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Introduction

In this paper we relate two topological invariants of a separable C*-algebras.
The first is the shape invariant first studied by Effros and Kaminker [EK] and then
developed further by Blackadar [B]. The second invariant is the isomorphism class
of a C*-algebra in the asymptotic homotopy category A introduced by Connes and
Higson [CH]. We prove that two separable C*-algebras are shape equivalent if and
only if they determine the same class in the category A (see Theorem 3.9 ). The
connection between these two invariants is established via a strong shape invariant
that we introduce here. In particular we show that any homotopy invariant functor
on separable C*-algebras that commutes with inductive limits automatically factors
through the Connes-Higson category and is thus related to K-theory (see Theorem
3.11).

It is known that homotopy is less useful in the study of singular spaces. Many
interesting C*-algebras (like those associated with infinite discrete groups, dynam-
ical systems and inductive systems) are meant to be noncommutative substitutes
for singular spaces. Therefore it is natural to look for weaker forms of homotopy
which are better adapted for the study of C*-algebras, but which are still closely
allied to homotopy.

In topology, this point of view led Borsuk to introduce shape theory which has
become an important area of geometric topology [MS]. Shape theory for C*-algebras
was introduced by Effros and Kaminker in [EK1]. Certain key concepts like homo-
topy continuity and semiprojectivity were isolated there. In a related development
Blackadar introduced the notion of semiprojective map and developed a shape the-
ory for all separable C*-algebras [B]. While formally satisfactory the shape theory of
C*-algebras has had only few significant examples for which explicit computations
were available [EK2], [DN].

Another generalization of homotopy theory for C*-algebras comes from the work
of Connes and Higson [CH] and is based on the notion of asymptotic morphism.
Roughly speaking an asymptotic morphism from A to B is a continuous family of
maps ϕt : A→ B which asymptotically satisfies the axioms for ∗-homomorphisms.
The asymptotic morphisms of separable C*-algebras can be composed at the level
of homotopy giving rise to a category A called here the asymptotic homotopy
category. This category corresponds to a very flexible notion of homotopy which
led to the discovery of a concrete realization of E-theory [H], [CH] and to the
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construction of non-periodic excision homology and cohomology theories for C*-
algebras [C], [D], [CH1], [CK]. We have explained in [D] that the Connes-Higson
category may be viewed as a noncommutative generalization of the approaching
homotopy category of Quigley [Q]. A point of view promoted by these results is
that the asymptotic homotopy category A may be the “right” homotopy category
of separable C*-algebras.

With this point of view in mind, in this paper we give results on the asymptotic
homotopy classification of inductive limit C*-algebras. We prove that asymptotic
homotopy is intimately related to shape theory. Classifying C*-algebras up to an
isomorphism in A may turn out to be a necessary development in the grandiose
project of the classification of (simple) nuclear separable C*-algebras [E].

Let C∗ denote the category of separable C*-algebras and ∗-homomorphisms.
Let Ho(C∗) the category of separable C*-algebras and homotopy classes of ∗-
homomorphisms.

In Section 1 of the paper we introduce a homotopy category Ho(inj–C∗) for
inductive systems of separable C*-algebras. This was inspired by similar construc-
tions in the commutative case [EH], [L]. The category Ho(inj–C∗) refines the the
category inj–Ho(C∗) which has been used in [EK1] and [B] to construct shape the-
ories. We prove that any isomorphism in inj–Ho(C∗) lifts to an isomorphism in
Ho(inj–C∗).

In Section 2 we construct a functor L : Ho(inj − C∗)→ A which can be viewed
as a homotopy extension of the usual inductive limit functor. Using this functor we
show that shape equivalent C*-algebras are asymptotically homotopic. In particular
this implies that the homotopy classes of the connecting maps An → An+1 of an
inductive system of separable C*-algebras determine the inductive limit C*-algebra
A = lim−→An up to an asymptotic homotopy (i.e. isomorphism within the category

A).

In Section 3 we introduce the strong shape category S. This is the full subcat-
egory of Ho(inj–C∗) whose objects are inductive systems with all the connecting
maps semiprojective. We show that L induces an equivalence between the strong
shape category S and the asymptotic homotopy category A. It results that E-
theory of Connes and Higson ( [H], [CH]) is isomorphic to the strong shape theory
of suspensions of stable C*-algebras. Any right inverse of L defines a strong shape
functor S : A → S ⊂ Ho(inj–C∗) which lifts the shape functor of [B]. A key feature
of the strong shape theory of separable C*-algebras is the existence of the adjoint
functor L for the strong shape functor S. This relates (strong) shape theory to
E-theory and hence to K-theory.

The author thanks the referee for a number of suggestions that improved the
exposition and the title of the paper. This paper has been circulated as a preprint
under the title “Homotopy theory for inductive systems of C*-algebras and asymp-
totic morphisms”.

In the last part of the introduction we review the construction of the category
A due to Connes and Higson.

Let A, B be two C*-algebras. An asymptotic homomorphism from A to B is a
family of maps ϕt : A → B, indexed by t ∈ T = [1,+∞), subject to the following
conditions:

(1) For all a ∈ A the map t→ ϕt(a) from T to A is continuous.
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(2) For all a, b ∈ A and λ ∈ C one has

lim
t→∞

‖ϕt(a+ λb)− ϕt(a)− λϕt(b)‖ = 0

lim
t→∞

‖ϕt(ab)− ϕt(a)ϕt(b)‖ = 0

lim
t→∞

‖ϕt(a∗)− ϕt(a)∗‖ = 0

Denote by Cb(T,B) the C*-algebra of all continuous bounded functions from T to
B. Let C0(T,B) be the closed ideal of Cb(T,B) consisting of functions vanishing
at infinity. The quotient C*-algebra Cb(T,B)/C0(T,B) is denoted by B∞. Then
one has the following exact sequence

0 −→ C0(T,B) −→ Cb(T,B)
r−→ B∞ −→ 0.

Since lim supt ‖ϕt(a)‖ ≤ ‖a‖ (see [CH]), one can identify any asymptotic morphism
(ϕt) : A→ B with a map ϕ : A→ Cb(T,B) given by ϕ(a)(t) = ϕt(a) for all a ∈ A
and t ∈ T . In the sequel we are going to use freely both notation (ϕt) : A → B
and ϕ : A→ Cb(T,B) for asymptotic morphisms. With any asymptotic morphism
(ϕt) : A→ B one associates a ∗-homomorphism ϕ̂ ∈ Hom(A,B∞) given by ϕ̂(a) =
r(ϕ(a)), where r is the quotient map of Cb(T,B) onto B∞.

Two asymptotic morphisms (ϕt), (ψt) : A→ B are equivalent, written,
(ϕt) ∼= (ψt) if for any a ∈ A one has limt→∞ ‖ϕt(a) − ψt(a)‖ = 0. Equivalently
ϕ ∼= ψ iff ϕ(a)−ψ(a) ∈ C0(T,B) for all a ∈ A.The correspondence ϕ 7→ ϕ̂ induces
a bijection from the equivalence classes of asymptotic morphisms from A to B to
Hom(A,B∞). Any map ϕ : A → Cb(T,B) that lifts a given ϕ̂ ∈ Hom(A,B∞) is
automatically an asymptotic morphism. Any two liftings are equivalent. Using the
selection theorem of Bartle and Graves one can find a continuous
( in general non-additive, but homogeneous) cross-section for the quotient map r.
It follows then that any asymptotic morphism is equivalent to an asymptotic mor-
phism given by a continuous map ϕ : A→ Cb(T,B). Suppose that the C*-algebra
A is separable and nuclear. Then, by the Choi-Effros theorem, any homomorphism
ϕ̂ : A → B∞ has a linear completely positive lifting ϕ : A → Cb(T,B). One
concludes that any asymptotic morphism from A to B is equivalent to a linear
completely positive map ϕ : A→ Cb(T,B) satisfying ϕ(ab)−ϕ(a)ϕ(b) ∈ C0(T,B).

