On Approximately Inner Automorphisms of Certain Crossed Product C*-Algebras

Marius Dădărlat; Cornel Pasnicu

Stable URL:
http://links.jstor.org/sici?sici=0002-9939%28199010%29110%3A3A2%3C383%3AOAI%3C3E2.0.CO%3B2-J

Proceedings of the American Mathematical Society is currently published by American Mathematical Society.
ON APPROXIMATELY INNER AUTOMORPHISMS OF CERTAIN CROSSED PRODUCT C^*-ALGEBRAS

MARIUS DĂDĂRLAT AND CORNEL PASNICU

(Communicated by Paul S. Muhly)

ABSTRACT. Let G be a compact connected topological group having a dense subgroup isomorphic to \mathbb{Z}. Let $C(G) \times_{\alpha} \mathbb{Z}$ be the crossed product C^*-algebra of $C(G)$ with \mathbb{Z}, where \mathbb{Z} acts on G by rotations. Automorphisms of $C(G) \times_{\alpha} \mathbb{Z}$ leaving invariant the canonical copy of $C(G)$ are shown to be approximately inner iff they act trivially on $K_1(C(G) \times_{\alpha} \mathbb{Z})$.

Let G be a compact abelian topological group. An element $s \in G$ is called a generator if the group algebraically generated by s is dense in G. G is called monothetic if it has at least one generator. If in addition G is connected, this is equivalent to saying that the topology of G has a base of cardinality $\leq c$. Moreover if G is second countable then the set of generators is measurable and its Haar measure equals 1. (See [4], Theorems 24.15, 24.27.)

From now on, G is a monothetic compact connected infinite topological group and $s \in G$ is a fixed generator. Let $A = C(G)$ be the C^*-algebra of all complex-valued continuous functions on G. We consider the action $\alpha: \mathbb{Z} \rightarrow \text{Aut}(A)$ given by

$$(\alpha_k(a))(x) = a(s^{-k}x), \quad \text{for } a \in A, \ x \in G$$

and the corresponding crossed product C^*-algebra $A \times_{\alpha} \mathbb{Z}$ (see [5, 8]). Denote by $\text{Aut}_{\alpha}(A \times_{\alpha} \mathbb{Z})$ the closed subgroup

$${\beta} \in \text{Aut}(A \times_{\alpha} \mathbb{Z}) : \beta(A) = A$$

where $\text{Aut}(A \times_{\alpha} \mathbb{Z})$ has the topology of pointwise norm convergence. Note that $\text{Aut}_{\alpha}(A \times_{\alpha} \mathbb{Z}) = \{ \beta \in \text{Aut}(A \times_{\alpha} \mathbb{Z}) : \beta(A) \subset A \}$, since A is a maximal abelian self-adjoint subalgebra in $A \times_{\alpha} \mathbb{Z}$ (see [8], Proposition 4.14). We prove the following.
1. **Theorem.** An automorphism \(\beta \in \text{Aut}_A(A \times \mathbb{Z}) \) is approximately inner iff \(\beta \) induces the identity automorphism of \(K_1(A \times \mathbb{Z}) \).

For \(G \) isomorphic to the one-dimensional torus \(T \), the corresponding result is due to Brenken [2].

The proof uses the description of \(\text{Aut}_A(A \times \mathbb{Z}) \) which follows from more general results [3, Theorem 2.8].

Let \(u \) be the generator of \(\mathbb{Z} \) in \(A \times \mathbb{Z} \), i.e. \(A \times \mathbb{Z} = C^*(A, u) \) with \(uau^* = \alpha_1(a) \) for \(a \in A \). Then each \(\beta \in \text{Aut}_A(A \times \mathbb{Z}) \) is given by a unique triplet \((b, x, q) \in U(A) \times G \times \{-1, 1\} \) such that \(\beta(u) = bu^q \) and \(\beta(a)(y) = a(xy^q) \) for \(a \in A, \ y \in G \). Here \(U(A) \) denotes the unitary group of \(A \) (with the norm topology) and the correspondence \(\beta \mapsto (b, x, q) \) is a homeomorphism.

It follows by ([3], Lemma 2.4) that such an automorphism is inner iff \(q = 1 \), \(x = s^k \) for some \(k \in \mathbb{Z} \) and \(b \) has the form \(w(\cdot)w^*(s^{-1}\cdot) \) for some \(w \in U(A) \).

In this case \(\beta(t) = wu^{-k}tu^k w^*, \ t \in A \times \mathbb{Z} \). Therefore if \(\beta \in \text{Aut}_A(A \times \mathbb{Z}) \) is given by \((b, x, q) \) then \(\beta \) is approximately inner provided that \(q = 1 \) and that \(b \) is in the closure of the set

\[
\{ w(\cdot)w^*(s^{-1}\cdot) : w \in U(A) \}.
\]

Indeed, if \(w_n(\cdot)w_n^*(s^{-1}\cdot) \) converges to \(b \) in \(U(A) \) and \(s^{k_n} \) converges to \(x \) in \(G \) then, \(\text{ad}(w_nu^{-k_n}) \) converges to \(\beta \) in \(\text{Aut}_A(A \times \mathbb{Z}) \).

