THE C*-ALGEBRA OF A VECTOR BUNDLE
MARIUS DADARLAT

ABSTRACT. We prove that the Cuntz-Pimsner algebra Op of a vector bundle E of rank
> 2 over a compact metrizable space X is determined up to an isomorphism of C(X)-
algebras by the ideal (1 — [E])K°(X) of the K-theory ring K°(X). Moreover, if E and
F are vector bundles of rank > 2, then a unital embedding of C(X)-algebras O C Op
exists if and only if 1 — [E] is divisible by 1 — [F] in the ring K°(X). We introduce
related, but more computable K-theory and cohomology invariants for Og and study
their completeness. As an application we classify the unital separable continuous fields
with fibers isomorphic to the Cuntz algebra O,,+1 over a finite connected CW complex
X of dimension d < 2m + 3 provided that the cohomology of X has no m-torsion.

1. INTRODUCTION

Let E € Vect(X) be a locally trivial complex vector bundle over a compact Hausdorff
space X. If we endow E with a hermitian metric, then the space I'(E) of all continuous
sections of E becomes a finitely generated projective Hilbert C(X)-module, whose iso-
morphism class does not depend on the choice of the metric. Since the action of C'(X) is
central, I'(E) is naturally a Hilbert C(X)-bimodule. Let O denote the Cuntz-Pimsner
algebra associated to I'(E) as defined in [16]. Since I'(E) is projective, O is isomorphic
to the Doplicher-Roberts algebra of I'(E), see [7]. Let us recall that if £ is the Hilbert
C(X)-module ®,>oT'(E)®", then Of is obtained as the quotient of the Toeplitz (or ten-
sor) C*-algebra T generated by the multiplication operators T¢ : € = &, Te(n) = £ ®@n,
¢ eT(FE), n €&, by the ideal of “compact operators” K (&). If X is a point, then E = C"
for some n > 1, and Ogp is isomorphic to the Cuntz algebra O,,, with the convention that
01 = C(T). In the general case, Op is a locally trivial unital C'(X)-algebra (continuous
field) whose fiber at z is isomorphic to the Cuntz algebra O,,(,), where n(z) is the rank of
the fiber E, of E, see [19, Prop. 2].

The motivation for this paper comes from an informal question of Cuntz: What are
the invariants of F captured by the C(X)-algebra Og? In other words, how are E and
F related if there is a C'(X)-linear *-isomorphism Or = Op. We have shown in [5] that
if X has finite covering dimension, then all separable unital C'(X)-algebras with fibers
isomorphic to a fixed Cuntz algebra O,,, n > 2, are automatically locally trivial. Thus it

Date: July 19, 2010.

2010 Mathematics Subject Classification. 46135, 46180, 19K35.

The author was partially supported by NSF grant #DMS-0801173.
1



2 MARIUS DADARLAT

is also natural to ask which of these algebras are isomorphic to Cuntz-Pimsner algebras
associated to a vector bundle of constant rank n.

If F is a line bundle, then OF is commutative with spectrum homeomorphic to the circle
bundle of E, see [20]. One verifies that if E, F' € Vect;(X) and X is path-connected, then
Ogp = Op as C(X)-algebras if and only if E = F or E = F, where F is the conjugate of
F, see Proposition 4.3. In view of this property, we shall only consider vector bundles of
rank > 2. In the first part of the paper we answer the isomorphism question for Opg.

Theorem 1.1. Let X be a compact metrizable space and let E, F € Vect(X) be complex
vector bundles of rank > 2. Then Og embeds as a unital C(X)-subalgebra of O if and
only if there is h € K°(X) such that 1 — [E] = (1 — [F])h. Moreover, O = Of as
C(X)-algebras if and only if there is h as above of virtual rank one.

Thus the principal ideal (1 — [E])K%(X) determines Og up to isomorphism and an
inclusion of principal ideals (1 — [E])K%(X) C (1 — [F])K°(X) corresponds to unital
embeddings O C Op. In particular if E' € Vecty,+1(X), then Op = C(X) ® Op,41 if and
only if [E] — 1 is divisible by m > 1.

Let K9(X) = ker(K°(X) rang H°(X,7)) be the subgroup of K(X) corresponding to

clements of virtual rank zero, and set [E] := [E] — rank(E) € K°(X). We denote by

H*(X,Z) the Cech cohomology. Using the nilpotency of K° (X) we derive the following:

Theorem 1.2. Let X be a compact metrizable space of finite dimension n. Suppose that
Tor(KY(X),Z/m) = 0. If E,F € Vectpy1(X), then Op = Op as C(X)-algebras if and
only if ([E] — [F]) (2211(71)k—1mn—k[ﬁ]k—1) is divisible by m™ in K°(X).

In view of Theorem 1.1 it is natural to seek explicit and computable invariants (e.g.
characteristic classes) of a vector bundle E that depend only on the principal ideal (1 —
[E])K°(X) and hence which are invariants of Op.

For each m > 1, consider the sequence of polynomials p,, € Z[x],

n
x 1 l(n)
1 x) = £(n)m" lo (1—|——) = —1)FI ek gk
1) o) =ty og (14 1) = D21
where £(n) denotes the least common multiple of the numbers {1,2,...,n} and the index
[n] indicates that the formal series of the natural logarithm is truncated after its nth term.

Theorem 1.3. Let X be a finite CW complex OI dimension d~and let E, F € Vect,1+1(X).
If Op = Of as C(X)-algebras, then p|q/2|([E]) — paj2)([F]) is divisible by ml4/2 i
K%(X).

For x € R, we set |z] := max{k € Z : k < z} and [z] := min{k € Z : k > z}.
Theorem 1.3 exten~ds to finite dimensional compact meﬁrizable spaces: if n > 1 is an
integer such that K°(X)"* = {0}, then p,([E]) — p,([F]) is divisible by m" in K°(X)
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whenever Op = Op as C'(X)-algebras. The same conclusion holds for infinite dimensional
spaces X but in that case n depends on E and F.
Concerning the completeness of the above invariant we have the following:

Theorem 1.4. Let X be a finite CW complex of dimension d. Suppose that m and |d/2]!
are relatively prime and that Tor(H*(X,Z),Z/m) = 0. If E,F € Vectym+1(X), then
Of = OF as C(X)-algebras if and only if p|a/2|([E]) — plase) ([F]) is divisible by ml/2) in
K%(X).

