ON THE KK-THEORY OF STRONGLY SELF-ABSORBING C^*-ALGEBRAS

MARIUS DADARLAT AND WILHELM WINTER

Abstract. Let D and A be unital and separable C^*-algebras; let D be strongly self-absorbing. It is known that any two unital *-homomorphisms from D to $A \otimes D$ are approximately unitarily equivalent. We show that, if D is also K_1-injective, they are even asymptotically unitarily equivalent. This in particular implies that any unital endomorphism of D is asymptotically inner. Moreover, the space of automorphisms of D is compactly-contractible (in the point-norm topology) in the sense that for any compact Hausdorff space X, the set of homotopy classes $[X, \text{Aut}(D)]$ reduces to a point. The respective statement holds for the space of unital endomorphisms of D. As an application, we give a description of the Kasparov group $KK(D, A \otimes D)$ in terms of *-homomorphisms and asymptotic unitary equivalence. Along the way, we show that the Kasparov group $KK(D, A \otimes D)$ is isomorphic to $K_0(A \otimes D)$.

0. Introduction

A unital and separable C^*-algebra $D \neq \mathbb{C}$ is strongly self-absorbing if there is an isomorphism $D \xrightarrow{\sim} D \otimes D$ which is approximately unitarily equivalent to the inclusion map $D \to D \otimes D$, $d \mapsto d \otimes 1_D$ ([14]). Strongly self-absorbing C^*-algebras are known to be simple and nuclear; moreover, they are either purely infinite or stably finite. The only known examples of strongly self-absorbing C^*-algebras are the UHF algebras of infinite type (i.e., every prime number that occurs in the respective supernatural number occurs with infinite multiplicity), the Cuntz algebras O_2 and O_∞, the Jiang–Su algebra Z and tensor products of O_∞ with UHF algebras of infinite type, see [14]. All these examples are K_1-injective, i.e., the canonical map $\mathcal{U}(D)/\mathcal{U}_0(D) \to K_1(D)$ is injective.

It was observed in [14] that any two unital *-homomorphisms $\sigma, \gamma : D \to A \otimes D$ are approximately unitarily equivalent, were A is another unital and separable C^*-algebra. If D is K_1-injective, the unitaries implementing the equivalence may even be chosen to

Date: May 29, 2007.
2000 Mathematics Subject Classification. 46L05, 47L40.
Key words and phrases. Strongly self-absorbing C^*-algebras, KK-theory, asymptotic unitary equivalence, continuous fields of C^*-algebras.
Supported by: The first named author was partially supported by NSF grant #DMS-0500693.
The second named author was supported by the DFG (SFB 478).
be homotopic to the unit. When D is O_2, O_∞, it was known that σ and γ are even asymptotically unitarily equivalent – i.e., they can be intertwined by a continuous path of unitaries, parametrized by a half-open interval. Up to this point, it was not clear whether the respective statement holds for the Jiang–Su algebra Z. Theorem 2.2 below provides an affirmative answer to this problem. Even more, we show that the path intertwining σ and γ may be chosen in the component of the unit.

We believe this result, albeit technical, is interesting in its own right, and that it will be a useful ingredient for the systematic further use of strongly self-absorbing C^*-algebras in Elliott’s program to classify nuclear C^*-algebras by K-theory data. In fact, this point of view is our main motivation for the study of strongly self-absorbing C^*-algebras; see [8], [10], [16], [17], [18] and [15] for already existing results in this direction.

For the time being, we use Theorem 2.2 to derive some consequences for the Kasparov groups of the form $KK(D, A \otimes D)$. More precisely, we show that all the elements of the Kasparov group $KK(D, A \otimes D)$ are of the form $[\varphi] - n[\iota]$ where $\varphi : D \rightarrow K \otimes A \otimes D$ is a *-homomorphism and $\iota : D \rightarrow A \otimes D$ is the inclusion $\iota(d) = 1_A \otimes d$ and $n \in \mathbb{N}$. Moreover, two non-zero *-homomorphisms $\varphi, \psi : D \rightarrow K \otimes A \otimes D$ with $\varphi(1_D) = \psi(1_D) = e$ have the same KK-theory class if and only if there is a unitary-valued continuous map $u : [0, 1) \rightarrow e(K \otimes A \otimes D)e, t \mapsto u_t$ such that $u_0 = e$ and $\lim_{t \rightarrow 1} \|u_t \varphi(d) u_t^* - \psi(d)\| = 0$ for all $d \in D$. In addition, we show that $KK_i(D, D \otimes A) \cong K_i(D \otimes A), i = 0, 1$.

