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ABSTRACT. Let B be a stable continuous trace C*-algebra with spectrum 
Y . We prove that the natural suspension map S, : [Co(X), B ]  -+ [Co(X)@ 
Co(R), B @ Co(R)] is a bijection, provided that both X and Y are locally 
compact connected spaces whose one-point compactifications have the homo- 
topy type of a finite CW-complex and X is noncompact. This is used to 
compute the second homotopy group of 9 in terms of K-theory. That is, 
[Co(R2), B ]  = Ko(go);where Bo is a maximal ideal of B if Y is com- 
pact, and go= B if Y is noncompact. 

For C*-algebras A, B let Hom(A, B) denote the space of (not necessarily 
unital) *-homomorphisms from A to B endowed with the topology of point- 
wise norm convergence. By definition y, ,  w E Hom(A , B) are called homotopic 
if they lie in the same pathwise connected component of Hom(A , B) . The set 
of homotopy classes of the *-homomorphisms in Hom(A, B) is denoted by 
[A, B] . For a locally compact space X let Co(X) denote the C*-algebra of 
complex-valued continuous functions on X vanishing at infinity. The suspen- 
sion functor S for C*-algebras is defined as follows: it takes a C*-algebra A 
to A €3 Co(R) and y, E Hom(A , B) to 

For commutative A, B this corresponds via Gelfand duality to the usual topo- 
logical suspension functor. Therefore, it is natural to consider the induced map 

and to think about an analogue of the Freudenthal suspension theorem (see [E, 
R, Sc]). Let 3 denote the compact operators on an infinite separable Hilbert 
space. In this note we prove the following: 
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Theorem 1. Let X , Y be locally compact connected spaces whose one-point com- 
pactifications X+ , Y+ have the homotopy type of a finite CW-complex, and let 
B be a continuous trace C*-algebra with spectrum Y. Assume that either B 
is stable, i.e., B - B 8 3,or B is n-homogeneous, n > 4 ,  and Y+ is 
homotopy equivalent to a CW-complex of dimension at most [2n/3] - 3.  If X 
is noncompact then the suspension map 

is a bijection. 

Theorem 2. Let Y, 9 be as in Theorem 1.  If B is stable then [CO(R~) ,B ]  = 
Ko(Bo)where Bois the subalgebra of A? consisting of all the sections vanishing 
at a base point if Y is compact and Sois equal to B if Y is noncompact. 

The idea of the proof of Theorem 1 is to use a bundle version of the classical 
Whitehead theorem (see Theorem 3) in order to reduce the problem to the cases 
9= Co(Rq)@ Z and respectively 9= CO(Rq)@ Mn which are known. The 
stable case is implicitly contained in [Seg] (see also [R]) as it corresponds to 
the suspension isomorphism for complex connective K-theory. The unstable 
case follows from the stable one via a connectivity result in [DN]. Theorem 2 
provides a computation of the second homotopy group of B . The homotopy 
groups of C*-algebras have been introduced in [R]. The proof of Theorem 2 
is based on the fact that Hom(Co(R2),Z) is homotopy equivalent to B U ,  
the classifying space for the infinite unitary group U .  The computation of 
[Co(Rn), B ]  for n > 3 involves twisted connective K-theory and it is not 
discussed here. 

We review here some elementary bundle theory needed in order to state and 
prove Theorems 3 and 4. These theorems should be clear to anyone who is fa- 
miliar with the classical Whitehead theorem, but sketched proofs are nonetheless 
included for the convenience of the reader. 