The condition that m and |d/2]|! are relatively prime is necessary. To show this, we
take m = 2 and let X be the complex projective space CP2. Then K%(X) is isomorphic
to the polynomial ring Z[z] with 23 = 0, [11]. Let E and F be bundles with K-theory
classes [E] = 3 4 3z and [F] = 3+ z. Then [E] = 3z and [F] = z, so that py(3z) —
p2(r) = 8(z — x?) is divisible by 4 and yet Theorem 1.2 shows that Op % Op, since
([E] = [F])(2 = [F]) = 42 — 222 is not divisible by 4. The vanishing of m-torsion is also
necessary in both Theorems 1.3 and 1.4 as it is seen by taking m = 2 and X = RP?V CP?,
where RP? is the real projective space. Indeed, let E, F € Vectz(X) be such that F is
trivial and [E]|gp2 = z is the generator of K9(RP?) = Z/2 and [E]|cp2 = 2z + 222. Then
([E]=[F))(2—=[F]) = (24+22+222)(2) = 4z+422 is divisible by 4 and yet Op % C(X)® 03
by Theorem 1.1 since [E] — 1 = 2 + 2z + 2z + 222 is not divisible by 2.

Next we exhibit characteristic classes of E which are invariants of Og. For each n > 1
consider the polynomial g, € Z[x1, ..., x,]:

kn
n -

O m= Y (ypeye ey kDL,

1k tkn 11 [t
1... n P
Koy +2ko+-nkn=n 1! n: k’l. kn

Thus q1(71) = 21, g2(71, 22) = mx2—23, g3(71, T2, 13) = m2x3—3ma 22+273, etc. Let chy,
be the integral characteristic classes that appear in the Chern character, ch =), -, %chn.

Theorem 1.5. Let X be a compact metrizable space and let E, F € Vecty,+1(X). If Op =
Op as C(X)-algebras, then q,(chi(E),...,chy,(E)) — qn(chi(F),...,ch,(F)) is divisible by
m™ in H**(X,7Z), for alln > 1.

Reducing mod m” it follows that the sequence g, (chi(E), ..., ch,(E)) € H**(X,Z/m"),
n > 1, is an invariant of the C'(X)-algebra Op.

Let us denote by Op,41(X) the set of isomorphism classes of unital separable C(X)-
algebras with all fibers isomorphic to O,,4+1. In the second part of the paper we study
the range of the map Vecty,+1(X) — Op41(X). This relies on the computation of the
homotopy groups of Aut(Oy,+1) of [5]. If T' is a set, we denote by |T'| its cardinality.

Theorem 1.6. Let X be a finite CW complex of dimension d. Suppose that m > [(d —
3)/2] and Tor(H*(X,Z),Z/m) = 0. Then each element of Om+1(X) is isomorphic to Op
for some E in Vecty11(X). Moreover |Opi1(X)| = |K°(X) ® Z/m| = |[H®(X,Z/m)|.
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The hypotheses of Theorem 1.6 are necessary. Indeed, to see that the condition m >
[(d — 3)/2] is necessary even in the absence of torsion, we note that Vect3(S®) = {x}
since m7(U(3)) = 0 by [12], whereas O3(S®) = m7(Aut(03)) = Z/2 by [5]. To see that
the condition on torsion is necessary when m > [(d — 3)/2], we note that if X = RP?,
then Vects(SX) = {*} since K°(SX) = K'(X) = {0} and dim(5X) = 3, whereas
03(8X) = KY(X,Z/2) =2 7Z/2 by [5].

The study of the map Vecty4+1(X) = Opmt1(X) simplifies considerably if X is a sus-
pension as explained in Theorem 7.1 from Section 7.

In Section 2 we prove Theorems 1.1 - 1.2. Theorem 1.3 is proved in Section 3 and
Theorem 1.4 is proved in Section 6. The proofs of Theorem 1.5 and Theorems 1.6 are
given in Section 4 and respectively Section 5.

Cuntz-Pimsner algebras come with a natural T-action and hence with a Z-grading. The
question studied by Vasselli in [19] of when Og and Op are isomorphic as Z-graded C(X)-
algebras is not directly related to the questions addressed in this paper. I would like to
thank Ezio Vasselli for making me aware of the isomorphism O = Op for line bundles,
see [20].

2. WHEN 18 Og ISOMORPHIC TO Op?

In this section we prove Theorems 1.1-1.2 and discuss the case of line bundles.

Proof. (of Theorem 1.1) We identify Ko(C(X)) with K(X). Let ¢ denote the canonical
unital inclusion C(X) — Og. By [16], the K-theory group Ky(Op) fits into an exact
sequence

Ko(C(X)) 2 Ko(C(X)) 25 Ko(Op),

where 1 — [E] corresponds to the multiplication map by the element 1 — [E]. Therefore
ker(tp)s = (1 — [E])K°(X). Suppose that ¢ : Op — Op is a C(X)-linear unital x-
homomorphism. Then ¢ o tp = ¢p and hence ker(tg). C ker(vp)s. It follows that (1 —
[E)K°(X) c (1 - [F])K°(X) and hence 1 — [E] = (1 — [F])h for some h € K°(X). If ¢
is an isomorphism, we deduce similarly that 1 — [F] = (1 — [E])k for some k € K°(X). In
that case rank(E,;) = rank(Fy) for each x € X and h must have constant virtual rank
equal to one.

Conversely, suppose that there is h € K°(X) such that (1 — [E]) = (1 — [F])h. We
have Op ® Oy = Op and Op ® O = Of by [3]. We are going to show the existence of
a unital C'(X)-linear embedding O C Of by producing an element x € KKx(Og,OFp)
which maps [1o,] to [1o,] and then appeal to [13]. If the virtual rank of A is equal to
one and hence h is invertible in the ring K°(X), we show that x is a K K y-equivalence
and that will imply that OF is isomorphic to Op. Since the operation of suspension is an
isomorphism in K K, it suffices to show that there is n € K Kx(SOg, SOF), respectively
n € KKx(SOg,SOr)™!, such that no [Stg] = [Str].
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Let us recall that the mapping cone of a *-homomorphism o« : A — B is
Co ={(f,a) € C([0,1], B) ® A: f(0) = a(a), f(1) = 0}.
If v is a morphism of continuous C'(X)-algebras, then the natural extension

A

0 SB c, -~

A 0,

where A\(f) = (f,0) and p(f,a) = a, is an extension of continuous C(X)-algebras.

Let KK(X) denote the additive category with objects separable C(X)-algebras and
morphisms from A to B given by the group KKx (A, B). Nest and Meyer have shown
that KK(X) is a triangulated category [14]. In particular, for any diagram of separable
C(X)-algebras and C'(X)-linear *-homomorphisms

SB—2.c, -2 .-A_—2.B
|

Sgpl (el wi @i

s X, Py Y

such that the right square commutes in KK(X), there is v € K Kx(Cy, C, ) that makes to
remaining squares commute. If the right square commutes up to homotopy of C'(X)-linear
«-homomorphisms, then 7 can be chosen to be a C(X)-linear *-homomorphism, see [18,
Prop. 2.9]. The general case is proved in a similar way, see [14, Appendix A]. Let us note
that if ¢ and ¢ are K Kx-equivalences, so is v by the exactness of the Puppe sequence
and the five-lemma.