One may note the similarity to the descriptions of $KK(O_\infty, O_\infty \otimes A)$ ([8],[10]) and $KK(C, C \otimes A)$. However, we do not require that D satisfies the universal coefficient theorem (UCT) in KK-theory. In the same spirit, we characterize O_2 and the universal UHF algebra Q using K-theoretic conditions, but without involving the UCT.

As another application of Theorem 2.2 (and the results of [7]), we prove in [4] an automatic trivialization result for continuous fields with strongly self-absorbing fibres over finite dimensional spaces.

The second named author would like to thank Eberhard Kirchberg for an inspiring conversation on the problem of proving Theorem 2.2.

1. STRONGLY SELF-ABSORBING C^*-ALGEBRAS

In this section we recall the notion of strongly self-absorbing C^*-algebras and some facts from [14].

1.1 Definition: Let A, B be C^*-algebras and $\sigma, \gamma : A \rightarrow B$ be *-homomorphisms. Suppose that B is unital.
We say that σ and γ are approximately unitarily equivalent, $\sigma \approx_u \gamma$, if there is a sequence $(u_n)_{n \in \mathbb{N}}$ of unitaries in B such that
\[
\|u_n \sigma(a) u_n^* - \gamma(a)\| \xrightarrow{n \to \infty} 0
\]
for every $a \in A$. If all u_n can be chosen to be in $U_0(B)$, the connected component of 1_B of the unitary group $U(B)$, then we say that σ and γ are strongly approximately unitarily equivalent, written $\sigma \approx_{su} \gamma$.

(ii) We say that σ and γ are asymptotically unitarily equivalent, $\sigma \approx_{uh} \gamma$, if there is a norm-continuous path $(u_t)_{t \in [0, \infty)}$ of unitaries in B such that
\[
\|u_t \sigma(a) u_t^* - \gamma(a)\| \xrightarrow{t \to \infty} 0
\]
for every $a \in A$. If one can arrange that $u_0 = 1_B$ and hence $(u_t \in U_0(B))$ for all t, then we say that σ and γ are strongly asymptotically unitarily equivalent, written $\sigma \approx_{suh} \gamma$.

1.2 The concept of strongly self-absorbing C^*-algebras was formally introduced in [14, Definition 1.3]:

DEFINITION: A separable unital C^*-algebra \mathcal{D} is strongly self-absorbing, if $\mathcal{D} \neq \mathbb{C}$ and there is an isomorphism $\varphi: \mathcal{D} \to \mathcal{D} \otimes \mathcal{D}$ such that $\varphi \approx_u \text{id}_\mathcal{D} \otimes 1_\mathcal{D}$.

1.3 Recall [14, Corollary 1.12]:

PROPOSITION: Let A and \mathcal{D} be unital C^*-algebras, with \mathcal{D} strongly self-absorbing. Then, any two unital *-homomorphisms $\sigma, \gamma: \mathcal{D} \to A \otimes \mathcal{D}$ are approximately unitarily equivalent. In particular, any two unital endomorphisms of \mathcal{D} are approximately unitarily equivalent.

We note that the assumption that A is separable which appears in the original statement of [14, Corollary 1.12] is not necessary and was not used in the proof.

1.4 LEMMA: Let \mathcal{D} be a strongly self-absorbing C^*-algebra. Then there is a sequence of unitaries $(w_n)_{n \in \mathbb{N}}$ in the commutator subgroup of $U(\mathcal{D} \otimes \mathcal{D})$ such that for all $d \in \mathcal{D}$
\[
\|w_n(d \otimes 1_\mathcal{D})w_n^* - 1_\mathcal{D} \otimes d\| \to 0 \text{ as } n \to \infty.
\]

PROOF: Let $\mathcal{F} \subset \mathcal{D}$ be a finite normalized set and let $\varepsilon > 0$. By [14, Prop. 1.5] there is a unitary $u \in U(\mathcal{D} \otimes \mathcal{D})$ such that $\|u(d \otimes 1_\mathcal{D})u^* - 1_\mathcal{D} \otimes d\| < \varepsilon$ for all $d \in \mathcal{F}$. Let $\theta: \mathcal{D} \otimes \mathcal{D} \to \mathcal{D}$ be a *-isomorphism. Then $\|(\theta(u^*) \otimes 1_\mathcal{D})u(d \otimes 1_\mathcal{D})u^*(\theta(u) \otimes 1_\mathcal{D}) - 1_\mathcal{D} \otimes d\| < \varepsilon$ for all $d \in \mathcal{F}$. By Proposition 1.3 $\theta \otimes 1_\mathcal{D} \approx_u \text{id}_{\mathcal{D} \otimes \mathcal{D}}$ and so there is a unitary $v \in U(\mathcal{D} \otimes \mathcal{D})$ such that $\|\theta(u^*) \otimes 1_\mathcal{D} - vv^* u^*\| < \varepsilon$ and hence $\|\theta(u^*) \otimes 1_\mathcal{D})u - vv^* u\| < \varepsilon$. Setting $w = vv^* u$ we deduce that $\|w(d \otimes 1_\mathcal{D})w^* - 1_\mathcal{D} \otimes d\| < 3\varepsilon$ for all $d \in \mathcal{F}$.