2. **Lemma.** Let \(\beta \in \text{Aut}_A(A \times \mathbb{Z}) \) be given by \((b, x, q) \). If \(\beta \) induces the identity automorphism of \(K_1(A \times \mathbb{Z}) \) then \(q = 1 \) and \(b \in U_0(A) \) (the connected component of the identity in \(U(A) \)).

Proof. Since \(G \) is connected it follows that \(\alpha_1 \) induces the identity automorphism of \(K_1(A) \). Using the Pimsner–Voiculescu exact sequence [6] one sees that the canonical map \(K_1(A) \to K_1(A \times \mathbb{Z}) \) is injective. The obvious map \(\pi^1(G) := [G, T] \to K_1(A) \) is also injective (use for instance the determinant map). Consequently, if \(a \in U(A) \) then \(a \in U_0(A) \) iff \([a] = 0 \) in \(K_1(A \times \mathbb{Z}) \).

For \(\gamma \in \hat{G} \) (the Pontrjagin dual of \(G \)) we have \(\beta(\gamma) = \gamma(x)\gamma^q \). Therefore \([\gamma] = [\gamma^q] \) in \(K_1(A \times \mathbb{Z}) \) and by the above remarks \(\gamma \) is homotopic to \(\gamma^q \) as maps \(G \to T \). By a result of Scheffer [7] this is possible only if \(q = 1 \). The equation \(\beta(u) = bu \) implies that \([\beta(u)] = [b] + [u] \) in \(K_1(A \times \mathbb{Z}) \) hence using the hypothesis on \(\beta \) and the above remarks we find that \(b \in U_0(A) \).

3. **Lemma.** The map \(w \to w(\cdot)w^*(s^{-1}\cdot) \) from \(U(A) \) to \(U_0(A) \) has dense range (compare with Theorem 4 in [2]).

Proof. Let \(A_s = \{ a(\cdot) - a(s^{-1}\cdot), \ a \in A \} \). Our first aim is to prove that \(A_s + C.1 \) is a dense (linear, self-adjoint) subspace of \(A \). This is accomplished by showing
that it contains the *-subalgebra of $C(G)$ generated by the characters of G (which is dense in $C(G)$ by the Stone–Weierstrass Theorem). We use the fact that

$$S = \{ \chi(s) : \chi \in \hat{G}\setminus\{1\} \}$$

is a dense subset of T and $1 \notin S$ (see [4], Theorem 25.11). Thus if $\gamma \in \hat{G}\setminus\{1\}$ then $a = (1 - \gamma(s^{-1}))^{-1}\gamma$ is such that $\gamma = a(\cdot) - a(s^{-1}\cdot) \in A_1$.

Any $v \in U_0(A)$ has the form $v = \exp(ih)$ for some $h \in C(G, \mathbb{R})$. By the above discussion we can find $a \in C(G, \mathbb{R})$ and $\lambda \in \mathbb{R}$ such that $a(\cdot) - a(s^{-1}\cdot) + \lambda$ is arbitrarily close to h in norm. Also there is $\gamma \in \hat{G}\setminus\{1\}$ such that $|e^{i\lambda} - \gamma(s)|$ is arbitrarily small. Then for $w = \gamma \exp(i\lambda)$,

$$w(\cdot)w^*(s^{-1}\cdot) = \gamma(s) \cdot \exp i(a(\cdot) - a(s^{-1}\cdot))$$

will approximate v as well as we want.

Proof of the theorem. If $\beta \in \text{Aut}_A(A \rtimes \mathbb{Z})$ given by (b, x, q) induces the identity automorphism of $K_1(A \rtimes \mathbb{Z})$ then by Lemma 2, $b \in U_0(A)$ and $q = 1$.

Using Lemma 3 we can find a sequence $w_n \in U(A)$ such that $w_n(\cdot)w_n^*(s^{-1}\cdot)$ converges to b in $U_0(A)$. The discussion before Lemma 2 shows that β is approximately inner. The reverse implication is a general fact.

References

INCREST, DEPARTMENT OF MATHEMATICS, Bd. Păcii 220, 79622 Bucharest, Romania
You have printed the following article:

On Approximately Inner Automorphisms of Certain Crossed Product C\# - Algebras

Marius Dădărlat; Cornel Pasnicu

Stable URL:

http://links.jstor.org/sici?sici=0002-9939%28199010%29110%3A2%3C383%3AOAIAC%3E2.0.CO%3B2-J

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References

7. **Maps Between Topological Groups That are Homotopic to Homomorphisms**

Wладимир Scheffer

Stable URL:

http://links.jstor.org/sici?sici=0002-9939%28197206%2933%3A2%3C562%3AOMTBGT%3E2.0.CO%3B2-D

NOTE: The reference numbering from the original has been maintained in this citation list.