We need another general observation. If

J

™

0 J B

B/J 0

is an extension of separable continuous C(X)-algebras, then there is a surjective C'(X)-
linear *-homomorphism p : C; — SB/J, u(f,b) = mo f, and hence an extension of
separable continuous C'(X)-algebras

0 cJ c; -

SB/J —=0.

If B/J is nuclear then it is C(X)-nuclear and since C'J is K K x-contractible it follows
that x4 must be a K K x-equivalence, see [2].

JE TE

Let us recall that O is defined by the extension 0 K(€) TE 0.
By Theorem 4.4 and Lemma 4.7 of [16] there is a commutative diagram in KK(X):

[1E]

K(€)

] l T ie]
[id] - (2]
C(X) —=C(X)

Tk
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where both vertical maps are KK x-equivalences. Here ig is the canonical unital in-
clusion, [£] is the class in KKx(K(£),C(X)) defined by the bimodule £ that imple-
ments the strong Morita equivalence between K(€) and C(X) and [E] is the class in
KKx(C(X),C(X)) defined by the finitely generated C(X)-module I'(E). Note that
lid] — [E] € KKx(C(X),C(X)) induces the multiplication map K(X) —5 KO(X).
Pimsner’s statements refer to ordinary K K-theory but his constructions and arguments
are natural and preserve the C'(X)-structure.

1 and

After tensoring the C*-algebras in the above diagram by O, we can realize [£]
[id]—[E] as K K x classes of C'(X)-linear *-homomorphisms ¢z and respectively ag. This is
easily seen by using the identification K Kx (C'(X), B) = KK (C, B) for B a C(X)-algebra
and noting that K(&) contains a full projection since £ is isomorphic to C'(X) ® £2(N) by

Kuiper’s theorem. Thus we obtain a diagram

JE®id

K(£) ® On Tr ® Ou

¢ET TiE@id

C(X) ® One —E+ C(X) ® Ose

that commutes in KK(X). We construct a similar diagram for the bundle F. Let H :
C(X) ® O — C(X) ® O be a C(X)-linear *-homomorphism which sends [1¢(x)z0..]
to h € K'(X) = Ko(C(X) ® Os). Note that H is a KK y-equivalence whenever h is
invertible in the ring K°(X). Since 1 — [E] = (1 — [F])h by assumption, the diagram
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commutes in the category KK(X). The proof of the theorem is based on the following
commutative diagram in KK(X):

SOp ® Ou
uE@mT
ST ® Ose —E = sy © Ono —— K(E) ® Ose 22 T 0 0
SiE®idT A\\’YE YE TiE®id
SC(X) ® Ose c;E C(X) ® One —E> O(X) ® Oug
C
SC(X) ® O CZ,F C(X) ® Ons —E+ O(X) ® Oug
Sip®idi :’YF YR iip@id
STh & On — €5 O —— K(F) @ O 2% T 0 O
uF®idl
SOp ® O

The elements v, yp and vp are constructed as explained above since the category KK(X)
is triangulated. Moreover v and v are K K x-equivalences since they are induced by
the K Kx-equivalences ig,%p and ip,®¥pr. Arguing similarly, we see that v is a KKx-
equivalence whenever h is invertible in the ring K°(X). The morphisms g and up are
associated to the Toeplitz extensions 0 — K(£) — Tg — Op — 0 and respectively
0 — K(F) = Tr — Op — 0 and they are also K K x-equivalences as we argued earlier in
the proof. Let us note that (ug ® id) o Ag o (Sig ®ido,, ) = Stg ® ido,, and (up ®id) o
Aro (Sip®ido,, ) = Str ®ido,, by a simple direct verification. In this way we are able
to find an element

7= [up®id]o’ypo’yo*yglo[,uE®id]_1 € KKx(SOp®0s,SOr®0) = KKx(SOg, SOF)
such that the following diagram commutes in KK(X).

SC(X)

n

SOE SOF
Unsuspending, we find x € K Kx(Og, Op) which maps [1o,] to [1o,], since xo[tg] = [tF].
If h is invertible in K°(X), then x is a K Kx-equivalence. It follows that Op = OF as
C(X)-algebras by applying Kirchberg’s isomorphism theorem [13]. If x is just a K Kx-
element which preserves the classes of the units, we invoke again [13] in order to lift x to
a unital C(X)-linear embedding O C Op. O
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Set Ty, (b) := S_p_ (=1)FLmm=k k=L Then (m + b)T,(b) = m"™ — (—b)".

Lemma 2.1. Let R be a commutative ring such that R"t! = {0} for some n > 1 and
let a,b € R. If there is h € R such that a = b+ mh + bh, then (a — b)T,(b) = m"h.
Conversely, if (a — b)T,,(b) = m™h for some h € R, then m"(a — b —mh — bh) = 0.

Conversely, suppose that (a —b)T,(b) = m™h for some h € R. Then (a—b)T,,(
m"(m + b)h and hence (a — b)(m"™ — (—=b)") = m™(m + b)h. But (a — b)(—b)" = 0 since
R = {0}. Therefore m™(a — b —mh — bh) = 0. O

We are now prepared to prove Theorem 1.2.

Proof. Since dim(X) < n, we can embed X in R?"*! and then find a decreasing sequence
X; of polyhedra whose intersection is X. We have K°(X;)"*! = {0} since dim(X;) <
2n+ 1 (see the next section for further discussion). It follows that K°(X)™*! = {0} since
KO(X) =~ liﬂl?o(Xi). Let us write [E] — 1 = m+a and [F] — 1 = m + b where a = [E]
and b = [F] € K°(X). By Theorem 1.1, O = Op if and only if [E] — 1 = ([F] — 1)(1 + h)
for some h € K9(X) and hence if and only if a = b+ mb + bh for some h € K°(X). With
this observation we conclude the proof by applying Lemma 2.1. O

For a hermitian bundle E we denote by E the conjugate bundle, by Eq the set of all
nonzero elements in £ and by S(F) the unit sphere bundle of E.

Proposition 2.2. Let E and F be hermitian line bundles over a path-connected compact
metrizable space X. Then Op = Op as C(X)-algebras if and only if either E = F or
ExF.

Proof. Vasselli has shown that for a line bundle E, O = C(S(E)) as C(X)-algebras [20].
Therefore it suffices to show that there is a homeomorphism of sphere-bundles ¢ : S(E) —
S(F) if and only if either E 2 F or E = F. The isomorphism O = O was noted in [20].
One can argue as follows. The conjugate bundle E has the same underlying real vector
bundle as E but with opposite complex structure; the identity map F — E is conjugate
linear. If we endow E with the conjugate hermitian metric it follows that the identity
map is fiberwise norm-preserving and hence it identifies S(E) with S(E).

