Inductive Limits of C*—algebras
Related to Some Coverings

MARIUS DADARLAT

In [5] E. G. Effros posed the problem of studying inductive limits of C*-
algebras of the form C(X)® M,,. Because of the complexity of the possible *—
homomorphisms & : C(X)® M, — C(X)® My, (cf. [3] and [6]) it is reasonable
to restrict our attention to specific classes of homomorphisms. In this paper we
prove a unicity result concerning inductive limits associated with a sequence of
coverings.

A unital homomorphism ® is called homogeneous if for every y € Y the
subalgebra ®(C(X) ® 1,)(y) C M, has dimension 2. (Note that n must divide
m since ® is unital.) Suppose that Y has the homotopy type of a finite CW-
complex of dimension < 2% and that K°(Y) has no n-torsion. Then it follows

from [3] that there is a (%)—fold covering v : Z — Y, a monomorphism ®; :
C(Z)®e M, — C(Y)® My, which satisfies

(0) D1(go¥®1,) =g®1ly,, gelC(Y),

and a continuous map ¢ : Z — X such that we have the factorization & =
D, 0*.

The homomorphism @, satisfying equation (0) are called compatible with
the covering ¢ or Y—compatible, and they were introduced in [6] for other reasons.
The previous decomposition confirms once more their importance, since they are
now identified as the nontrivial part of the homogeneous homomorphisms.

We shall consider inductive limits with homomorphisms compatible with
some appropriate coverings. Our result is based on a detailed description of such
homomorphisms.

An interesting example is supplied by Bunce-Deddens algebras [2] which
can be described as inductive limits of the form

(1) . — C(T™")QM,, — C(T™") @ M,,,, — ...

i+1
where m = 1, T is the unit circle, and the homomorphisms ®; are compatible
with the coverings T 3 z +» z%+1/™ € T,
In [6] C. Pasnicu has studied inductive limits of the form (1) with m = 2
and he has proved that these limits do not depend on the particular choices
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of the homomorphisms ®; compatible with some product coverings T? — TZ.
Moreover, these limits were seen to be isomorphic to tensor products of two
Bunce-Deddens algebras.

The aim of this paper is to consider the same problem in an abstract setting.
Given a free action of T™ on a compact connected manifold X and a strictly
increasing sequence of finite subgroups of T™ :

GicG;C...CcG;CcGiyC...CT™,

we consider inductive limits of the form
L= h_n}(_) C(Xi) ® Mni il" C(Xi+1) ®Mni+1 —’) ’

where X; = g;, n; = |G4|, and the homomorphisms ®; are compatible with the
coverings X; — X;4+1.

Under some topological restrictions involving the absence of torsion in the
cohomology H*(X;,Z), we prove that the inductive limit L does not depend on

®; and it is isomorphic to the C*-algebra transformation group C(X) >~ G,
where

For the case of Bunce-Deddens algebras this isomorphism was noticed by P.
Green.

As a corollary, we extend the result from [6] to the m—dimensional torus.

The author is grateful to V. Deaconu and C. Pasnicu for stimulating dis-
cussions.

1. Preliminaries. We shall denote by M,, the C*-algebra of n x n complex
matrices and by 1,, its unit.

Suppose that X is a compact, connected, real manifold and let S be a finite
group acting freely on X .

If k = |S| (the order of S), then the quotient map onto the orbit space
P: X — —)5(7 is a regular k—fold covering. Let n be a positive integer.
We recall from [6] that a unital homomorphism

®:C(X)®M, - C(X)® My,
is called compatible with the covering ¢ or ¥—compatible if
(2) D(goyp®1y) =g®lkn, geC(Z).
Looking at the following diagram
cC(X)®M,
w\ &

e
Q
<
®
5
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where ¥*(g) = (go¢)®1, and a(g) = g® lg,, it is clear that ¢¥-compatible
homomorphisms may be viewed as a kind of section for the fibering X — %

Assume that the K-theory group K°(X) is torsion—free and that dim(X) <
2k. Then it follows from [3, Theorem 1.3] that

% =v(?' ®idp, )v*

for some unitary v € C (%) ® My, and some )—compatible homomorphism @' :
c(X)—-C (%) ® Mj,. Moreover, it is proved in [3] that there is a continuous
map p: X — P(C*) = the space of all one dimensional self-adjoint projections
acting on CF, such that @' is given by the following formula:

(3) ' (f)(w(z) =Y f(s-2)p(s-z), feEC(X),z€X.
s€ES
Of course since ®' is unital we must have
(4) Y op(siz)=1,, z€X.
SES

Also, it is clear that both ® and &' are monomorphisms. Despite the previous
description, we don’t know a priori if ¢¥—compatible homomorphisms (or equiv-
alently maps p : X — P(C¥) satisfying (4)) do exist.