For a C*-algebra B let B[0, 1] denote the C*-algebra C([0, 1], B) ∼= B⊗C([0, 1]).
Two asymptotic morphisms (ϕt), (ψt) : A→ B are said to be homotopy equivalent,
written (ϕt) ∼ (ψt), if there is an asymptotic morphism (Φt) : A → B[0, 1] such
that the restrictions of (Φt) at 0 and 1 are equal to (ϕt) and (ψt) respectively.
Notice that equivalent asymptotic morphisms are homotopy equivalent.

The homotopy classes of asymptotic morphisms from A to B are denoted by
[[A,B]]. The homotopy class of an asymptotic morphism (ϕt) : A→ B is denoted
by [[ϕt]] or [[ϕ]]. The notation for the homotopy classes of ∗-homomorphisms from
A to B is [A,B]. There is a composition law of homotopy classes of asymptotic
morphisms. We are going to describe briefly this composition. One starts with
arbitrary asymptotic morphisms (ϕt) : A→ B and (ψt) : B → C. As noticed above,
after replacing these asymptotic morphisms by equivalent asymptotic morphisms if
necessary, one may assume that the maps ϕ : A→ Cb(T,B) and ψ : B → Cb(T,C)
are continuous. Let A′ be a dense ∗-subalgebra of A which is a countable union
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of compacts . It is proven in [CH] that there is a increasing continuous function
γ0 : T → T such that for any increasing continuous function γ : T → T with
γ(t) ≥ γ0(t), the composition θ′t = ψs(t) ◦ ϕt is an asymptotic morphism from
A′ to C. Moreover lim supt ‖θ′t(a)‖ ≤ ‖a‖ for all a ∈ A′. Thus the associated

map θ′ : A′ → Cb(T,C) is well defined so that θ̂′ : A′ → C∞ is a bounded ∗-
homomorphism that extends to a ∗-homomorphism θ̂ on A. Let (θt) be any lifting

of θ̂. By definition [[ψt]] ◦ [[ϕt]] = [[θt]].

Theorem ([CH]) Any extension (θt) of (φs(t) ◦ ϕt) is an asymptotic morphism.
The homotopy class of [[θt]] in [[A,C]] depends only on the homotopy classes of
[[ϕt]] ∈ [[A,B]] and [[ψt]] ∈ [[B,C]]. Moreover the composition of homotopy classes
[[ψt]] ◦ [[ϕt]] is associative.

This theorem shows that there is a well defined associative composition law

[[A,B]]× [[B,C]]→ [[A,C]].

By definition A is the the category whose objects are all the separable C*-algebras
and whose morphisms are homotopy classes of asymptotic morphisms.

1. Homotopy theory for inductive systems of C*-algebras

Let C∗ denote the category of separable C*-algebras and ∗-homomorphisms.
Let Ho(C∗) the category of separable C*-algebras and homotopy classes of ∗-
homomorphisms.

Definition 1.1 (The category inj–C∗) The objects of inj–C∗ are inductive sys-
tems (An, pn+1n) of separable C*-algebras indexed by the natural numbers.

. . . −→ An
pn+1n−−−−→ An+1 −→ . . .

For m > n set pmn = pmm−1 . . . pn+1n. A morphism of inductive systems f : A →
B = (Bn, qn+1n) consists of an increasing map f : N→ N (called the indexing map)
and a of sequence of ∗-homomorphisms fn : An → Bf(n) such that the following
diagram commutes:

(1)

. . . −−−−→ Bf(n)

qf(n+1)f(n)−−−−−−−→ Bf(n+1) −−−−→ . . .

fn

x xfn+1

. . . −−−−→ An
pn+1n−−−−→ An+1 −−−−→ . . .

Two morphisms of systems f, f ′ : A → B are equivalent if for each n there is
m ≥ f(n), f ′(n) such that qmf(n) fn = qmf ′(n) f

′
n. The morphisms of inj–C∗ are

the equivalence classes of morphisms of systems.

1.2 Consider the inductive limit functor

lim−→ : inj − C∗ → C∗.

This functor takes an inductive system of separable C*-algebras A = (An, pn+1n)
to its inductive limit C*-algebra A = lim−→A. Let pn be the canonical mapping
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of An into A. A morphism f : A → B in inj–C∗ induces a ∗-homomorphism

f̂ = lim−→ f : lim−→A→ lim−→B = B such that f̂ pn = qf(n) fn.

Bf(n)

qf(n)−−−−→ B

fn

x f̂

x
An −−−−→

pn
A

Definition 1.3 (The category inj–Ho(C∗)) The objects of inj–Ho(C∗) are in-
ductive systems A = (An, pn+1n) of separable C*-algebras indexed by the natural
numbers. A map of systems f : A → B = (Bn, qn+1n) consists of an increasing
map f : N → N and a sequence of ∗-homomorphisms fn : An → Bf(n) such that
the diagram (1) commutes up to a homotopy. That is qf(n+1) f(n) fn is homotopic
to fn+1 pn+1n for all n ∈ N.

Two maps of systems f, f ′ : A → B are equivalent if for each n there is m ≥
f(n), f ′(n) such that qmf(n) fn is homotopic to qmf ′(n) f

′
n. The morphisms of inj–

Ho(C∗) are the homotopy classes of maps of systems. The set of morphisms from
A to B is denoted by [A,B]. The homotopy class of f : A→ B is denoted by [f ].

1.4 Various subcategories of inj–Ho(C∗) were considered in [EK1] and [B] in
connection with shape theories for C*-algebras. One may regard inj–Ho(C∗) as
a homotopy category of inj–C∗. However, this point of view is inadequate for
some purposes. For instance the inductive limit functor does not descend to a
functor inj–Ho(C∗) → Ho(C∗). There are at least two reasons that prevent this
happening. The category Ho(C∗) is too rigid and the morphisms of inj–Ho(C∗)
do not carry enough coherent geometrical data. Fortunately Connes and Higson
have discovered the category A of separable C*-algebras and homotopy classes of
asymptotic morphisms. This has proven to be the “right” homotopy category of
C∗ and a flexible substitute of Ho(C∗) ( see [CH], [CK], [D]).

In analogy with the commutative case [EH], [L] we introduce here the category
Ho(inj–C∗) which we believe to be the “right” homotopy category of inj–C∗. In-
deed, in the next section we construct a functor L : Ho(inj–C∗)→ A such that the
following diagram is commutative:

inj–C∗
lim−→−−−−→ C∗y y

Ho(inj–C∗) L−−−−→ A

Definition 1.5 (The category Ho(inj–C∗)) The objects of Ho(inj–C∗) are in-
ductive systems (An, pn+1n) of separable C*-algebras. A strong map of systems
(f, h) : A → B = (Bn, qn+1n) consists of an increasing indexing map f : N → N,
of a sequence of ∗-homomorphisms fn : An → Bf(n) and of a sequence of ∗-
homomorphisms (homotopies) hn : An → Bf(n+1)[0, 1], hn = (hτn)τ∈[0,1], such
that

h0
n = qf(n+1)f(n) fn

h1
n = fn+1 pn+1n
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Diagramatically we represent (f, h) by

. . . −−−−→ Bf(n)

qf(n+1)f(n)−−−−−−−→ Bf(n+1) −−−−→ . . .

fn

x xfn+1

. . . −−−−→ An −−−−→
pn+1n

An+1 −−−−→ . . .