We use the setting of [HI. Let G be a topological group, and let 5 = (E, p , Y) 
be a principal G-bundle. Given a continuous left action G x F -, F the relation 
( e ,  y )g  = (eg, g-ly) defines a right G-space structure on E x F . Let EF 
denote the quotient space E x F I G ,  and let p ~ :EF -, Y be induced by the 
map E x F -, E -, Y . The triplet c[F] = (EF, p~ , Y) is a locally trivial 
bundle with fiber F and structural group G.  It is particularly important for 
our purposes that the assignment F -, c[F] is functorial and behaves naturally 
with respect to the induced bundles; any G-equivariant map 

a :  F -, F ' ,  a ( g . x )  = g - a ( x )  

induces a G-equivariant map 

(To simplify notation sometimes we will make no difference between a bundle 
and its total space.) Furthermore given a continuous map f :  X + Y there are 
natural bundleisomorphisms 9 ,q' such that the following diagram is commu- 
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tative: 

f *(<)[Fl 
Of ' ( 0  f *(5)[Ft1+ 

Similarly a local trivialization U x G -+ above some subset U of Y 
induces a commutative diagram 

U x F  W I u  

relating the corresponding local trivializations of 5[F] and {[F'] . 
For topological spaces T ,  W let Map(T, W) denote the space of all con- 

tinuous maps from T to W endowed with the compact-open topology. One 
defines T(Y, t[F]) to be the space of all continuous sections of <[F], i.e., 
T(Y, <[F]) consists of all y E Map(Y, <[F]) satisfying p ~ y  = id^ . We let 
T(Y, c[F]) have the induced compact-open topology. The path components of 
T(Y ,'c[F]) correspond to the homotopy classes of sections of <[F] which are 
denoted by [Y , {[F]lr. There is an alternative description of T(Y, 5[F]) in 
terms of G-equivariant maps. Let M ~ ~ ' ( E ,  F) consist of all u E Map(E, F) 
satisfying u(e.g) = g-I .u(e),  e E E , g E G . By [H, Theorem 8.1 p. 461 there 
is a bijection q from M ~ ~ ' ( E ,  F) to T(Y , <[F]). The section correspond- 
ing to u is q(u)(eG) = (e, u(e))G in EF for each eG E E/G = Y . Letting 
M a p G ( ~ ,F) have the compact-open topology one has: 

Proposition 1. The map q : M a p G ( ~ ,F)-,T(Y, <[F]) is a homeomorphism. 
Proof. The continuity of q , g-' is essentially a local problem so that one can 
reduce the proof to the case of trivial bundles. We leave the details to the reader. 

Recall that a continuous map f :  T -r W is called an n-equivalence for 
n 2 1 if f induces a one-to-one correspondence between the path components 
of T and W and if, for every t E T,  f,:n,(T, t) -, n,(W, f(t))  is an 
isomorphisms for 0 < q < n and an epimorphism for q = n ; f is called a 
weak homotopy equivalence if f is an n-equivalence for all n 2 1 . We need 
the following result, which is the core of Whitehead's theorem. 

Proposition 2. Let f :  T -+ W be an n-equivalence, and let (P  , Q) be a relative 
CW-complex with dim(P - Q) 5 n . Given maps g :  Q -r T and h: P -+ W 
such that h 1 Q = f o g , there exists a map g' : P -,T such that g'l Q = g and 
f o g' is homotopic to h relative to Q . 
Proof. This is [Sp, Theorem 22, p. 4041. 

Theorem 3. Let 5 = (E ,  p , Y) be a principal G-bundle whose base Y is a 
jinite CW-complex. Let F,  F' be left G-spaces, and let a: F -, F' be a 
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G-equivariant map. Assume that a is an n-equivalence, and consider the induced 
map 

: [Y , t[Fllr [Y , t [F ' l l r+ 

If dim Y 5 n , this map is surjective; if dim Y 5 n - 1 , it is injective. 

Proof (sketch). One proves separately the su rjectivity and the injectivity of at. . 

The proof is done by induction on cells. At each step one uses Proposition 

2. The characteristic map f :  B4 --, Y of a generic cell eq gives rise to an 
induced bundle f *(() . Since the q-dimensional ball is contractible, there is a 
G-equivariant trivialization B4 x G -,f *(c). This can be used, as explained 
in our preliminary discussion on bundles, to obtain the following commutative 
diagram: 

t [F l  tCF'1 

B4 x F (id,0) B4 x F' 
Therefore, by choosing good local trivialization of (, one has to deal with 

ordinary maps rather than with sections of bundles. 