However, if we assume that S is an abelian group and that the second
cohomology group H%(%,Z) is torsion-free, then such homomorphisms can be
constructed as follows. By [3] there is a continuous map

u: X — U(k) =~ U(€(S))

such that u(s-z) = p(s)u(z), z € X, s € S, where p: S — U(k) is the right
regular representation of S. Now if (e$)scs are the orthogonal projections onto
the subspaces [§5] spanned by the vectors in the canonical basis (6s)scs of £2(S),
then the homomorphism &' : C(X) — C (%) ® Mj given by
(6)  Y(NE@) =u@) Qs o)e)u(@), [eCX),zeX

sES

is compatible with the covering X — % Note that ® is well defined since
p(s)*egp(s) = eg,, t, s € S. Consider now the crossed-product C*-algebra:

CX)>=S=(FeC(X)QMy:f(s-z) =p(s)F(z)p(s)*,z € X, s€S).
Then the unitary u can be used to give an isomorphism H : C(X) > S —
C(%) ® My To see this, we identify C(%) ® My with

(FeC(X)®My:F(s-z) = F(z) forallz € X,s€S),
and we take H(F') = u*Fu. Note that if
C(X) = 0(X)>S,  §(f)@) =) f(s-a)es,
SES
is the canonical embedding, then the isomorphism H is such that Hoj = ¢'.



138 M. DADARLAT

2. Inner Equivalence. Assume S C T™ and also that the action of S on X
is induced by a continuous free action of T™ on X .

Then we are able to give a more complete description of homomorphisms
® which are compatible with the covering X — % Our description will imply
that any two such homomorphisms are inner equivalent.

Lemma 2.1. Letzo € X, let p: X — P(C¥) be a continuous map which
satisfies equation (4) and assume that H%(X,Z) is torsion—free. Then there is a
continuous map u : X — U(k) such that

(6) p(s-x) = u(x)*p(s- zo)u(x), zeX,ses.

Proof. Set es(x) = p(s-x). Then (es)ses is a partition of the unity in the
C*-algebra C(X) ® M}, . Since the action of S on X is induced by a continuous
action of T™ which is a pathwise connected space, it follows that the projections
(es)ses are mutually equivalent in C(X)® Mj,. To see this let a : [0,1] — T™
be a continuous path from 1 to s. Then ey (z) = p(a(t)-z), t € [0,1] is a
continuous path of projections from e; to e;. By a standard argument we find
now a partial isometry e,; € C(X)® My such that e je51 = e1 and es1€5 ; =
es. Define e; s = e; and es; = e,,1€5; to obtain a system of matrix units in
C(X)® My,. Now consider the C*~homomorphisms @, ®¢ : My — C(X) Q@ M
given by

®o(es,6(z0) = lo(x) ® €s,4(0)

q)(es,t(zO)) =€st-
(Note that in the definition above we identified M}, with the C*-algebra gener-
ated by (es,:(20))s,tes). Since the complex line bundles on X are classified by

H?*(X,Z), which we suppose to be torsion—free, it follows from [3, Prop. 1.1] that
there is some unitary u € C(X) ® My, such that ®o = u®u*. This implies that

es(zo) = u(x)es(z)u(z)*.
Hence
p(s-z) = u(z)*p(s - zo)u(z)
forallzin X andse S. O

Let p : S — B(£%(S)) be the regular representation of S. We identify
B(£%(S)) with C*{(es¢(z0):s, t € S) ~ M, so that p(r)*es .p(r) = €gpir- As
an easy consequence of the equation (6) we obtain that every u(s-z)u(z)*p(s)*
commutes with all e; +(20), t € S. Setting w,(x) = u(s- z)u(z)*p(s)*, it follows
that w, is diagonal with respect to the projections e; ¢(zo). More precisely, there
are continuous functions w(t,s): X — T, s,t € S, such that

(7 ws(z) = Zwt,s(x)et,t(xo)a r€X.
tes
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Moreover, it follows from the definition of (ws)ses that
ws(t- ) = wee()p(8)we(x)*p(s)” -
Then we have corresponding relations for wy 4:
(8) We,5r (Z) = Wes r (T)Wy (- ), r,s,teS,zeX.