A strong map of systems stores more information than a map in inj–Ho(C∗)
because it keeps track of the homotopies hτn that are filling each homotopy commu-
tative square. Note that any morphism f : A→ B of inductive systems (see 1.1 ) in-
duces a strong map of systems A→ B with constant homotopies hτn = fn+1 pn+1n.
Two strong maps of inductive systems (f, h), (f ′, h′) : A→ B are called homotopic
if for each n ∈ N there is ν(n) ≥ f(n), f ′(n) and there is a ∗-homomorphism
νn : An → Bν(n)[0, 1], νn = (νsn)s∈[0,1] such that

ν0
n = qν(n) f(n) fn

ν1
n = qν(n) f ′(n) f

′
n

Moreover we require the existence of a two-parameter homotopy
µn : An → Bν(n+1)[0, 1]× [0, 1], µn = (µs,τn )(s,τ)∈[0,1]×[0,1] , such that

µs,0n = qν(n+1) ν(n) ν
s
n

µs,1n = νsn+1 pn+1n

µ0,τ
n = qν(n+1) f(n+1) h

τ
n

µ1,τ
n = qν(n+1) f ′(n+1) h

′τ
n

Two strong maps of systems are called equivalent if for each n there is m ≥
f(n), f ′(n) such that qmf(n+1) h

τ
n = qmf ′(n+1) h

′τ
n . Note that equivalent strong

maps of inductive systems are homotopic. One checks that homotopy is an equiv-
alence relation.

By definition the morphisms of Ho(inj−C∗) are homotopy classes of strong maps
of inductive systems. The set of morphisms from A to B is denoted by [[A,B]].
The homotopy class of (f, h) : A→ B is denoted by [[(f, h)]].

The composition of morphisms in Ho(inj–C∗) is discussed in 1.6− 1.9.

1.6 An increasing map α : N→ N induces a map (f, h)→ (f
α
, hα). The strong

map (f
α
, hα) is described by the diagram

. . . −−−−→ Bf(α(k)) −−−−→ Bf(α(k+1)) −−−−→ . . .

fα(k)

x xfα(k+1)

. . . −−−−→ Aα(k) −−−−→ Aα(k+1) −−−−→ . . .

where hτα, k is a suitable juxtaposition of homotopies involving {hτi } for

α(k) ≤ i ≤ α(k + 1)− 1. This is shown in the diagram

Bf(α(k)) −−−−→ Bf(i) −−−−→ Bf(i+1) −−−−→ Bf(α(k+1))x x x x
Aα(k) −−−−→ Ai −−−−→ Ai+1 −−−−→ Aα(k+1)
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More precisely we set

hτα, k = qf(α(k+1)) f(i+1) h
mτ−i
i pi α(k)

where m = α(k + 1)− α(k) and 0 ≤ i/m ≤ τ ≤ (i+ 1)/m ≤ 1.

1.7 The composition (f ′′, h′′) = (f ′, h′) ◦ (f, h) of two strong maps of systems

(f, h) : A → B and (f ′, h′) : B → C = (Cn, rn+1n) is the strong map of inductive
systems consisting of an increasing map f ′′ : N→ N, f ′′(n) = f ′ f(n), of a sequence
of ∗-homomorphisms f ′′n : An → Cf ′ f(n), f

′′
n = f ′f(n) fn and of homotopies h′′n :

An → Cf ′ f(n+1)[0, 1] given by

h′′τn =

{
h′2τf ,n fn, if 0 ≤ τ ≤ 1/2

f ′f(n+1)h
2τ−1
n , if 1/2 ≤ τ ≤ 1

In other words, one passes from (f ′, h′) to (f ′
f
, h′f ) ( as in 1.6 with α = f =the

indexing map of (f, h)) and then the diagrams representing (f ′
f
, h′f ) and (f, h) are

juxtaposed.

. . . −−−−→ Cf ′(f(n) −−−−→ Cf ′(f(n+1)) −−−−→ . . .

f ′
f(n)

x xf ′
f(n+1)

. . . −−−−→ Bf(n) −−−−→ Bf(n+1) −−−−→ . . .

fn

x fn+1

x
. . . −−−−→ An −−−−→ An+1 −−−−→ . . .

1.8 The composition of strong maps of systems passes to homotopy classes. To
prove this we begin by reexamining the definition of homotopy given in 1.5. For an
inductive system B = (Bn, qn+1n) let B[0, 1] denote the inductive system
(Bn[0, 1], qn+1n ⊗ 1C([0,1])). The evaluation maps esn : Bn[0, 1] → Bn, at s ∈ [0, 1]
give rise to an obvious strong map of systems es : B[0, 1] → B with constant
homotopies. The sequences (νn) and (µn) of Definition 1.5 give rise to a strong
map of systems
(ν, µ) : A→ B[0, 1]. This leads to the following

Remark Two strong maps of inductive systems (f ′, h′), (f ′′, h′′) : B → C are
homotopic if and only if there is a strong map of systems (ν, µ) : B → C[0, 1] such

that e0(ν, µ) is equivalent to (f ′, h′) and e1(ν, µ) is equivalent to (f ′′, h′′) (see the
last part of 1.5). If α : N→ N is an increasing function then (να, µα) is a homotopy

from (f ′
α
, h′α) to (f ′′

α
, h′′α).

Proposition 1.9 The homotopy class of the composition (f ′, h′)◦(f, h) depends

only upon the homotopy classes of (f ′, h′) and (f, h). Thus there is a well defined
associative composition of morphisms

[[A,B]]× [[B,C]]→ [[A,C]]

that makes Ho(inj–C∗) a category.
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Proof (sketch) Using the above Remark one forms compositions of homotopies.
This reduces the statement to showing that compositions of equivalent strong maps
with a strong map on any side are homotopic. A proof of this requires only standard
arguments and is omitted.

1.10 There is a useful procedure for reindexing strong maps of systems. Given
an increasing map α : N → N, let iα denote the strong map of systems defined by
the commutative diagram

. . . −−−−→ Aα(n)

pα(n+1)α(n)−−−−−−−→ Aα(n+1) −−−−→ . . .

pα(n)n

x xpα(n+1)n+1

. . . −−−−→ An
pn+1n−−−−→ An+1 −−−−→ . . .

The following Lemma is obvious.

Lemma [[iα]] : A→ A is equal to the identity morphism of A in Ho(inj–C∗).
Lemma 1.11 Let (f, h) : A→ B be a strong map of inductive systems and let

α, β : N→ N be increasing maps. Then iβ ◦ ((f, h) ◦ iα) is homotopic to the (f, h).
Proof. This follows from Proposition 1.9 and Lemma 1.10.

Lemma 1.12 Let A = (An, pn+1n) and B = (An, qn+1n) be inductive systems
of separable C*-algebras. Assume that pn+1n is homotopic to qn+1n for each n.
Then A is isomorphic to B in Ho(inj–C∗).

Proof Let hn : An → Bn+1[0, 1] be a homotopy from pn+1n to qn+1n. Then
x = (idAn , hn) : A→ B is a strong map of systems. Let y = (idAn , h

′
n) : B → A be

a strong map of systems with h′τn = h1−τ
n . Let (ν, µ) : B → A[0, 1] be given by the

sequences of ∗-homomorphisms: νsn = idAn and µn : An → An+1[0, 1]× [0, 1],

µs,τn =

{
h2sτ
n , if 0 ≤ τ ≤ 1/2

h
(2−2τ)s
n , if 1/2 ≤ τ ≤ 1

Then (ν, µ) is a homotopy from the identity of B to xy. By symmetry yx is
homotopic to the identity of A.

1.13 It follows from the construction of the category Ho(inj–C∗) that there is a
canonical functor

F : Ho(inj − C∗)→ inj −Ho(C∗).

The functor F acts as identity on objects and sends the homotopy class of (f, h) to
the homotopy class of f . That is F [[(f, h)]] = [f ]. It is obvious that for inductive
systems A and B, F induces a surjective map

[[A,B]]→ [A,B].