Next we consider a bundle version for maps of pointed spaces. This is useful 
for the study of homomorphisms into continuous-trace C*-algebras with non- 
compact spectrum. Assume that so E F is fixed under the action of G. The 
space T(Y, ([F]) is pointed by the section yo that corresponds to the constant 
equivariant map that maps E onto so . Assume further that F is a metric space 
with metric d and that G acts on F by isometries. Define M a p f ( ~ ,  F) to 
consist of maps y in M a p G ( ~ ,  F) such that d(y(e), so) converges to 0 as 
the projection p(e) of e on Y goes to infinity. Via the identification with 
MapG(E,F), we define To(Y, <[F]) = ?(Mapf(E, F)). One has a pointed 
version of Proposition 1: Mapf(E, F) is homeomorphic to To(Y, t [F]) .  
Since G acts on F by isometries, one can use d to measure distances be- 
tween points on the same fiber of <[F], and this is a well-defined operation. 
Thus To(Y, t[F]) consists of the all sections y such that d(y(y) , yo(y)) van- 
ishes at infinity. It is also clear that d(yl , y2) = supyEy d(y(y) ,yO(y)) is a 
metric on To(Y, t [F] ) .  

Assume that there is a G-invariant open neighbourhood V of so and a G- 
homotopy h: F x [0, 11 -, F contracting V at so such that h(s, O) = s , 
h(v, 1) =so,  and h(gs,  t) = gh(s, t) for all s E F ,  v E V, t E [0, I] ,  and 
g E G . The image of yo denoted by Yo is a copy of Y embedded in ([F] . The 
homotopy h produces a homotopy H on E X G  F that contracts the tubular 
neighbourhood E x G V of Yo onto Yo = E x G {so). Denote by Too(Y, ([F]) 
the subspace of To(Y, c[F]) consisting of all the sections that are equal to yo 
on a neighbourhood of infinity. Using the homotopy H it is easily seen that 
the embedding Too(Y, t[F]) r To(Y, ([F]) is a homotopy equivalence. In 
particular, it induces a bijection between the path components of these spaces 
of sections t Y , 5  [Fllr, -t [Y, t[FIlr, . 
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One has a version of Theorem 3 for based homotopy. Let (F ,  so), (F', sb) 
be left G-spaces with base points. Assume that F ,  F' satisfy all the con- 
ditions considered above. Therefore, it is meaningful to consider the spaces 

5 7 7(LF1), (LF1) tiF']) and Too(Y, 5[F'l). 

Theorem 4. Let ( = ( E, p , Y) be a principal G-bundle whose base Y is a 
locally compact connected space whose one-point compactification is a finite CW- 
complex. Let F , F' be as above, and let a :  F -+ F' be a G-equivariant map 
that preserves the base points. Assume that a is an n-equivalence, and consider 
the induced map 

at*: [Y, C[Fllr, [Y, t[F'Ilr,. + 

If dim Y 5 n , this map is surjective; if dim Y 5 n - 1 , it is injective. 


Proof (sketch). By the discussion before Theorem 4 it is enough to prove the 

statement for the map 05. : [Y, ([F]lr, -, [Y, ([F1]lr, . This is very similar 

to the proof of Theorem 3. 


Recall from [Dl that any stable continuous trace C*-algebra with locally com- 
pact, separable, spectrum Y is of the form To(Y, ~ [ X ] )  for some principal 
Aut(Z)-bundle < over Y . This bundle is uniquely determined up to isomor- 
phism by its Dixmier-Douady class a(() E H3(Y,Z) . The action Au t (3 )  x 
3-,3is the canonical one. 