Equation (8) looks like some “cocycle relations.” Our next task is to resolve the
“cocycle (ws,t),” i.e., to find continuous maps d, : X — T, s € S, such that

(9) wt,s(w) = dts(.’D)dt(S'.'L')—l, T € Xa 3’t €S.
Suppose now that the maps (d,) have been found and set
’U(:l)) = (Z ds(x)ea,s(xo))u(x)‘
s€ES
Then an easy computation shows us that
(10) v(s-z) = p(s)v(z), z€X,s8€8,and
(11) p(z) = v(z)*p(zo)v(z), x€X.

It is rather surprising that the cocyle (w,.) can be resolved very easily. For in-
stance, we can choose dy(z) = wy ¢(z). Thus we arrive at the following theorem.

Theorem 2.2. Assume that H%(X,Z) is torsion free. If ® : C(X) —
c (35‘.-) ® My, = C(%) ® B(£2(S)) is a x-homomorphism compatible with the cov-
ering ¢ : X — %, then there is some unitary valued map v : X — U(k) =

U (¢%(S)) such that

(12) v(s-z) = p(s)v(z), ze€X,s€S,
(13) o(f) (¥(=)) = v(@)* (D_ f(s-2)eg)v(z).
s€S

Proof. For any unital 1»—compatible homomorphism we have the description
provided by equation (3). Using Lemma 2.1, we find, by the previous discussion,
that

p(s-z) = v(z)"p(s - zo)v(z) = v(z)"es(z0)v(x)
with v satisfying equation (10). m]

Corollary 2.3. Assume that H?(X,Z) is torsion free. Then any two

homomorphisms ®,¥ : C(X) — C (%) ® My, compatible with the covering X —

% are inner equivalent, that is, ¥ = ud®u* for some unitary u € C (-‘)—é—) ® My, .
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Proof. Theorem 2.1 provides descriptions of ® and ¥ with appropriate uni-
taries v and w. After conjugating with a unitary in C (35(-) ® M}, , we may assume
that these descriptions are given relative to the same projections (ef). Conse-
quently, we may choose u = w*v since

u(s-z) = w(s-z)"v(s- ) = w(z)"p(s)"p(s)v(z) = u(z)

and it is clear from (13) that ¥ = udu*. a
Example. Let S? be the two-sphere and let
2_ S
P=—
Z,

be the two—dimensional real projective space. Since the action of Zy on $? is
not induced by the continuous actions of some connected Lie group including
Z,, Corollary 2.3 does not apply. In fact we show that there are infinitely many
homomorphisms &, : C(S?) — C(P?) ® M, compatible with the canonical cov-
ering ¥ : S2 — P? which are not inner equivalent. Let o : S — C be the stere-
ographic projection, and let 8 : §% — P(Cz) be the canonical homeomorphlsm
that sends antipodal pomts to orthogonal prOJectlons If gy : C—Cis given by
gr(2) = 22¥*1 then q; : $? — 82, qx = a~ g, satisfies qx(—z) = —qx(x) for
any = € S?. Therefore p, = Bq) satisfies equation (4) so that the formula

2 (f) (¥(2)) = f(@)pr(2) + f(~2)pk(~2)

defines a t—compatible homomorphism from C(S?) to C(P?) ® M,. Assuming
that @y and ®,. are inner equivalent, we get a unitary u € C(P?)® M, such that

pr = up,u*. Since the homotopy class [P2 )] [P2,Sl X S3] reduces to the
null element it follows that pi and p, are homotopic. Therefore g and g, are
homotopic, and this implies that k = r.