In general this map is not injective even for commutative C*-algebras [MS].
However one has the following noncommutative version of Theorem 5.4.1 in [EH].

Theorem 1.14 Any isomorphism in inj–Ho(C∗) lifts to an isomorphism in
Ho(inj–C∗).

Proof Let f : A → B be a map of systems inducing an isomorphism in inj–
Ho(C∗) and let g : B → A be a map of systems inducing an homotopy inverse
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of [f ]. By reindexing (Lemma 1.11) we may assume that there is a homotopy
commutative diagram

. . . −−−−→ Bk+1 −−−−→ Bk+2 −−−−→ Bk+3 −−−−→ . . .

fk

x xfk+1

xfk+2

. . . −−−−→ Ak −−−−→ Ak+1 −−−−→ Ak+2 −−−−→ . . .

Take homotopies hk : Ak → Ak+1[0, 1] with h0
k = gk+1 fk, h1

k = pk+1 k and
h′k : Bk → B with h′0k = qk+1 k, h′1k = fk gk. Let C be the inductive system

. . . −→ Ak
fk−→ Bk+1

gk+1−−−→ Ak+1
fk+1−−−→ Bk+2

gk+2−−−→ . . .

We form the following commutative diagram

−−−−→ Bk+1 Bk+2 −−−−→∥∥∥ ∥∥∥
Ak

fk−−−−→ Bk+1
gk+1−−−−→ Ak+1

fk+1−−−−→ Bk+2
gk+2−−−−→ Ak+2∥∥∥ ∥∥∥ ∥∥∥

Ak Ak+1 Ak+2

By Lemma 1.12 u = (idAk , hk) : A → C and v = (idBk , h
′
k) : C → B are

isomorphisms in Ho(inj–C∗). Hence vu induces an isomorphism A→ B. Moreover
it is clear from the above diagram that [[vu]] is a lifting for [f ] “i.e.” F [[vu]] = [f ].

2. The homotopy inductive limit functor

2.1 In this section we construct a functor L : Ho(inj–C∗)→ A such that the
following diagram is commutative:

inj–C∗
lim−→−−−−→ C∗y y

Ho(inj–C∗) L−−−−→ A

L agrees with lim−→ on objects that is L(A) = lim−→A = A for any inductive system

of separable C*-algebras A = (An, pn+1n). Denote by pn the canonical mapping of
An into A. Next we define L on morphisms.

2.2 For s ≥ 1 let Ts = [s,+∞) and let Cb(Ts, B) denote the C*-algebra of
continuous bounded functions from Ts to B. Note that if s(n) is an unbounded
increasing sequence and rn+1n : Cb(Ts(n), B) → Cb(Ts(n+1), B) is the restriction
map then lim−→ (Cb(Ts(n), B), rn+1n) = B∞. The quotient map Cb(Ts, B) → B∞ is

denoted by rs. For any continuous map η : A→ Cb(Ts, B) we set η̂ = rs ◦η. Recall
that if η is an asymptotic morphisms then sometimes we may use the notation ηt.
This notation will be changed to ηt whenever η is known to be a ∗-homomorphism.
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Let (f, h) : (An, pn+1n)→ (Bn, qn+1n) be a strong map of inductive
systems of C*-algebras.

Bf(n) −−−−→ . . . −−−−→ Bf(k)

qf(k+1) f(k)−−−−−−−→ Bf(k+1) −−−−→ . . .

fn

x fk

x xfk+1

An −−−−→ . . . −−−−→ Ak
pk+1 k−−−−→ Ak+1 −−−−→ . . .

Let A = lim−→(An, pn+1n), B = lim−→(Bn, qn+1n) and let qn denote the canonical
mapping of Bn into B. We show now that there is an asymptotic morphism ϕt :
A→ B naturally associated with (f, h). This will define a correspondence (f, h)→
ϕt = L0((f, h)). For any n we define a ∗-homomorphism ϕn : An → Cb(Tn, B),

ϕn = (ϕtn)t∈Tn by

ϕtn = qf(k+1)h
t−k
k pk n

for n ≤ k ≤ t ≤ k+ 1. Note that ϕn is well defined since by the definition of strong
maps of systems

h0
k = qf(k+1)f(k) fk

h1
k = fk+1 pk+1k

Let rn+1n : Cb(Tn, B)→ Cb(Tn+1, B) be the restriction map. We can assemble the
∗-homomorphisms ϕn to get the following morphism of inductive systems

Cb(Tn, B) −−−−→ . . . −−−−→ Cb(Tk, B)
rk+1 k−−−−→ Cb(Tk+1, B) −−−−→ . . .

ϕn

x ϕk

x xϕk+1

An −−−−→ . . . −−−−→ Ak
pk+1 k−−−−→ Ak+1 −−−−→ . . .

Via the inductive limit functor this induces a ∗-homomorphism

ϕ̂ = lim−→ϕn : lim−→An → lim−→Cb(Tn, B)

such that ϕ̂ pn = rn ϕn where rn denotes the canonical mapping of Cb(Tk, B) into
lim−→ (Cb(Tn, B), rn+1n) ∼= B∞ ∼= Cb(T,B)/C0(T,B). By definition we set

L0(f, h) = ϕ̂.

Let ϕ : A → Cb(T,B) be a continuous lifting of ϕ̂. By abuse of notation we will
often write L0(f, h) ∼= ϕt to mean that L0(f, h) determines ϕt up to an equivalence
of asymptotic morphisms. We show now that L0 passes to homotopy classes of
strong maps of systems.

Lemma 2.3 If (f, h), (f ′, h′) : A→ B are homotopic then L0(f, h) is homotopic

to L0(f ′, h′).

Proof Assume first that (f, h) is is equivalent to (f ′, h′). This means that there
is an increasing function ν : N→ N such that qν(k) f(k+1) h

τ
k = qν(k) f ′(k+1) h

′τ
k (see

1.5). This implies ϕk = ϕ′k for all k and hence ϕ̂ = ϕ̂′.
Consider now the general case of two homotopic strong maps of systems. By

Remark 1.8 and the previous discussion we may assume that the homotopy is
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implemented by a strong map (ν, µ) : A → B[0, 1] such that e0(ν, µ) is equal

to (f, h) and e1(ν, µ) is equal to (f ′, h′) . We claim that Φ ∼= L0(ν, µ) : A →
Cb(T,B[0, 1]) is a homotopy from ϕt to ϕ′t. Let φn : An → Cb(Tn, B[0, 1]) be
defined by

Φtn = qf(k+1) ⊗ 1µt−kk pkn for n ≤ k ≤ t ≤ k + 1.

Since e0(ν, µ) is equal to (f, h) the diagram

An
Φn−−−−→ Cb(Tn, B[0, 1])∥∥∥ ye0n

An −−−−→
ϕn

Cb(Tn, B)

is commutative. This implies that Φ̂0 = ϕ̂ and similarly Φ̂1 = ϕ̂′.

We define L on morphisms L : [[A,B]] → [[A,B]] by L[[(f, h)]] = [[L0(f, h)]].
By Lemma 2.3 this is well defined. Next we show that L preserves the composition
of morphisms.

Theorem 2.4 L : Ho(inj–C∗)→ A is a functor.

As a corollary of Theorems 1.14 and 2.4 we have the following

Theorem 2.5 Let A = lim−→ (An, pn+1n) and B = lim−→ (B, qn+1n) be two sep-

arable C*-algebras. Suppose that the inductive systems (An, pn+1n) and B =
lim−→ (B, qn+1n) are isomorphic in the category inj–Ho(C∗). Then A is asymptoti-
cally homotopy-equivalent to B, i.e. A is isomorphic to B in the category A.

Theorem 2.5 shows that the homotopy classes of the connecting maps of an
inductive system of C*-algebras determine the inductive limit up to an asymptotic
homotopy equivalence.