Conversely, suppose that there is a homeomorphism of sphere-bundles ¢ : S(E) — S(F).
By homogeneity we can extend ¢ to a fiber-preserving homeomorphism ® : £ — F such
that ®(Ey) C Fy. Let pg : E — X be the projection map and let ig be the inclusion
map (E,0) C (F,Ep). Let us recall that the underlying real vector bundle Fg has a
canonical preferred orientation which yields a Thom class up € H?(E, Ey,Z), see [15,
ch.9, ch.14]. Since X is path connected, Z = H°(X,Z) = H?(E, Ey,7Z) = Zug by the
Thom isomorphism. The first Chern class ¢;(E) is equal to the Euler class e(Er) =
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(ph;) 1% (ug). The map ® induces a commutative diagram

Zup = H*(E, Ey,Z) —— H?(E,Z) L H?(X,7)

i* *

Zup = H(F, Fy, ) — "~ H*(F,Z) <" H*(X,Z)

Since ® is a homeomorphism, ®*(ur) = +ug and hence ¢ (F) = ¢ (F). It follows that
either E~ For E = F. O

3. K-THEORY INVARIANTS OF Op

In this section we construct a sequence (p,(E)), of K-theory invariants of Og. The
class of the trivial bundle of rank 7 is denoted by r € K°(X). All the elements of the ring
K°(X) are nilpotent [11].

Recall that for E € Vect,,41(X) we denote by [E] the KO(X) -component [E] — (m+ 1)
of [E]. We introduce the following equivalence relation on K°(X): a ~ b, if and only if
a = b+mh+bh for some h € K9(X). Rewriting a = b+mh+bh as m+a = (m+b)(1+h)
in K°(X), it becomes obvious that ~ is an equivalence relation since 1 + h in invertible
in the ring K°(X) with inverse 1+ _,, (—=1)kh*. Moreover, if E, F' € Vect,,11(X), then
(1—[ED)K°X) = (1 — [F))K°(X) if and only if [E] ~ [F].

Note that with our new notation, Theorem 1.1 shows that O = Op = [E] ~ [F]. In
other words the equivalence class of [E] in K°(X)/ ~ is an invariant of Og. In order to
obtain more computable invariants, for each m > 1, we use the sequence of polynomials
pn € Z[z] introduced in (1). It is immediate that

ln+1)

(3) Pnt1(x) = men(ﬁﬂ) + (—Uan”H.

n+1
The first five polynomials in the sequence are:

pi(z) =z,

pa(z) = 2ma — 2,

p3(r) = 6m2z — 3ma? + 223,

pa(z) = 12m3z — 6m?z? + 4ma® — 324,

ps(z) = 60m*z — 30m322 + 20m2x® — 15ma? + 1225.

Lemma 3.1. For any n > 1 there are polynomials uy, Sn+1 € Z[z,y| and v, € Z[x] such
that each monomial of sp+1 has total degree > n+ 1 and

(1) pn(z +y) = pu(x) + Pu(y) + 2y un(z, y),
(i) pn(z +my +2y) = pu(x) + m™ v (y) + sny1(2, ).

Proof. Tt follows from the binomial formula that for any polynomial p € Z[x] with p(0) = 0
there is a polynomial u € Z[x,y] such that p(z + y) = p(z) + p(y) + xyu(z,y). This
proves (i). Let us now prove (ii). Set V,(z) = Yp_,(—=1)*a*/k = log(1 + ). Then
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prn(x) = £(n)m™V,(z/m). Each monomial in = and y that appears in expansion of the
series ;<1 (—=1)* 71 (z + y + 2y)*/k has total degree > n + 1. Therefore, the equality
of formal series log(1 + = + y + zy) = log(1 + x) + log(1 4+ y) shows that in the reduced
form of the polynomial r,4+1(z,y) := Vi(z + y + 2y) — Vi (x) — V,,(y) all the monomials
have total degree > n + 1. It follows that

pn( +my +zy) = Ln)m" Vo (z/m +y +x/m - y)
)" Vi (z/m) + L(n)m"Vy,(y) + L(n)m" ryq1(x/m, y)
= pu(T) + Mm" - vn(y) + sny1(z,9),

={(n

where s,41(z,y) := £(n)m"rpi1(x/m,y) and v,(y) := €(n)V,(y). Since both p, and v,
have integer coefficients, so must have s,1. g

Let X be a finite CW complex of dimension d with skeleton decomposition
=X 1CcXpCcX1C---CXy=2X.
Consider the induced filtration of K*(X)
K} (X) =ker (K*(X) = K*(Xy-1)) = image(K*(X, X,1) = K*(X)).
One has {0} = K7, (X) C Kj(X) C--- C K{(X) C K§(X) = K*(X) and
K (XK} (X) € Ky (X).

Since the map K%(X2i41) — K°(Xy;) is injective, it follows that K9, ;(X) = K9, ,(X).
We will use only the even components of this filtration corresponding to K°(X), namely

(4) {0} = Kg(d/2j+2(X) - Kng/QJ (X) C--- C K3(X) € Kg(X) = K'(X).
Since K°(X) = K%(X) = K§(X) we have

(5) K%(X) ¢ K9,(X).

In particular, K0(X)l/2+!1 ¢ K9 | (X) and hence K°(X)l4/2+1 = {0}.

Definition 3.2. Let X be a finite CW complex of dimension d. For each n > 1 we define
the map

Hn VeCthrl(X) - I?O(X)/Kgn+2(X)a
by pin(E) = mn(pn([E])) where , NKO()E) — IN(O(X)/KS,HQ(X) is the natural quotient
map. Forn > |d/2], pn(E) = pa([E]) € K°(X) since K3, ,(X) = {0}.

Theorem 3.3. Let X be a finite CW complex and let E, F € Vecty,+1(X). If O and
Op are isomorphic as C(X)-algebras, then p,(E) — un(F) is divisible by m™, for n > 1.
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Proof. Set a = [E] and b = [F]. If Op = Op, then by Theorem 1.1 there is h € K9(X)
such that a = b + mh + bh. Then, by Lemma 3.1 (ii)

pn(a) = pn(b + mh + bh) = pn(b) + mnvn(h) + 5n+1(ba h)a

and s,,11(b,h) € KO(X)" C K9, ,o(X) by (5). Thus pin(E) — pin(F) = m"my(ve(h)). O
As a corollary, we derive Theorem 1.3, restated here as follows:

Corollary 3.4. Let X be a finite CW complex of dimension d and let E, F' € Vecty,+1(X).
If Op = Op as C(X)-algebras, then p 42| ([E]) — plaj2)([E]) is divisible by mld/2 ip
KO(X).