In order to make our discussion clearer we choose to work in a slightly more 
general context. In addition, this will be useful in order to handle simultaneously 
both the stable and the unstable cases. To this purpose we start our discussion 
with some separable C*-algebras A, B , D and a principal Aut(B)-bundle ( = 
(E , p , Y) . The canonical action Aut(B) x B -, B , ( a ,  b) -, a(b) induces left 
actions: 

Aut(B) x Hom(A , B) -, Hom(A , B) , ( a ,  yl) -, a o yl , 
A u t ( B ) x B @ D - , B @ D ,  ( a ,  b @ d ) * a ( b ) @ d ,  
Aut(B) x H o m ( A @ D , B @ D )  -, H o m ( A @ D , B @ D ) , ( a , y l )-, 
(a@ id(D)) y, , 

which give rise to various bundles associated with 5 ,  namely, ([B], 
([B @ Dl, ([Hom(A , B)] , ([Hom(A @ D , B @ D)] . (We work with minimal 
tensor products.) The C*-algebras B , B @ D are pointed by the zero element, 
and Hom(A , B) , Hom(A@ D , B @ D) are pointed by the null homomorphism. 

It is clear that these base points are fixed points for the action of Aut(B) . 
Since A is separable, the topology of Hom(A, B) is metrizable. If (a,) is a 
dense sequence in the unit ball of A ,  then d(yl , y ) = C z , Ilyl(a,) - y/(an)ll/2' 
is an Aut(B)-invariant metric on F = Hom(A, B) . Thus it makes sense to 
consider in this context spaces of type To(Y, t[F]) and Too(Y, ([F]) . If Y 
is compact, we identify T(Y, ([F]) with To(Y, ([F]) . 

Note that To(Y, ([B]) has a natural structure of C*-algebra. Moreover, it is 
easily seen that the norm topology of To(Y, <[B]) coincides with the compact- 
open topology. The relevance of the above bundles for our problem is made 
clear by Proposition 3, which describes a map between Hom-spaces as a map 
between spaces of sections of bundles. This is the common idea in bundle 
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(sheaf)-theory. Let 

be the maps induced by the tensor product with id(D) . Note that z~ is Aut(B)- 
equivariant. Let 

be induced by the composition with some homomorphism /3 E Hom(D, A). 

Proposition 3. There are natural commutative diagrams 

where the vertical arrows are homeomorphisms. 

While the content of this proposition is intuitively clear, the technical aspects 
of the proof require some care. We need two preliminary lemmas. Note that 
by putting G = Aut(B) and F = B in Proposition 1 one gets an isomorphism 
of C*-algebras q: To(Y, <[B]) -, Mapf(E, B) . 
Lemma 1. There is an isomorphism of C*-algebras 

p :  Map$(E, B) @ D + Mapf(E, B @ D),  

which takes u @ d to the map e -, u(e) 8 d . 
Proof. This is a straightforward generalization of the isomorphism Mapo(Y , B) 

@DwMapo(Y,  B @ D ) .  


Lemma 2. There is a natural homeomorphism 


8:  Hom(A, Mapf(E, B)) + Mapf(E, Hom(A , B)). 

Proof. For y :  A + M ~ ~ $ ( E ,  by B(y)(e)(a) B) define 8(y) :  E-,Hom(A,B) 
= y(a)(e). 8 and 8-I are easily seen to be continuous. This is the analogue 
of the homeomorphism Hom(A , Mapo(Y, B)) 21 Mapo(Y, Hom(A , B)) . 
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Using the above lemmas, we prove the first part of Proposition 3 by putting 
together the following three commutative diagrams: 

@id(D)Hom(A, Mapf(E, B)) - Hom(A 8D , Mapf(E, B) @ D) 

Hom(A @ D , Mapf(E, B 8D))le* 

~ a p f(E, Hom(A , B)) -Map: (E, Hom(A 8D , B @ D)) 

The maps q , p , 8 were defined in Proposition 1 and Lemmas 1, 2. The 
proof for the second diagram in Proposition 3 is similar. 

Proposition 4. Let A, B , D be C*-algebras, let 5 be a principal Aut(B)-bundle 
over afinite connected CW-complex Y ,  and let 9= T(Y, t[B]). 

(a) Assume that z~ = @ id(D): Hom(A , B) -,Hom(A 8D ,  B 8D) is an 
n-equivalence. 

Then ?D = @ id(D) induces a map [A, 281 -, [A 8D , B' 8D] which is 
surjective if dim Y 5 n and injective if dim Y 5 n - 1. 