For the proof of Theorem 2.4 we need the following construction.

2.6 Given an increasing map α : N→ N and a strong map of systems (f, h) we
define the strong map of systems (fα, hα) by:
The index map fα : N→ N, fα = f ◦ α.
The ∗-homomorphisms fαn = fα(n) pα(n)n.
The homotopies hαn = hα,n (see 1.6 ).
It is easy to see that (fα, hα) is homotopic to (f, h)◦iα hence homotopic to (f, h)(see
1.10-1.11). Let α̃ : T → T be an extension of α given by
α̃(t) = (1− t+ k)α(k) + (t− k)α(k + 1) for k ≤ t ≤ k + 1.

Lemma If L0(f, h) ∼= ϕt then L0(f
α
, hα) ∼= L0(fα, hα) ∼= ϕα̃(t).

2.7 (Proof of Theorem 2.4) The proof has four parts (a)-(d).
(a) Let (f, h) : A → B and (f ′, h′) : B → C. Consider the corresponding asymp-
totic morphisms L0(f, h) ∼= ϕ : A→ Cb(T,B)

and L0(f ′, h′) ∼= ϕ′ : B → Cb(T,C). These are (continuous) liftings of ϕ̂ : A→ B∞
and ϕ̂′ : B → C∞ hence are unique up to an equivalence. Recall that by definition

(4) ϕ̂ pn = rnϕn, ϕ̂′ pn = r′nϕ
′
n
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where rn is the canonical map from Cb(Tn, B) to B∞ and r′n is the canonical map
from Cb(Tn, C) to C∞. This implies

(5) lim
t→∞

‖ϕt(pn(a))− ϕtn(a)‖ = 0 lim
t→∞

‖ϕ′t(qn(b))− ϕ′tn(b)‖ = 0

for all a ∈ An and b ∈ Bn.
We construct inductively two sequences of compacts Kn ⊂ An and K̂n ⊂ A such

that pn+1n(Kn) ⊂ Kn+1, pn(Kn) ⊂ K̂n, K̂n ⊂ K̂n+1 and the union of pn(Kn) is

a dense selfadjoint subalgebra of A. Moreover we can take the compacts K̂n such
that K̂n + K̂n ⊂ K̂n+1, K̂nK̂n ⊂ K̂n+1, and λK̂n ⊂ K̂n for all λ ∈ C with |λ| ≤ 1
[CH]. By (5) one can find an increasing map α : N→ N such that

(6) ‖ϕt(pn(x))− ϕtn(x)‖ ≤ 1/n, for allx ∈ Kn, t ≥ α(n)

Since ϕt is uniformly continuous on compacts for a suitable fast increasing map α
we can arrange that

‖ϕt(a+ λb)− ϕt(a)− λϕt(b)‖ ≤ 1/n(7)

‖ϕt(ab)− ϕt(a)ϕt(b)‖ ≤ 1/n(8)

‖ϕt(a∗)− ϕt(a)∗‖ ≤ 1/n(9)

‖ϕt(a)‖ ≤ ‖a‖+ 1/n.(10)

for all t ≥ α(n), a, b ∈ K̂n and |λ| ≤ 1 (cf. [CH]).
By replacing (f, h) by (fα, hα) and ϕt by ϕα̃(t) we may assume that (6)-(10) hold
true with α(n) = n (see Lemma 2.6). It is convenient to reindex the inductive
system B such that the indexing map of (f, h) becomes the identity map of N.

This is achieved by replacing (f ′, h′) by (f ′
f
, h′f ) (see 1.6) and ϕ′t by ϕf̃(t).

Next we construct inductively two more sequences of compacts K ′n ⊂ Bn and

K̂ ′n ⊂ B such that qn+1n(K ′n) ⊂ K ′n+1, qn+1(K ′n+1) ⊂ K̂ ′n and K̂ ′n ⊂ K̂ ′n+1.

Moreover we can take the compacts K ′n, K̂
′
n such that

{hτn(x) : x ∈ Kn, τ ∈ [0, 1]} ⊂ K ′n+1(11)

{ϕt(x) : x ∈ K̂n+3, 1 ≤ t ≤ n+ 1} ⊂ K̂ ′n(12)

By replacing (f ′, h′) by (f ′β , h′β) and ϕ′t by ϕ′
β̃(t)

for a fast increasing function

β : N→ N, we may assume that

(13) ‖ϕ′t(qn(y))− ϕ′tn(y)‖ ≤ 1/n, for all y ∈ K ′n, t ≥ n

‖ϕ′t(a+ λb)− ϕ′t(a)− λϕ′t(b)‖ ≤ 1/n(14)

‖ϕ′t(ab)− ϕ′t(a)ϕ′t(b)‖ ≤ 1/n(15)

‖ϕ′t(a∗)− ϕ′t(a)∗‖ ≤ 1/n(16)

‖ϕ′t(a)‖ ≤ ‖a‖+ 1/n.(17)
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for all t ≥ n, a, b ∈ K̂ ′n and |λ| ≤ 1.

(b) Having (7)-(10) and (12)-(16) it follows as in Lemma 3 in [CH] that ϕ′t+1◦ϕt
is an asymptotic morphism on the union of K̂n. Its extension to A is an asymptotic
morphism (well defined up to an equivalence) whose homotopy class is equal to the
composition [[ϕ′t]] ◦ [[ϕt]].

On the other hand we claim that the product [[f ′, h′]] ◦ [[f, h]] is given by the

homotopy class of (f ′′, h′′) where

f ′′k : Ak → Ck+1, f ′′k = f ′k+1 pk+1 k fk

h′′k : Ak → Ck+2[0, 1], h′′τk = h′τk+1 h
τ
k

Ck −−−−→ Ck+1 −−−−→ Ck+2x f ′
k+1

x x
Bk

qk+1 k−−−−→ Bk+1 −−−−→ Bk+2

fk

x x
Ak −−−−→ Ak+1

Indeed for α(k) = k + 1 we have

[[f ′, h′]] ◦ [[f, h]] = [[f ′α, h′α]] ◦ [[f, h]] = [[f ′′, g′′]]

where according to 1.7 g′′ is given by the sequence of homotopies

g′′τk =

{
h′ 2τk+1 qk+1 k fk, if 0 ≤ τ ≤ 1/2

fk+1qk+2 k+1h
2τ−1
k , if 1/2 ≤ τ ≤ 1.

Finally it is easily seen that (f ′′, g′′) is homotopic to (f ′′, h′′) since each g′′k is
homotopic to h′′k canonically.
According to the definition of L0 the ∗-homomorphism ϕ̂′′ = L0(f ′′, h′′) is the
inductive limit of the sequence of ∗-homomorphisms ϕ′′n : An → Cb(Tn, C) given by

ϕ′′tn = rk+2h
′ t−k
k+1 ht−kk pk+1 k

for all t with n ≤ k ≤ t ≤ k + 1.

(c) We claim that the proof of Theorem 2.4 is finished once we show that

(18) ‖ϕ′′ tn (x)− ϕ′t+1ϕt(pn(x))‖ ≤ 4/n.

for all x ∈ Kn and n ≤ t ≤ n+ 1.
Indeed we show below that (18) implies

(19) lim
t→∞

‖ϕ′′t (a)− ϕ′t+1 ϕt(a)‖ = 0

for all a ∈ A. Since the union of pn(Kn) is dense in A it is enough to prove (19)
only for elements a = pn(x) with x ∈ Kn. Moreover since
limt→∞ ‖ϕ′′t (pn(x))− ϕ′′ tn (x)‖ = 0 it is sufficient to show that

(20) lim
t→∞

‖ϕ′′ tn (x)− ϕ′t+1 ϕt(pn(x))‖ = 0.
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Let n ≤ k ≤ t ≤ k + 1 and set z = pkn(x) ∈ Kk. According to (18)

‖ϕ′′ tk (z)− ϕ′t+1ϕt(pk(z))‖ ≤ 4/k

But ϕ′′ tk (z) = ϕ′′ tk (pkn(x)) = ϕ′′ tn (x) for all t ≥ k.
Thus ‖ϕ′′ tn (x)− ϕ′t+1 ϕt(pn(x))‖ ≤ 4/k.