Proof. Tf n > |d/2], then K9, ,(X) = {0} and so p,(a) — p,(b) € m"K°(X). O

Remark 3.5. Let us note that |49 (E) determines ji|q/2)4+1(E) for k > 1. Indeed, letting
n = |d/2] it follows from (3) that

ln+k)

o) mFp, (E),

Ptk (E) =

since KO(X)"t* = {0}. Let us note that taj2)(E) is also related to the lower order
invariants. Indeed, it follows immediately from (3) and (5) that if 1 < j < |d/2], then

()
G —1)

where m;j—1 stands for the quotient map I?O(X)/ng_FQ(X) — I?O(X)/ng(X). From
this, with n = |d/2], we obtain

m pj—1(E) = mj5-1(p;(E)),

t(n)
t(n —j)

Assuming that Tor(ng(X)/ngH(X),Z/m) =0 for all j > 1, and that m and |d/2]!
are relatively prime, it follows that if pq/o)(E) — pjas2)(F) is divisible by mld/2 | then
wi(E) — pi(F) is divisible by m? for all j > 1.

The groups I?O(X)/ng(X) are homotopy invariants of X, and they are actually in-
dependent of the CW structure [1]. Let k’(X) denote the reduced connective K-theory of
X and let B : K¥72(X) — kI(X) be the Bott operation. One can identify k¥ +2(X) with
KY%(X, Xs;) in such a way that B corresponds to the map K°(X, Xa;) — K°(X, Xaj_2).
Thus the image of B/ : kXH2(X) — kKO(X) = K%(X) coincides with K3;(X), and hence
w;(E) can be viewed as an element of k°(X) /BT E2T2(X).

1 i (E) = i (i (E)).
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4. COHOMOLOGY INVARIANTS OF Opg

Let us recall that V,,(z) = log(1 + x)},; and consider the polynomials

n! x x s 4 !
Wa() = spn(e) = nlin” log (1 + E)M = nim"Vi(—) = ;(_W m T
For a polynomial P in variables x1,...x,, we assign to the variable x; the weight k and
denote by P(z1,...,Zn)(,) the sum of all monomials of P of total weight n. For example

if P(x1, 2, 23) = (21 + % + %3)2, then P (21,22, 23) 3 = r172. Consider the polynomials

n
1 T, 1 pen! rx T \"
) = W (2t I0) SNyt (T )
an{1 n) ST + +n! (n) ;( ) r \1! et n!/ (n)
i( 1)r71 n—r Z n!r! k1 k
r=1 ki+...+kp=r 11k n'kn kl'knlr ! "
k1 +2kot. Ankn=n
Thus
'k ek, — 1)
G (1, -y T) = > (= 1yt (et etha) T Ut ko — 1) itk

L L0 S Y S
k1 +2ko+...4+nkn=n 1! n: ]{21. k?n

Consider also the polynomials r, obtained from ¢, by taking m =1, i.e.

n
T T an! sz Tn\"
. =nlV. (7 —) = -1 —(— —) .
(s o) =tV (4t 0 ;( (T )

Lemma 4.1. The polynomials qn(x1, ..., xs) and rp(x1, ..., x,) have integer coefficients.

Proof. We have a factorization

= 1. k) --- E Nk 4+ -+ ko — 1)
where a(j, k) = % It follows that the coefficient of x’fl ---zFn is an integer since it
involves a multinomial coefficient and numbers a(j, k) which are easily seen to be integers

by using the recurrence formula a(j, k) = (jf__ll)a(j, k — 1) where a(j,1) = 1. O

Let us recall from [11] that the components of the Chern character ch(E) =} ;. sk(E)/k!
involve integral stable characteristic classes si, also denoted by chy. The classes s; have
two important properties. If one sets so(F) = rank(E), then for £ > 0:

Sk(EEBF) = Sk(E) + Sk(F)

(6) Sk(E®F): Z Z]::‘;'Sl(E)SJ(F)

it+j=k

We are now ready to prove Theorem 1.5, restated here for the convenience of the reader:
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Theorem 4.2. Let X be a compact metrizable space and let E,F € Vecty,+1(X). If
O = Op as C(X)-algebras, then ¢,(s1(E), ..., sp(E)) — gn(s1(F), ..., sn(F)) is divisible by
m" in H**(X,7), for each n > 1.

Proof. Multiplying by n!/¢(n) in Lemma 3.1, (ii), we obtain

|
(7) Wy +mh 4 yh) = Waly) = m"nt Va(B) + 72 snsa (9 1)
Recall that s, is a polynomial with all monomials of degree at least n + 1. Let us make
in (7) the substitutions

0 Yn RO hy
y_i ”.+E’ h_i ..._A'_E’

where y; and hy have weight k. With these substitutions we have

Wn(y)<n> =qn(y1, - yn), n! Vn(h)(n) =1p(h1, s hn),

whereas #!L)snﬂ(y, h)<n> = 0. By grouping the terms of y + mh + yh of the same weight,

we have
|
_y1+mhy | y2+mho + 2y1hy Yn + mha + 32 i, Aivily
y+mhtyh ="+ o ot - :
and hence

n!
Wy +mh+yh)my = @u(y1 +mha, ya +mha + 2yl ooy +mhn + Y Z.,T.,yz‘hj)
52, !
Thus, the equation Wy, (y +mh + yh) )y — Wa(y)my = n! Viu(h)(,y implies that

n!
(Y1 + mha, yo + mhy + 2y1ha, oo Y +mhy + Y aYili) = an (Y1 yn)
i+j=n -
is equal to m"r,(h, ..., hy).
Suppose now Op = Op. Then, by Theorem 1.1, [E] = [F] + mH + [F|H for some
H € KY(X). Using (6) it follows that for k > 1

ShUB) = k() + msn(H) + 3 i) (),

itj=k '
and hence
an(51(E), ey Sn(E)) — qn(s1(F), ..oy sp(F)) = m" rp(s1(H), ..., sp(H)).
O

It follows by Theorem 4.2, that the image of g,,(s1(E), ..., s,(E)) in H*(X,Z/m") is
an invariant of O for each n > 1. The first four invariants in this sequence are:

51(F) € H*(X;Z/m)
méo(E) — 51(E)? € HY(X;Z/m?)
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m?253(E) — 3ms1(E)é2(E) + 251(F)? € HS(X;Z/m?)
m354(E)—m?2(3s2(E)%+451(E)$3(E))+12mé1 (E)?$2(E)—651(E)* € H3(X;Z/m*)

The classes si(E) are related to the Chern classes c;(E) via the Newton polynomials:
sk(E) = Qp(c1(E), ..., ck(E)) € H*(X;Z),

which express the symmetric power sum functions in terms of elementary symmetric func-
tions ;. The first four Newton polynomials are

