n.

Since (ai) is dense in A, there is m such that ‖x − am‖ < ε. Let n ≥ max(m, 1/ε) be such
that ‖x− xi‖ < ε for all i ≥ n. If i ≥ n, then from (5), we have

‖xi − a(i)
m ‖ ≤ ‖xi − x‖+ ‖x− am‖+ ‖am − a(i)

m ‖ < ε + ε + 1/i < 3ε.
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Using (6), and assuming that i ≥ n we have

‖φi(x)− ϕi(xi)‖ ≤ ‖φi(x)− φi(xi)‖+ ‖φi(xi)− φi(a
(i)
m )‖+

‖φi(a
(i)
m )− ϕi(a

(i)
m )‖+ ‖ϕi(a

(i)
m )− ϕi(xi)‖ ≤

‖x− xi‖+ 2‖xi − a(i)
m ‖+ 1/i < ε + 6ε + 1/i < 8ε.

¤

The reader is referred to [5] for a background discussion on the total K-theory group K(A)
of a C*-algebra A and the partial maps induced on K(A) by approximate morphisms. The
graded group K(A) is acted un by a natural set of coefficient and Bockstein operations [14],
denoted here by Λ. We need the following.

Theorem 5.2. [5] Let A be a unital separable C*-algebra. Suppose that there is an exhausting
sequence (Ai)

∞
i=1 of unital C*-subalgebras of A such that each Ai is simple, exact, tracially AF,

and satisfies the UCT. Then for any finite subset F ⊂ A and any ε > 0, there exists a K-triple
(P ,G, δ) with the following property. For any unital simple infinite-dimensional tracially AF
algebra B, and any two unital nuclear completely positive contractions ϕ, ψ : A −→ B which
are δ-multiplicative on G, with ϕ](p) = ψ](p) for all p ∈ P, there exists a unitary u ∈ U(B)
such that ‖uϕ(a)u∗ − ψ(a)‖ < ε for all a ∈ F .

Proof. If A = Ai for some i the result was proved in [5]. To derive Theorem 5.2, it suffices to
apply [5, Thm. 6.7] for a finite set F ′ that approximates F and is contained in some Ai. ¤

The classification of separable simple unital nuclear tracially AF algebras satisfying the
UCT was completed by Lin [11], who succeeded in proving a key lifting result. Lin’s lifting
result extends to certain exact C*-algebras as follows (the case when A is nuclear is due to
Lin).

Theorem 5.3. [2] Let A, B be infinite dimensional separable simple unital tracially AF
C*-algebras. Suppose that A is exact and satisfies the UCT. Then for any α ∈ KK(A,B)
such that the induced map α∗ : K0(A) → K0(B) is order preserving and α∗[1A] = [1B] there
is a nuclear unital ∗-homomorphism ϕ : A → B such that ϕ∗(x) = α∗(x) for all x ∈ K(A).
If ψ : A → B is another nuclear ∗-homomorphism with ψ∗ = ϕ∗ : K(A) → K(B), then there
is a sequence of unitaries un ∈ B such that ‖ϕ(a)− unψ(a)u∗n‖ → 0 for all a ∈ A.

By Theorem 5.2, if ψ : A → B is another ∗-homomorphism with ψ∗ = ϕ∗ : K(A) → K(B),
then there is a sequence of unitaries un ∈ B such that ‖ϕ(a)− unψ(a)u∗n‖ → 0 for all a ∈ A.

Let F ′ be an abelian C*-algebra that has the same K-theory groups as F and construct

as in the previous section a C*-algebra B = S̃F ′(Γ′) with exactly the same integers r(n).
This is certainly possible since all the irreducible representations of an abelian C*-algebra
are one-dimensional. Reasoning as above K0(B) ∼= K0(SF ′) ⊕ Q with K0(SF ) ∼= K0(SF ′)
and

(8) K0(B)+ = {(x, r) ∈ K0(SF ′)⊕Q : r > 0} ∪ {0}.
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Therefore there is an isomorphism of groups β∗ : K∗(B) → K∗(A) whose K0-component is
an isomorphism of scaled ordered groups.

Proposition 5.4. The C*-algebra A = S̃F (Γ) is isomorphic to the AH algebra B = S̃F ′(Γ′);
hence it satisfies the UCT.