This implies (20) and therefore (19).

(d) In the last part of the proof we show that (18) holds true. As a first step we
show that

(21) ‖ϕ′t+1(ϕtn(x))− ϕ′t+1(ϕt(pn(x)))‖ ≤ 3/n

for all x ∈ Kn and n ≤ t ≤ n+ 1.
If x ∈ Kn then hτn(x) ∈ K ′n+1 for all 0 ≤ τ ≤ 1 by (11). Thus ϕtn(x) =

qn+1h
t−n
n (x) ∈ K̂ ′n since qn+1(K ′n+1) ⊂ K̂ ′n. By (12) ϕt(pn(x)) ∈ K̂ ′n since

pn(x) ∈ K̂n ⊂ K̂n+3. Since both u = ϕtn(x) and v = ϕt(pn(x)) belong to K̂ ′n
by using (14), (17) and (6)

‖ϕ′t+1(u)− ϕ′t+1(v)‖ ≤ ‖ϕ′t+1(u− v)‖+ 1/n ≤
‖u− v‖+ 2/n ≤ 3/n

which proves (21).
Next we want to show that

(22) ‖ϕ′′ tn (x)− ϕ′t+1(ϕtn(x))‖ ≤ 1/n

for all x ∈ Kn and n ≤ t ≤ n+ 1.
Let y = ht−nn (x) and note that y ∈ K ′n+1 ⊂ Bn+1 by (11). It follows from (13) that

(23) ‖ϕ′t+1(qn+1(y))− ϕ′t+1
n+1(y)‖ ≤ 1/(n+ 1)

Recall that ϕtn(x) = qn+1h
t−n
n (x) = qn+1(y). Recall that ϕ′′ tn (x) = r′n+2h

′ t−n
n+1 ht−nn (x).

This is equal to ϕ′ t+1
n+1 (y) by the definition of ϕ′n+1. Thus (22) follows from (23).

Finally we obtain (18) as a consequence of (21) and (22).

3. The strong shape category

Definition 3.1 ([B]) Let A, B be separable C*-algebras. A ∗-homomorphism
ϕ : A→ B is called semiprojective if for any C*-algebra E and increasing sequence
Jn of ideals of E with J = ∪Jn and for any ∗-homomorphism σ : B → E/J
there is an n and a ∗-homomorphism ψ : A → E/Jn with πnψ = σϕ where
πn : E/Jn → E/J is the quotient map.

A
ψ−−−−→ E/Jn

ϕ

y yπn
B −−−−→

σ
E/J
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A is semiprojective if the identity map of A is semiprojective. A composition of a
semiprojective ∗-homomorphism with any other ∗-homomorphism is semiprojective.
The reader is refered to [EK1], [B] and [Lo] for more discussion on semiprojectivity.

Definition 3.2 An inductive system (An, pn+1n) of separable C*-algebras is
called semiprojective if all the ∗-homomorphisms pn+1 n are semiprojective.

3.3 It is proven in [B] that any C*-algebra can be written as the inductive limit
of some semiprojective inductive system. The shape category Sh is the full sub-
category of inj–Ho(C∗) whose objects are all the semiprojective inductive systems.
The shape invariant of a separable C*-algebra A is the isomorphism class in Sh of
some projective system A with lim−→A = A. This is well defined for if A′ is another

semiprojective system with lim−→A′ = A, then A′ is isomorphic to A in Sh (see The-

orem 4.8 in [B]). Two separable C*-algebras are said to be shape equivalent if and
only if they have the same shape invariant. The shape invariant of a C*-algebra is
a homotopy invariant. In general the shape invariant of a C*-algebra A does not
determine the homotopy type of A. However, according to Theorem 2.5, it deter-
mines the “asymptotic homotopy type” of A. We shall prove that the converse is
also true (see Theorem 3.9 below).

3.4 It is convenient to extend the shape invariant of [B] to a shape functor
Sh : C∗ → Sh. To this purpose for any separable C*-algebra A we choose a
semiprojective system A such that lim−→ A = A (The Choice Axiom is invoked). By

using arguments similar to those in Section 5 of [EK1] and Theorem 3.3 of [B] for
each ∗-homomorphism ϕ : A → B one finds a morphism f : A → B such that the
diagram

Bf(n)

qf(n)−−−−→ B

fn

x xϕ
An −−−−→

pn
A

commutes up to a homotopy, for all n. The morphism f is unique up to homotopy.
The shape functor associated with the selection A  A is defined on objects by
Sh(A) = A and on ∗-homomorphisms by Sh(ϕ) = [f ]. If two ∗-homomorphisms
ϕ,ψ : A → B are homotopic then Sh(ϕ) = Sh(ψ) and hence the shape functor
descends to a functor

Sh : Ho(C∗)→ Sh ⊂ inj −Ho(C∗).

It is easily seen that different selections A  A give rise to naturally isomorphic
shape functors.

Theorem 3.5 Let A = (An, pn+1n) and B = (Bn, qn+1n) be inductive sys-
tems of separable C*-algebras and let A = lim−→A, B = lim−→B. Suppose that A is
semiprojective. Then the homotopy inductive limit functor induces a bijection

L : [[A,B]]→ [[A,B]].

Proof This follows from Corollary 3.15 and Proposition 3.18 given below.
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Motivated by Theorem 3.5 we introduce the strong shape category of separable
C*-algebras. This is a generalization of topological strong shape category ( see CH.
III 9 in [MS] for a survey of the commutative theory and additional references). A
good reference for the strong shape theory of compact metrisable spaces is [Ca].

Definition 3.6 The strong shape category of separable C*-algebras, denoted by
S, is the full subcategory of Ho(inj–C∗) whose objects are all the semiprojective
inductive systems. Two separable C*-algebras A and B are said to be strong
shape equivalent if there are semiprojective inductive systems A and B such that
lim−→A = A, lim−→B = B and A is isomorphic to B in S. Using the Choice Axiom we

select for each separable C*-algebra A a semiprojective system A with lim−→ A = A.

By Theorem 3.5 for each w ∈ [[A,B]] there is a unique u ∈ [[A,B]] such that
Lu = w. A strong shape functor S : A → S is defined by setting S(A) = A and
S(w) = u. Different selections A  A give rise to naturally isomorphic strong
shape functors.

The restriction of the homotopy inductive limit functor L to the strong shape
category S is denoted by L too.

Theorem 3.7 The functor L : S → A is an equivalence of categories. The
strong shape functor S is a right inverse for L.

Proof The Theorem follows from Theorem 3.5 and Definition 3.6

Let K denote the C*-algebra of compact operators on a separable infinite dimen-
sional Hilbert space. The suspension of a C*-algebra A is SA = C0(R) ⊗ A. The
E-theory group was defined in [CH] by E(A,B) = [[SA⊗K, SB ⊗K]].

Corollary 3.8 E-theory is equivalent to the strong shape theory of suspensions
of stable separable C*-algebras.

Theorem 3.9 Let A, B be separable C*-algebras. The following are equivalent:

(a) A is shape equivalent to B.

(b) A is strong shape equivalent to B.

(c) A is isomorphic to B in A i.e. there are asymptotic morphisms
ϕt : A→ B and ψt : B → A such that [[ψt]] ◦ [[ϕt]] = [[idA]] and
[[ϕt]] ◦ [[ψt]] = [[idB ]].