Q1(01) = o1,
Q2(01,09) = 07 — 209,
Q3(01,09,03) = 0} — 30102 + 303,
Q1(01,02,03,04) = 0‘11 — 40%02 + 40103 + 20% —40y.
By expressing si, in terms of Chern classes we obtain a sequence of characteristic classes
of E which are invariants of Og. The first four classes in the sequence are:
(1) é1(E) € HA(X;Z/m)
(2) (m —1)¢1(E)? — 2meo(F) € HY(X;Z/m?)
(3) (m? —3m +2)¢1(E)3 — (3m? — 6m)¢é1(E)ca(E) + 3m2é3(E) € HY(X;Z/m?)
(4) (m> —Tm? + 12m — 6)¢1(E)* — (4m3 — 24m? + 24m) ¢y (E)?éo(E) +
(4m3 — 12m?2)é1 (E)és(E) + (2m? — 12m?)ée(E)? — 4m3éy(E) € H(X; Z/m?)
Here we denote by ¢ (E) the image of the Chern class ¢;(E) under the coefficient map
H™(X,7) — H*(X,Z/m").

Corollary 4.3. Let X be a compact metrizable space and let L and L' be two line bundles
over X. If Opyr = Oy as C(X)-algebras, then ¢, (1, ...,1)(c1 (L) —c1(L")™) is divisible
by m™ for alln > 1.

Proof. If L is a line bundle, then si(L) = c1(L)¥. Since all monomials of ¢, have weight
N, gn(s1(L), ..., sn(L)) = gn(1,...,1)c1 (L)™. O
Let us note that there is a more direct way to derive cohomology invariants for Og.

Proposition 4.4. Let X be a compact metrizable space. Then s,(pn([E])) is an element
of H*"(X,7) whose image in H*"(X,Z/m") is an invariant of Og, n > 1.

Proof. Suppose that Op = Op as C(X)-algebras. Then, we saw in the proof of the

Theorem 3.3 that p,([E]) — pp([F]) = m™c + d for some ¢ € K°(X) and d € K°(X)"!.
From the multiplicative properties of the s,-classes (6), one deduces that s, vanishes on
KO%(X)"*1, Therefore s,(pn([E])) — sn(pn([F])) = m™sn(c). O

We note that this is not really a new invariant, since it is not hard to prove that

su(pl([E]) = U(n)an(s1(E), ..., su(E)).

Theorem 4.2 shows that we can remove the factor £(n) and hence obtain a finer invariant.
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5. PROOF OF THEOREM 1.6

Recall that O,,+1(X) denotes the set of isomorphism classes of unital separable C(X)-
algebras with all fibers isomorphic to O,,+1. These C(X)-algebras are automatically
locally trivial if X is finite dimensional.

For a discrete abelian group G and n > 1 let K(G,n) be an Eilenberg-MacLane space.
It is a connected CW complex Y having just one nontrivial homotopy group m,(Y) = G.
A K(G,n) space is unique up to homotopy equivalence. For a CW complex X, there is
an isomorphism H"(X,G) = [X, K(G,n)].

Let us recall from [9] that if Y is a connected CW complex with 71 (Y") acting trivially
on m,(Y) for n > 1, then Y admits a Postnikov tower

=Y, oY YooYV =K(m((Y),1).

Each space Y,, carries the homotopy groups of Y up to level n. More precisely, there
exist compatible maps Y — Y, that induce isomorphisms m;(Y) — n(Y,,) for i < n and
mi(Yy) = 0 for ¢ > n. Each map Y,, — Y,,_1 is a fibration with fiber K (m,(Y),n). Thus
Y,, can be thought as a twisted product of Y;,_1 by K(m,(Y),n). The space Y is weakly
homotopy equivalent to the projective limit I'&nYn.

Proposition 5.1. Let X be a finite connected CW complex and let m > 1 be an integer.
Then | Q1 (X)] < [HEn (X, Z/m).

Proof. Let Y be a CW complex weakly homotopy equivalent to the classifying space
BAut(Op,+1) of principal Aut(Oy,+1)-bundles. Then, there are bijections

Om+1(X) = [X, BAut(Om+1)] = [X, Y]

The homotopy groups of Aut(O,,,+1) were computed in [4]. That calculation gives mo_1(Y)
0 and mor(Y) = Z/m, k > 1. Consequently, the Postnikov tower of ¥ reduces to its even
terms

o= Yo > Yoo — - = Yo = K(Z/m,2).

The homotopy sequence of the fibration K(Z/m,2k) — Yar, — Yoo gives for all choices
of the base points an exact sequence of sets

[X, K(Z/m, 2k)] — [X, YYQk] — [X, ng_z].
This shows that
|[X, Yor)| < |[X, Yap—o]| - |H*M(X, Z/m)|.

By Whitehead’s theorem, if n > dim(X)/2, then the map ¥ — Y5, induces a bijection
[X,Y] = [X,Ys,]. It follows that

XYl < [ 1*#(X,2/m)| = [H (X, Z/m)|. O
1<k<n
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We consider a commutative ring R which admits a filtration by ideals
- CRy 1 CRy,C---CR1=R

with the property that R Ry C R4 and there is n such that R,.1 = {0}. On R we
consider the following equivalence relation: a ~ bif there is h € R such that a = b+mh+bh.
Let us denote by R/~ the set of equivalence classes.

Lemma 5.2. Let R be a filtered commutative ring with Ry,+1 = {0}. Suppose that
Tor(Ry/Rk+1,Z/m) = 0 for allk > 1. Then |R/~| = |RQZ/m| = [[;>1 |Ri/Rk1QZ/m)|.

Proof. Using the exact sequence for Tor, we observe first that Tor(R;/Ry,Z/m) = 0 for
all k > 1 and hence if h € R satisfies mh € Ry for some k, then h € R;. Using the exact
sequences
0— Rk—I—I ®Z/m — Ry, ®Z/m — Rk/Rk:—H ®Z/m —0

we see that |[R ® Z/m| = [[;>q |Rk/Rk+1 ® Z/m|. For each k choose a finite subset
Aj. C Ry, such that the quotien(map Tk : R — Ri/Rp41 ® Z/m induces a bijective map
7+ Ap = Ri/Rpi1 ® Z/m. Consider the map n : A1 X Ag X -+ x A, — R defined by
n(ai,...,an) = a1 + -+ + a,. To prove the proposition it suffices to show that 7 induces
a bijection of 77 : A} x Ay X -+- X A, — R/~. First we verify that 7 is injective. Let
ag, by € Ag, 1 <k <n and assume that

a4+ ap~by 4+ by
We must show that a;, = by, for all k. Set r, = ap +---+a, and s, = by, + -+ b,. Then
Tk, S, € Ry. Since a1 + ro9 ~ by + s9 there is hy € Ry such that
a1 + 1o = by + so +mhy + brhy + soh

and hence a3 — by — mhy € Rs. Therefore m(a1) = m1(b1) and so a; = by. Arguing by
induction, suppose that we have shown that a; = b; foralli < k—1. Set w = a1+ -+ag_1.
By assumption w + r; ~ w + s and hence there is h € R; such that

(8) w+ 1L = w + Sk + mh + wh + sih.