Proof. By construction of B, there is an isomorphism of groups β∗ : K∗(B) → K∗(A) whose
K0-component is an isomorphism of scaled ordered groups. Since B satisfies the UCT, β∗
lifts to an element β ∈ KK(B,A). Since B is also nuclear, by Theorem 5.3 there is a unital
∗-homomorphism ψ : B → A with ψ∗ = β∗ : K(B) → K(A). Let α∗ ∈ HomΛ(K(A), K(B))

be defined by α∗ = ψ−1
∗ . Let α

(i)
∗ ∈ HomΛ(K(Ai), K(B)) be obtained by composing α∗ with

the map K(Ai) → K(A) induced by the inclusion Ai ↪→ A. We have that α
(i)
∗ [1] = [1] and

α
(i)
∗ : K0(Ai) → K0(B) is positive since it is given by the composition of ψ−1

∗ : K0(A) →
K0(B) with K0(Ai) → K0(A). Since Ai is exact and satisfies the UCT, by Theorem 5.3

there is a unital ∗-homomorphism ϕi : Ai → B with ϕi ∗ = α
(i)
∗ : K(Ai) → K(B). Let (φi)

be constructed as discussed before Lemma 5.1. We claim that

(9) φi, ](p) → α∗[p] for all p ∈ Proj∞(A⊗ C),

where C is a fixed unital abelian C*-algebra with K(A) = K0(A ⊗ C). For simplicity we
are going to prove (9) only for p ∈ A a projection. The general case is similar. Let pi ∈ Ai

be a sequence of projections with ‖pi − p‖ → 0. Then ‖φi(p)− ϕi(pi)‖ → 0 by Lemma 5.1.
Therefore there is n such that ‖pi − p‖ < 1 and ‖χ(φi(p)) − ϕi(pi)‖ < 1, where χ is the
characteristic map of the interval [2/3, 1], and i ≥ n. Consequently, if i ≥ n, then

(10) φi, ](p) = [χ(φi(p))] = [ϕi(pi)] = ϕi ∗[pi] = α(i)
∗ [pi] = α∗[pi] = α∗[p].

Using Theorems 5.3 and 5.2 we construct a unital ∗-homomorphism ϕ : A → B such that
ϕ∗ = α∗. This goes as follows. Let Fn = {a1, . . . , an} and let εn = 2−n. Let (Pn,Gn, δn)
be a K(A)-triple given by Theorem 5.2 for the input Fn, εn. One may assume that Pn ⊂
Pn+1, Gn ⊂ Gn+1 and δn > δn+1. Passing to a subsequence of (φi) we may further assume
that φn ](p) = α∗[p] for all p ∈ Pn and all n. By Theorem 5.2 there is a sequence of
unitaries (un) in B such that ‖u∗nφn(a)un − φn+1(a)‖ < εn for a ∈ Fn. It follows that Φn =
u1u2 . . . un−1φnu∗n−1 . . . u∗2u

∗
1 is a sequence of unital completely positive and asymptotically

multiplicative maps such that (Φn(a)) is a Cauchy sequence for all a ∈ {a1, a2, . . . }, a dense
set in A. Thus Φn converges to a unital ∗-homomorphism ϕ : A → B with ϕ∗ = α∗ : K(A) →
K(B). Now ϕ and ψ are ∗-homomorphisms such that ψ ◦ ϕ is approximately unitarily
equivalent to idA and ϕ ◦ ψ is approximately unitarily equivalent to idB by Theorem 5.2.
One concludes that A ∼= B by Elliott’s intertwining argument [7]. ¤

6. Conclusion of proofs

Proof of Theorems 1.1, 2.3.

The result follows by putting together Lemma 2.4, Proposition 4.1 and Proposition 5.4.
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Proof of Theorem 1.2.

(i) ⇒ (ii) Let A be as in (ii). By assumption A satisfies the UCT and it has the same
ordered K-theory as the universal UHF algebra U . By the isomorphism theorem of [9] or [5],
A is isomorphic to U .

(ii) ⇒ (iii) Assume that D is a nuclear separable RFD C*-algebra and K∗(D) = 0. Con-

struct a simple tracially AF algebra D̃(Γ) as in Section 3 where Γ = (γn), γn : D̃ →
Mr(n)+1(D̃), γn(a) =

(
a 0
0 σn(a)

)
and (σn) is a sequence of unital finite dimensional repre-

sentations of D̃ satisfying the conditions (iiσ)–(iiiσ) of Section 3. By construction D̃(Γ) has

the same ordered K-theory as the universal UHF algebra U . By (ii) D̃(Γ) is isomorphic to
U , hence D has the desired approximation property.