Proof The Theorem is a straightforward consequence of Theorems 1.14 and 3.7

Remark 3.10 Let F : S → Sh be the restriction of the canonical functor
F : Ho(inj − C∗)→ inj −Ho(C∗) (see 1.13). The diagram

A S−−−−→ Sx yF
Ho(C∗) −−−−→

Sh
Sh

is commutative up to a natural isomorphism of functors. Thus the shape functor
factors through A.
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Let C be a category. An inductive system (An, pn+1n) in C consists of a infinite
diagram

. . . −→ An
pn+1n−−−−→ An+1 −→ . . .

of objects and morphisms in C. Recall that a couple (A, pn) consisting of an object
A of C and a sequence of morphisms pn ∈ HomC(An, A) is an inductive limit of the
system (An, pn+1n) if the following two conditions are fullfilled.

1) pn+1pn+1n = pn
2) For any couple (B, qn) consisting of an object B of C and a sequence of

morphisms qn ∈ HomC(An, B) such that qn+1pn+1n = qn, there is a unique ϕ ∈
HomC(A,B) such that ϕpn = qn for all n.

Let B be a category. We say that a covariant functor T : C → B preserves
inductive limits if whenever (A, pn) is an inductive limit of a system (An, pn+1n),
(T (A), T (pn)) is an inductive limit of the system (T (An), T (pn+1n)).

Theorem 3.11 Let B be a category and let T : C∗ → B be a homotopy invariant
functor. If T preserves inductive limits then T factors through the category A. In
particular T (SA ⊗ K) is naturally isomorphic to T (S3A ⊗ K) for any separable
C*-algebra A (cf. [Cu]).

Proof Since T is homotopy invariant and preserves inductive limits it is not hard
to see that T extends canonically to a functor T ′ : inj–Ho(C) → B such that
T = T ′ ◦ Sh. Thus the first part of the statement follows from Remark 3.10. The
second part of the statement becomes a consequence of the Bott periodicity in
E-theory: SK is asymptotically homotopy-equivalent to S3K [CH].

Let N be the category of “nice ” separable nuclear C*-algebras introduced in
[RS].

Proposition 3.12 Let A,B be C*-algebras in N . Then SA⊗K is shape equiv-
alent to SB⊗K if and only if K∗(A) is isomorphic to K∗(B) as Z/2-graded groups.

Proof By the universal coefficient theorem of [RS], K∗(A) ∼= K∗(B) if and only
if A is KK-equivalent to B. For nuclear C*-algebras KK(A,B) is isomorphic to
E(A,B) = [[SA ⊗ K, SB ⊗ K]] by an isomorphism that preserves the intersection
product [CH]. The result follows from Theorem 3.9.

Many other shape classification results can be obtained based on results in
[D1],[D2], [DL]. For instance we prove in [D3] that if X and Y are compact con-
nected metrisable spaces then C0(X \ pt)⊗K is shape equivalent to C0(Y \ pt)⊗K
if and only if K∗(X) is isomorphic to K∗(Y ) as Z/2-graded groups.

The rest of the paper is devoted to a proof of Theorem 3.5.

Proposition 3.13 Let γ : A → B be a semiprojective ∗-homomorphism and
let E, Jn, J, πn be as in Definition 3.1. Suppose that there are given two ∗-
homomorphisms α, β : B → E/Jn and a homotopy h : B → E/J [0, 1] from πn α
to πn β. Then there are m ≥ n and a homotopy hm : A → E/Jm[0, 1] lifting the
homotopy h ◦ γ (i.e. πm h

t
m = ht γ ) such that

h0
m = πmn αγ, h1

m = πmn β γ.

Here πmn : E/Jn → E/Jm denotes the quotient map.
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Proof This is a version of Theorem 3.3 in [B]; (see also Proposition 3.2 in [EK1].)

Proposition 3.14 Let (An, pn+1n) be a semiprojective inductive system, let
A = lim−→ (An, pn+1n) and let ϕt : A → B be an asymptotic morphism. Then there
are an increasing map α : N → N, a sequence of ∗-homomorphisms ϕn : An →
Cb(Tα(n), B) such that ϕtn = ϕtn+1pn+1n for all t ≥ α(n) and ϕ̂n = ϕ̂ ◦ pn for all n.

That means that there is a commutative diagram of C*-algebras and ∗-homomorphisms

Cb(Tα(n), B) −−−−→ Cb(Tα(n+1), B) −−−−→ . . .

ϕn

x ϕn+1

x
An −−−−→ An+1 −−−−→ . . .

such that ϕ̂ = lim−→ ϕn.

Proof Let Kn ⊂ An be a sequence of compacts with pn+1n(Kn) ⊂ Kn+1 and
such that the union of pn(Kn) is a dense subset of A. We shall construct inductively

a sequence α(1) < α(2) < . . . < α(n),
∗-homomorphisms ψj : Aj+1 → Cb(Tα(j), B) and ηj : Aj → Cb(Tα(j), B),

ηj = ψj ◦ pj+1 j , 1 ≤ j ≤ n
∗-homomorphisms (homotopies) Hj : Aj → Cb(Tα(j+1), B[0, 1]), 1 ≤ j ≤ n− 1
such that for all j ≤ n we have

(24) ψ̂j = ϕ̂ pj+1

(25) ‖ϕt(pj(x))− ηtj(x)‖ ≤ 1/j, for all x ∈ Kj , t ≥ α(j)

(26) sup
r,s∈[0,1]

‖Hr,t
j−1(x)−Hs,t

j−1(x)‖ ≤ 1/j for all x ∈ Kj , t ≥ α(j).

(27) H0,t
j−1 = ηtj−1, H1,t

j−1 = ηtj pj j−1 for all t ≥ α(j).

Suppose that α(j), ψj , ηj , Hj−1 have been constructed for all j ≤ n. We proceed
now to producing α(n+ 1), ψn+1, ηn+1, Hn.

Consider the ∗-homomorphism ϕ̂ ◦ pn+3 : An+3 → B∞. Since pn+3n+2 is
semiprojective there is a ∗-homomorphism ψn+1 : An+2 → Cb(Tm, B) for some

big enough m such that ψ̂n+1 = ϕ̂ ◦ pn+2. Define ηn+1 = ψn+1 ◦ pn+2n+1. Since

ψ̂n = ψ̂n+1pn+2n+1 and pn+1n is semiprojective we can use Proposition 3.13 to
find a ∗-homomorphism Hn : An → Cb(Tm, B[0, 1]) such that

H0,t
n = ψtn ◦ pn+1n = ηtn, H1,t

n = ψtn+1 pn+2n = ηtn+1pn+1n for all t ≥ m.

Since Ĥn = (Hs
n)s∈[0,1] lifts the constant homotopy ψ̂npn+1n, it follows that (26)

holds for j = n + 1 and big enough α(n + 1) ≥ m. It is clear that η̂n = ϕ̂pn and
hence by increasing α(n+ 1) we can arrange to have (2.5) fulfilled for j = n+ 1.

In the last part of the proof we produce the ∗-homomorphisms ϕn inductively.
For any positive integer k ≥ n we can find β(k) ∈ [α(k), α(k+1)] and an increasing
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homeomorphism u : [α(k), α(k + 1)] → [α(k), β(k)] such that ‖ηu(t)
n (pkn)(x) −

ηtn(pkn(x)‖ ≤ 1/k for all x ∈ Kn. Let v be an increasing homeomorphism mapping
[β(k), α(k + 1)] onto [0, 1]. Define ϕn : An → Cb(Tα(n), B) by

ϕtn(a) =

{
η
u(t)
k (pkn(a)) if α(k) ≤ t ≤ β(k)

H
v(t),α(k+1)
k (pkn(a)) if β(k) ≤ t ≤ α(k + 1)

This is well defined by (27). Using (25), (26) and the choice of u(t) it easily seen
that limt→∞ ‖ϕtn(x)− ϕtpn(x)‖ = 0 for all x ∈ Kn.