3. Some inductive limits. As in the previous section, we start with a con-
tinuous free action of T™ on a compact, connected, real manifold X . Let
GicGyC...CG; C Gi+1...
be an infinite tower of finite subgroups of T™. Let

n,=|G,~|, k —IGH—II

and note that n;y; = n;k;. If X; denotes the quotient space Gi, we have a
natural k;—fold covering X; — X;; whose deck-group S; is isomorphic to G'*‘ .
In this section we deal with inductive limits of the form
®;
(14) ----’C(X1)®Mni — (X,‘+1)®Mm+l-—>...,

where each homomorphism ®; is compatible with the covering X; — X;41.
The main result is the following:
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Theorem 3.1. Assume that the manifolds X; have no torsion in cohomol-
ogy, i.e., H*(X;,Z) is torsion—free for any i > 1.

Then the inductive limit (C(X;) ® My, ,®;) does not depend on the particu-
lar choice of the homomorphisms ®;. In fact, it depends only on the group G =
Use, G since it is isomorphic to the crossed product C*-algebra C(X) > G.

Proof. By considering a refinement of the sequence in (14), we may assume
that dimX; < *21. As a first step, we prove that any two homomorphisms
®;, ¥; : C(X;)®@M,, = C(Xiy1)® M,,,, are inner equivalent. Recall that
ni+1 = nik;. Since H*(X;41,Z) is torsion free, it follows from [1] that K°(X;+1)
is torsion free. Hence, by the results quoted in Section 1, we may assume that
n; = 1. At this point the assertion follows from Corollary 2.7. To conclude
the first part of the theorem, we recall Lemma 2.1 of [5], which asserts that the
inductive limits lim(4;,®;) and lim(A;,¥;) are isomorphic if the homomorphisms
®; and ¥, are inner equivalent.

To proceed further, let us consider the diagram

— C(X)>Gi Ih C(X)><Gipr — ...

(15) 11'1;' lﬂiu

— C(X)®Mn, 25 O(X)® Ma,,, — ...

i+1
where (J;) are the canonical embeddings, (H;) are the isomorphisms described in
Section 1, and (®;) are chosen such that ®; = H,-+1J,~Hi_1. With this definition
it is straightforward to check that the homomorphisms ®; are compatible with

the coverings X; — X;y1. Since the inductive limit of the upper row in the
diagram (15) is equal to

C(X)>~G = (G C(X)>=G;)™,

i=1

it turns out that the unique limit that arises from the diagram (14) is isomorphic
to C(X) >G. m]

Let T™ act on X = T™ by translations. Given a finite subgroup S of T™,
it is well known that
™ m
I
Further, since H*(T,Z) = Z® Z, it follows by Kiinneth’s formula that H*(T™,Z)
is torsion free. Therefore we may apply Theorem 3.1 to obtain a unicity result
concerning the inductive limits on the form

(16) i o C(T™) @ My, 25 C(T™) @ Mp,,, — ...,

i+1



142 M. DADARLAT

where the homomorphisms ®; are compatible with (",‘%)—fold coverings T™ —
T™. Moreover, if these coverings correspond to the tower of subgroups

GicGycC...CcT™,

and we assume that G = Ufil G; is dense in T™, then it can be proved that the
C*-algebra C(T™) > G is simple and it has a unique faithful trace state.
Suppose now that the homomorphisms ®; are compatible with the coverings

(17) (21,00 2m) = (27D 22 @),

and let ng(i) = Hj.zlPk(j), 1 <k <m. Let A(ng) be the Bunce-Deddens
algebra associated with the generalized integer ny = (nk(i))i>1. Then we have
the following corollary, which extends the main result of [6].

Corollary 3.2. The inductive limit (16) does not depend on the choice
of the homomorphisms ®; compatible with the coverings (17). Moreover, it is
isomorphic to the C*~tensor product @, A(nk).

Proof. We apply Theorem 3.1 with
Gi = G1(i) X Go(i) X -+ x G (1),

where .
Gi(i) = (z € T:z™® = 1),

Let Gi, = U;2, Gk (i) and note that G = G1 x G3 X ++- X G, . If we denote by L
the unique limit arising from (16), then

L=C(T™) > G~ Q)C(T) = Gy
k=1

and
C(T) > Gy ~ A(ng,). 0O
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