(iii)⇒ (i) By [13] it suffices to prove that all nuclear separable C*-algebras A with K∗(A) =
0 satisfy the UCT. Fix such an A and argue as in the proof of Lemma 2.4 to produce an
extension

(11) 0 →
∑

Mk(n)
θ→ F → SA → 0

with F RFD. Since K∗(A) = 0, θ induces an isomorphism of groups θ∗ : K∗(
∑

Mk(n)) →
K∗(F ). The mapping cone C*-algebra Cθ = {(f, x) ∈ C0[0, 1)⊗F⊕∑

Mk(n) : f(0) = θ(x)}
is RFD since both

∑
Mk(n) and F are so. The boundary map δ : K∗(

∑
Mk(n)) → K∗−1(SF )

associated with the exact sequence

(12) 0 → SF → Cθ →
∑

Mk(n) → 0

is an isomorphism since it identifies with θ∗, modulo the isomorphism K∗−1(SF ) ∼= K∗(F ).

This shows that K∗(Cθ) = 0. Set D = SCθ and construct a C*-algebra D̃(Γ) as in Section 3

by using a sequence of unital finite dimensional representations σn : D̃ → Mr(n)(C1 eD)
satisfying the conditions (iσ)–(iiiσ) of Section 3 and the following

(ivσ) There is a sequence of finite dimensional C*-algebras Bn ⊂ Mr(n)+1(D̃) such that

lim
n→∞

dist(

(
a 0
0 σn(a)

)
, Bn) = 0, for all a ∈ D̃.

The existence of the sequence (σn) follows from our assumptions in condition (iii) of Theo-
rem 1.2 and the following discussion. Let F , ε, π and B be as in condition (iii). Since
D is RFD, after adding to π a finite dimensional representation we may assume that
‖π(a)‖ ≥ ‖a‖(1 − ε) for all a ∈ F . By replacing π by π ⊕ π ◦ ι where ι : D = SCθ → D is
given be ι(a)(t) = a(1 − t), t ∈ [0, 1], we may arrange that π is null-homotopic. If h > k

and π̃ : D̃ → Mh(C eD) is the unitalization of π, then π̃ is homotopic to the evaluation map
σ0(a + λ1) = λ1h, a ∈ D and

dist(

(
ã 0
0 π̃(ã)

)
, B + C1) < ε, for all ã ∈ F + C1.
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By applying this construction for an increasing sequence of finite sets (Fn) whose union is
dense in D and εn = 1/n, we obtain a sequence σn = π̃n with the desired properties.

Using the approximation property (ivσ) it is not hard to see that D̃(Γ) is isomorphic to
an AF algebra (see the discussion below), and so it satisfies the UCT. By Proposition 4.1

(with F = Cθ), if D̃(Γ) satisfies the UCT, then D = SCθ does so. Using (11) and (12) we

obtain that F and hence A satisfy the UCT by Proposition 2.1. To verify that D̃(Γ) is AF

it suffices to show that for any r ≥ 1, any finite subset F ⊂ MH(r)(D̃) and any ε > 0 there
is n ≥ r such that

Γn+1,r(F) ⊂ε B

for some finite dimensional C*-subalgebra B of MH(n+1)(D̃); (we write G ⊂ε G ′ if dist(a,G ′) <
ε for all a ∈ G.) By (ivσ) we find n ≥ r such that

(idH(r) ⊗ γn)(F) ⊂ε MH(r)(Bn) ⊂ MH(r)h(n+1)(D̃).

Note that

Γn,r(F) ⊂ u

(F 0
0 MH(n)−H(r)(C1 eD)

)
u∗

for some unitary u ∈ MH(n)(D̃). Therefore

Γn+1,r(F) = (idH(n) ⊗ γn)(Γn,r(F)) ⊂ε B ⊂ MH(n+1)(D̃)

where B is isomorphic to MH(r)(Bn)⊕MH(n+1)−H(r)h(n+1)(C1). ¤

Acknowledgement. The author is grateful to the referee for a number of useful comments.
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