Since ϕ̂kpkn = ϕ̂n for all k ≥ n and ∪pn(Kn) = A it follows that ϕ̂n = ϕ̂ ◦ pn for
all n.

Corollary 3.15 Let A = (An, pn+1n), B = (Bn, qn+1n) be inductive systems
of separable C*-algebras and let A = lim−→ (An, pn+1n), B = lim−→ (qn, qn+1n). Let

ϕt : A → B be an asymptotic morphism. If (An, pn+1n) is semiprojective then
there is a strong map of systems (f, h) : A→ B and an increasing map α : N→ N
such that L0(f, h) is equivalent to ϕα̃(t).

Proof Let ϕn be as in the conclusion of Proposition 3.14. Define a strong map
of systems (f, h)

(27)

B B . . .

fn

x fn+1

x
An −−−−→

pn+1n

An+1 −−−−→ . . .

by setting fn : An → B, fn = ϕ
α(n)
n and hn : An → B[0, 1], hτn = ϕ

(1−τ)α(k)+τα(k+1)
n .

A simple calculation shows that L0(f, h) is equivalent to the asymptotic morphism
ϕα̃(t).

Since the inductive system A is semiprojective by using Theorem 3.3 in [B], (f, h)
lifts to a map of systems A→ B. We omit the details.

3.16 Blackadar showed in [B] that every separable C*-algebra is the inductive
limit of some semiprojective inductive system. We recall here his construction. Let
A be a separable C*-algebra and let G be a dense selfadjoint countable subring
of A which is an algebra over the rational numbers. Let R denote the set of all
∗-algebraic relations on G plus the scalar multiple relations between elements of G
plus a relation ‖x‖ ≤ ‖x‖A for each x ∈ G. Then the C*-algebra A is isomorphic
to the universal C*-algebra on the set G of generators and the set of relations R.
Write G = {x1, x2, . . .} and

R = {(‖p1(.)‖ ≤ c1), (‖p2(.)‖ ≤ c2), . . .}.

Let Gn = {x1, . . . xn} and

Rn = {(‖p̃j(.)‖ ≤ cj + 1/n), (‖xj‖ ≤ ‖xj‖A + 1/n) : 1 ≤ j ≤ n}

where p̃j = pj if pj involves only x1, . . . xn and p̃j is void otherwise. Let An be the
universal C*-algebra on the set Gn of generators and the set of relations Rn. There
is a natural map pn+1n : An → An+1 induced by the inclusion Gn ⊂ Gn+1. This is
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well defined since the relations in Rn+1 include stronger forms of all the relations
in Rn. Finally one checks that pn+1n is semiprojective and A = lim−→ (An, pn+1n).

In this circle of ideas we have the following easy Lemma whose proof is omitted.

Lemma 3.17 Let (An, pn+1n) be as in 3.16. Then there is δn > 0 such that
for any C*-algebra B and any two ∗-homomorphisms ϕ,ψ : An+1 → B satisfying
‖ϕ(x)− ψ(x)‖ ≤ δn for all x ∈ Gn+1, the formula

hsn(xj) = (1− s)ϕ(pn+1n(xj)) + sψ(pn+1n(xj))

1 ≤ j ≤ n, extends to a well defined homotopy of ∗-homomorphisms hn : An →
B[0, 1] from ϕ ◦ pn+1n to ψ ◦ pn+1n.

Proposition 3.18 Let (f, h), (f ′, h′) : A → B be strong maps of systems. Su-

pose that A is semiprojective. If L0(f, h) is homotopic to L0(f ′, h′) then (f, h) is

homotopic to (f ′, h′). Therefore

L : [[A,B]]→ [[lim−→A, lim−→B]]

is injective.

Proof Let A = lim−→A and B = lim−→B. We begin by proving Proposition 3.18
under two additional assumptions:

(a) L0(f, h) is equivalent to L0(f ′, h′).
(b) A = (An, pn+1n) is as in 3.16.
We may suppose that (f, h) and (f ′, h′) have the same indexing map equal to

the identity of N. Recalling the construction of L0 given in 2.2 it is obvious that if
L0(f, h) is equivalent to L0(f ′, h′) then

(28) lim
t→∞

‖qf(k+1) (ht−kk − h′ t−kk ) pkn(x)‖ = 0

for all x ∈ An, where k denotes the integer part of t. Since each An is finitely
generated, after replacing (f, h) by iβ ◦ ((f, h) ◦ iα) and (f ′, h′) by iβ ◦ ((f ′, h′) ◦ iα)
we may assume that

(28) lim
t→∞

‖(ht−kk − h′ t−kk ) pkn(x)‖ = 0

for all x ∈ An, where k denotes the integer part of t and moreover

(29) ‖ht−kk pkn(x)− h′ t−kk pkn(x)‖ ≤ δn, ‖fn(x)− f ′n(x)‖ ≤ δn

for all x ∈ Gn and k ≥ n, where Gn and δn are as in Lemma 3.17.
Let α : N→ N, α(n) = n+ 1 and consider the strong maps of systems (fα, hα),

(f ′α, h′α) : A→ B (see (2.5) ). We have

fαn = fn+1pn+1n : An → Bn+1

hαn = hn pn+1n : An → Bn+2[0, 1]

f ′αn = f ′n+1pn+1n : An → Bn+1

h′αn = h′n pn+1n : An → Bn+2[0, 1]
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As a consequence of (29) ‖hn+1(x)−h′n+1(x)‖ ≤ δn+1 for all x ∈ Gn+1. Thus by
Lemma 3.17 the formula

µs,τn (xj) = (1− s)hτn+1 (pn+1n(xj)) + sh′ τn+1 (pn+1n(xj))

with xj ∈ Gn extends to a well defined ∗-homomorphism µ : An → Bn+2[0, 1]×[0, 1].
Similarly there is a unique ∗-homomorphism νn : An → Bn+1[0, 1] such that
νsn(xj) = (1− s)fn+1 pn+1n(xj) + sf ′n+1 pn+1n(xj) for all xj ∈ Gn. In this way we
obtain a strong map of systems (νn, µn) : A → B which is a homotopy between
(fα, hα)and (f ′α, h′α).

We shall remove now assumption (a). Let Φt : A → B[0, 1] be a homotopy of
asymptotic morphisms such that Φ0

t = L0(f, h) and Φ1
t = L0(f ′, h′).

By Corollary 3.15 there is a strong map of systems (ν, µ) : A → B such that
L0(ν, µ) is equivalent to Φα̃(t) for some increasing map α : N → N. Lemma 2.6

shows that after replacing (f, h) by (fα, hα) and (f ′, h′) by (f ′α, h′α) we may assume
that L0(ν, µ) is equivalent to Φt. Then as in the proof of Lemma 2.3 we have that

L0(e0 (ν, µ)) is equivalent to Φ0
t hence equivalent to L0(f, h). Similarly L0(e1 (ν, µ))

is equivalent to L0(f ′, h′). By the first part of the proof it follows that (f, h) is

homotopic to (e0 (ν, µ)) and (f ′, h′) is homotopic to (e1 (ν, µ)). Since homotopy of
strong maps of systems is an equivalence relation we are done. To complete the
proof we are going now to remove assumption (b). Let A′ be any semiprojective
inductive system with lim−→A′ = A. By 3.3 this implies that A′ is isomorphic to A
in the strong shape category S. From what we have proven so far we know that L
induces an injective map

L : [[A,B]]→ [[A,B]].

Since L is a functor and A is isomorphic to A′ in S it follows that

L : [[A′, B]]→ [[A,B]]

is injective too.
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