Let us notice that if h € R; for some ¢ < k — 1, then equation (8) shows that mh =
(ri — sx) — wh — sph € R U Riy1 = Ri+1 and hence h € R;11. This shows that in fact
h = hj, € Ry. From equation (8) we obtain

ap — by — mhy = Sg11 — k1 + (w + Sk)hk € Ri11.

This shows that 7 (ar) = 7,(bx) and hence ay = by.

It remains to verify that 7 is surjective. In other words for any given z; € Ry we must
find ar € Ag, 1 < k < n, such that z; ~ a1 + --- + a,,. We do this by induction, showing
that for each k& > 1 there exist a; € A;, 1 <i <k and x4 € Rg41 such that

r1~a) -+t ag+ Tpg,
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and observe that x,; = 0 since R,+1 = {0}.

By the definition of A; there is a; € A; such that 7i(a1) = m1(x1) € R1/Ry @ Z/m.
Therefore there exist hy € Ry and yo € Ro such that a1 = z1 + mhy + yo. Setting
r9 = x1h1 — y3 € Ry we obtain

x1 ~ x1 +mhi +x1h1 = a1 + xo.
Suppose now that we found a; € A;, 1 <i <k — 1 and x; € Rj such that
Ty ~ar -+ +ag—1+ T
Let a € Ag be such that mi(ag) = 7 (zr). Then there exist hy € Ry and ygi1 € Ris1
such that ay = xx + mhy + yx41. Thus
ar+ -+ ag-1+ T ~ar+ o+ ago1 +xp +mhy + (a1 + o+ ag1 + x) by
=a1+---+tap_1+arp+ Tp4

where xp11 = (a1 + -+ + ag—1 + k) bk — Y1 € Riy1- 0
Theorem 5.3. Let X be a finite connected CW complex of dimension d and let m > 1 be

an integer. Suppose that Tor(H*(X,7Z),Z/m) =0 and that m > [(d — 3)/2]. Then:

(i) Any separable unital C(X)-algebra with fiber Op41 is isomorphic to O for some
E € Vectmi1(X).
(ii) If E,F € Vecty11(X), then O = Op as C(X)-algebras if and only if there is
h € K°(X) such that 1 — [E] = (1 — [F])h.
(iii) The cardinality of Om41(X) is equal to |KO(X) @ Z/m| = |H®*"(X,Z/m)).

Proof. Part (ii) is already contained in Theorem 1.1 but we state it again nevertheless since
a new proof of the implication (1 — [E])K°(X) = (1 — [F])K°(X) = Op = Op is given
here under the assumptions from the statement of the theorem. Recall that we defined an
equivalence relation on K°(X) by a ~ b if and only if a = b4+mh+bh for some h € K°(X).
Let v : Vectmi1(X) — K°(X)/~ be the map which takes E to the equivalence class of
[E] = [E] — m — 1. We saw in Section 3 that 1 — [E] = (1 — [F])k for some k € K(X) if
and only if [E] ~ [F] in K°(X), i.c. y(E) = y(F). Let w : Vectmy1(X) = Opy1(X) the
map which takes E to the isomorphism class of the C'(X)-algebra Og. We shall construct
a bijective map x such that the diagram

Vectmi1(X) == Opy1(X)
A X
KO(X)/~

is commutative. Let us note that in order to prove the parts (i), (ii) and (iii) of the
theorem it suffices to verify the following four conditions.

(a) ~y is surjective;
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(b) If w(E) = w(F) then y(E) = y(F);

(©) [Om(X)| < [H(X, Z/m);

(d) |KO(X)/~| = |[K"(X) ® Z/m| = [H**(X, Z/m)|.
Indeed, from (a) and (b) we see that there is a well-defined surjective map y : image(w) —
RO(X)/~, given by x(w(E)) = 7(E) and hence |[K%(X)/~| < [image(w)| < |Op1(X)].
On the other hand from (c) and (d) we deduce that |Op,11(X)| < |K%(X)/~|. Altogether
this implies that w is surjective and x is bijective.

It remains to verify the four conditions from above. If m > [(d — 3)/2], then the map
Vectm1(X) = K9(X), E — [E]—m—1 is surjective by [10, Thm. 1.2] and this implies (a).
Condition (b) follows from Theorem 1.1 and condition (c) was proved in Proposition 5.1.
It remains to verify condition (d) using the assumption that Tor(H*(X,Z),Z/m) = 0. The
first step is to use a known argument to deduce the absence of m-torsion in the K-theory
of X and its skeleton filtration. We will then appeal to Lemma 5.2 to conclude the proof.

Let p be a prime which divides m. Then Tor(H*(X,Z),Z/p) = 0 by assumption. Let
Zp) denote Z localized at p, i.e. the subring of Q consisting of all fractions with denom-
inator prime to p. Let (E,,d,) be the Atiyah-Hirzebruch spectral sequence H*(X,Z) =
K*(X). Recall that E3* = H*(X,K'(pt)) and EX = K5T(X)/K:T(X), see [1]. Since
Zp) is torsion free, it follows from the universal coefficient theorem that the spectral se-
quence (B ® Z),d, ® 1) is convergent to K*(X) ® Z,). On the other hand since all the
differentials d, are torsion operators by [1, 2.4] and since H*(X,Z) has no p-torsion, it
follows that d, ® 1 = 0 for all » > 2 and hence Fs ® L) = Eco @ Zy). Therefore for all
q=0

9) H?(X,2) ® L) = (Kpg(X)/K342(X)) © L.

Since Tor(G' @ Z,,Z/p) = Tor(G,Z/p) for all finitely generated abelian groups G, it
follows that Tor(K Oq( )/ Kgq 4+2(X),Z/p) = 0 for any prime p that divides m. Therefore
for all ¢ > 0 we have

Tor (K3, (X) /Koy 42(X), Z/m) = 0.
This enables us to apply Lemma 5.2 for the ring R = IN(O(X) = K{(X) filtered by the
ideals Ry = Kgq(X) to obtain that

KO/~ = |K(X) @ Z/m| = [ ] 1K5,(X) /K3, 12(X) ® Z/m|.

q>1

Since Tor(H*(X,Z),Z/m) = 0, we have H*(X,Z/m) = H?Y(X,Z)®Z/m. From equation
(9) we deduce that

H(X,Z) @ Z/m = (K3,(X)/K3,2(X)) ® Z/m.