(b) Let /3 E Hom(D, A), and assume that P' : Hom(A , B) -+ Hom(D , B) , 
P1(u,)= u, o P , is an n-equivalence. Then the map 7, : [A, B'] -, [D ,281, -
P(w) = y o P ,  is surjective if dim Y < n and injective if dimY < n - 1.  

(c) Assume that A, B ,  and respectively D are continuous trace C*-algebras 
with spectra X , 2 ,and respectively W and trivial Dixmier-Douady class. Then 
the statements (a) and (b) are still valid for 39 = To(Y, ([B]) with noncompact 
Y , provided that the one-point compactijications of Y, X ,  Z , and W are finite 
C W-complexes. 
Proof. (a) and (b) follow from Theorem 3 and Proposition 3. 

(c) For noncompact Y the difficulty comes from the fact that the princi- 
pal bundle S may be not trivial when restricted to the complement of any 
compact subspace of Y. One way to overcome this difficulty is to impose 
restrictions on A, B , and D . For instance assume that A and B are contin- 
uous trace C*-algebras with trivial Dixmier-Douady class and nice spectrum. 
Then it is not hard to see that the pointed space (F,so) = (Hom(A, B) , the 
null homomorphism)) satisfies all the conditions that are needed in Theorem 
4. This is explained in what follows. Let A have spectrum X .  Assume 
that X+ is a finite CW-complex. There is a homotopy h': X f  x [0, 11 -+ X+ 
such that hl(x, 0) = x and hl(u, 1) = m for all x in X+ and u in some 
open neighbourhood of m in X + .  The homotopy h' defines a homotopy 
ht : Hom(A , B) + Hom(A, B) , t E [O, 11, such that ho is the identity map 
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and hl contracts some neighbourhood of the null homomorphism onto the null 
homomorphism. Moreover, h, is Aut(B)-equivariant for any t E [0, 11. Hav- 
ing all above, one uses Theorem 4 and Proposition 3 to derive the statement. 

Proof of Theorem 1. For n finite or infinite let Zndenote the compact op- 
erators on an n-dimensional complex Hilbert space. Represent 95' in the 
form To(Y, c[Zn]) for some principal Aut(Xn)-bundle < over Y. In virtue 
of Proposition 4 it is enough to prove that the suspension map 

is an (m - 2)-equivalence with m = [2n/3]. 
If n is infinite, this is proved in Corollary 3.1.8 in [DN]. If n is finite, we use 

Theorem 6.4.2 in [DN], which tells us that the natural map Hom(Co(X) ,Xn)+ 

Hom(Co(X),3)is an m-equivalence for n > 3.  Therefore, in the commuta- 
tive diagram 

Hom(Co(X)7 z n )  -Hom(Co(X)8 CO(R), 3 n  8 Co(R)) 

the left vertical arrow is an m-equivalence, the right vertical arrow is an (m-1)-
equivalence, and the bottom horizontal arrow is an m-equivalence. Conse-
quently, the suspension map is an (m - 2)-equivalence. 

Proof of Theorem 2. By Theorem 1 one can identify [ C o ( ~ 2 ) ,  with [Co(R3), Bo] 
908 Co(R)]. The space Hom(Co(R) ,38Co(R)) is homotopy equivalent to 
Z x BU.  The connected component of the null homomorphism, denoted by 
Hom(Co(R),5F 8Co(R))0, consists of all the homomorphisms that induce the 
identity map on K-theory. This component is homotopy equivalent to B U .  
The composition with the Bott map P :Co(R)-+ 38 Co(R3) induces maps 

p' : Hom(5F 8co( R ~ ),38CO (R)) + Hom(C0 (R) ,38CO (R))o , 

By Proposition 3 one can identify 7 with 

One uses here the connectedness of Y . The fact that P' is a weak homotopy 
equivalence [Seg, DN] in conjunction with Theorem 4 show that 

is a bijection. 
It follows that 7 induces a bijection at the level of the homotopy classes of 

homomorphisms. Therefore, the suspension map followed by the composition 
with the Bott homomorphism and by the Bott isomorphism induce bijections 
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