This completes the proof (d). t
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6. PROOF OF THEOREM 1.4

Lemma 6.1. Let R be a filtered commutative ring with Rn,11 = {0}. Suppose that
Tor(Ry/Rk+1,2Z/m) =0 for all k > 1 and that m and n! are relatively prime. If a,b € R
and pp(a) — pn(b) € m"™R, then a ~ b.

Proof. We prove this by induction on n. Suppose first that n = 1. Then p;(a) — p1(b) =
a—b € mR by assumption and so a = b+ mh for some h € R. Since Ry = {0} by
assumption, bh = 0 and so a = b+ mh+ bh, i.e. a ~ b. Suppose now that the statement is
true for a given n for all filtered rings R as in the statement. Let R be now a filtered ring
such that R, 42 = {0}, m and (n + 1)! are relatively prime and Tor(Ry/Ri+1,Z/m) =0
for all £ > 1. Consider the ring S := R/R,,4+1 with filtration Sy = Ri/Rn+1, Snt1 = {0},
and the quotient map m: R — S. Let a,b € R satisfy p,.1(a) — ppi1(b) € m" TR, Since

ln+1)

poal@) = G mp, ) 4 (1 U D

n+1

we deduce that é(gz:)l)m(pn(w(a))—pn(w(b))) € m"*1S. Since Tor(S,Z/m) = 0 and (n+1)!
and m are relatively prime it follows that p,(7(a)) — p,(7(b)) € m™S. Since Sp4+1 = 0 we
obtain by the inductive hypothesis that 7(a) ~ 7(b) in S and hence a = b-+mh+bh+1r,11
for some h € R and r, 41 € Ry,11. We have that (b+ mh + bh) - 7,41 = 0 and 7}2L+1 =0 as
these are elements of R"™? C R, = {0}. Therefore, by Lemma 3.1(i),

Prt1(a) = pry1(b+mh +bh + rpy1) = prg1(b+mh + bh) + ppy1(rns1)
= ppt1(b+mh+0h) +l(n+ 1)m"r,

On the other hand, p,,+1(b+ mh + bh) = pp1(b) +m™ v, 1(h) by Lemma 3.1(ii), since
Ry+2 = {0}. Therefore

pn—i-l(a) - pn+1(b) = mn+1vn+1(h) + K(n + 1)mnrn+1-

Since py11(a)—pn+1(b) € m" TR by assumption, we obtain that £(n+1)m"r, 1 € m" 1 R.
Since Tor(R,Z/m) = 0 we deduce that £(n+ 1)r,+1 € mR and hence that r,11 = m hp41
for some h,4+1 € R since m is relatively prime to ¢(n 4+ 1). We must have that in fact
hn+1 € Rp41 since Tor(R/Rp4+1,7Z/m) = 0 and hence bh, 1 = 0. It follows that a ~ b
since we can now rewrite a = b+mh+bh+r,11 asa =b+m(h+hpi1) +b(h+hpt1). O

We are now in position to prove Theorem 1.4.

Proof. By Theorem 1.1 it suffices to show that [E] ~ [F] whenever Pld/2] ([E])— Pld/2] ([F))
is divisible by ml%2. We have seen in the proof of Theorem 5.3 that if Tor(H* (X, Z), Z/m)
0 then Tor(KQOq(X)/Kgq+2(X), Z/m) = 0. Therefore the desired implication follows from
Lemma 6.1 applied to the ring K9(X) filtered as in (4) with n = |[d/2]. O
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7. SUSPENSIONS

In this final part of the paper we study O,,4+1(SX) and the image of the map Vect(SX) —
Om+1(SX). We shall use the universal coefficient exact sequence

0 KY(X)®Z/m 5 KNX,Z/m) 5 Tor(K°(X),Z/m) — 0,
where 3 is the Bockstein operation and p is induced by the coefficient map p.

Theorem 7.1. Let X be a compact metrizable space and let m > 1.

(i) There is a bijection v : Opmy1(SX) = K1(C(X) ® Opy1) = KY(X,Z/m).
(ii) If E,F € Vecty4+1(SX), then Op = Op as C(SX)-algebras if and only if [E] —
[F] € mK°(SX).
(iii) If A € Opy1(SX) and B(v(A)) # 0, then A is not isomorphic to O for any
E € Vectp+1(SX).

Proof. Part (i) is proved in [5]. We revisit the argument from [5] as it is needed for
the proof of the other two parts. Let vy, ...,v;11 be the canonical generators of Op,41.
There is natural a map vy : Aut(Opmy1) — U(Oppy1) which maps an automorphism ¢
to the unitary Z;njll ¢(vj)v;. We showed in [5, Thm. 7.4] that o induces a bijection
of homotopy classes [X, Aut(Op+1)] — [X,U(Om+1)]. By [17] there is a *-isomorphism
v : Opy1 = Mpy1(Opmg1). We have bijections O,41(SX) = [SX, BAut(Op,41)] =

[X, Aut(Opp41)] and

(X, Aut(Opm1)] 25 [X, U(Oms1)] = [X, U(Mins1(Oms1))] & K1 (C(X) © Opri1) -

The composition of these maps defines the bijection v from (i). We are now prepared to
prove (ii) and (iii). Consider the monomorphism of groups o : U(m + 1) — Aut(Opt1)
introduced in [8]. Tf u € U(m + 1) has components u;j, then oy (v;) = 7 uijv;. The
map « induces a map BU(m + 1) — BAut(O,,+1) which in its turn induces the natural
map oy : Vect,11(Y) = Ons1(Y) that we are studying. Let 1 be the composition of the
maps from the diagram

U(m +1) —= Aut(Opmy1) ——= U(Omi1) ——= U(Myns1(Omi1))-

An easy calculation shows that n(u) = Z:n;ll ;v (viv}
of the unitary uw. Let us observe that 7 is induced by a unital x-homomorphism 7 :
M+1(C) = Myp4+1(Opy1). It follows that there is a unitary w € My,4+1(Op41) such that
wn(a)w* =a®lo,,,,, for all a € M,,1(C). This implies that n will induce the coefficient
map p: KY(X) = KY(X,Z/m).

), where u;; are the components
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We a commutative diagram

Vectmi1(SX) —— [SX, BU(m + 1)]

(X, U(m + 1)] == [X, U(Mp+1(C))]

| | y :

(70)+

Ot (SX) —— [SX, BAUt(Opi1)] — [X, Aut(Ops1)] 2 [X, U (M1 (Os1))]

and hence a commutative diagram

Vectm+1(SX) 2 Ot (SX)

| 5

KNX) — o KY(X) — o KN (X, Z/m) — > Tor(K9(X),Z/m) — 0
Now both (éi) and (iii) follow from the commutativity of the diagram above and the
exactness of its bottom row. ([l
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