1.5 REMARK: In the situation of Proposition 1.3, suppose that the commutator subgroup of $U(\mathcal{D})$ is contained in $U_0(\mathcal{D})$. This will happen for instance if \mathcal{D} is assumed to be K_1-injective. Then one may choose the unitaries $(u_n)_{n \in \mathbb{N}}$ which implement the approximate
unitary equivalence between σ and γ to lie in $\mathcal{U}_0(A \otimes D)$. This follows from [14, (the proof of) Corollary 1.12], since the unitaries $(u_n)_{n \in \mathbb{N}}$ are essentially images of the unitaries $(w_n)_{n \in \mathbb{N}}$ of Lemma 1.4 under suitable unital *-homomorphisms.

2. Asymptotic vs. approximate unitary equivalence

It is the aim of this section to establish a continuous version of Proposition 1.3.

2.1 Lemma: Let \mathcal{D} be separable unital strongly self-absorbing C^\ast-algebra. For any finite subset $F \subset \mathcal{D}$ and $\varepsilon > 0$, there are a finite subset $G \subset \mathcal{D}$ and $\delta > 0$ such that the following holds:

If A is another unital C^\ast-algebra and $\sigma : \mathcal{D} \to A \otimes \mathcal{D}$ is a unital *-homomorphism, and if $w \in \mathcal{U}_0(A \otimes \mathcal{D})$ is a unitary satisfying

$$||[w, \sigma(d)]|| < \delta$$

for all $d \in G$, then there is a continuous path $(w_t)_{t \in [0,1]}$ of unitaries in $\mathcal{U}_0(A \otimes \mathcal{D})$ such that $w_0 = w, w_1 = 1_{A \otimes \mathcal{D}}$ and

$$||[w_t, \sigma(d)]|| < \varepsilon$$

for all $d \in F, t \in [0,1]$.

Proof: We may clearly assume that the elements of F are normalized and that $\varepsilon < 1$. Let $u \in \mathcal{D} \otimes \mathcal{D}$ be a unitary satisfying

$$||u(d \otimes 1_\mathcal{D})u^* - 1_\mathcal{D} \otimes d|| < \frac{\varepsilon}{20}$$

for all $d \in F$. There exist $k \in \mathbb{N}$ and elements $s_1, \ldots, s_k, t_1, \ldots, t_k \in \mathcal{D}$ of norm at most one such that

$$||u - \sum_{i=1}^k s_i \otimes t_i|| < \frac{\varepsilon}{20}.$$

Set

$$\delta := \frac{\varepsilon}{k \cdot 10}$$

and

$$G := \{s_1, \ldots, s_k\} \subset \mathcal{D}.$$

Now let $w \in \mathcal{U}_0(A \otimes \mathcal{D})$ be a unitary as in the assertion of the lemma, i.e., w satisfies

$$||[w, \sigma(s_i)]|| < \delta$$

for all $i = 1, \ldots, k$. We proceed to construct the path $(w_t)_{t \in [0,1]}$.

By [14, Remark 2.7] there is a unital *-homomorphism

$$\varphi : A \otimes \mathcal{D} \otimes \mathcal{D} \to A \otimes \mathcal{D}$$
such that

\[\| \varphi(a \otimes 1_D) - a \| < \frac{\varepsilon}{20} \]

for all \(a \in \sigma(F) \cup \{w\} \).

Since \(w \in U_0(A \otimes D) \), there is a path \((\tilde{w}_t)_{t \in \left[\frac{1}{2}, 1\right]}\) of unitaries in \(A \otimes D \) such that

\[\tilde{w}_{\frac{1}{2}} = w \text{ and } \tilde{w}_1 = 1_{A \otimes D}. \]

For \(t \in \left[\frac{1}{2}, 1\right] \) define

\[w_t := \varphi((\sigma \otimes \text{id}_D)(u)^*(\tilde{w}_t \otimes 1_D)(\sigma \otimes \text{id}_D)(u)) \in U(A \otimes D); \]

then \((w_t)_{t \in \left[\frac{1}{2}, 1\right]}\) is a continuous path of unitaries in \(A \otimes D \). For \(t \in \left[\frac{1}{2}, 1\right] \) and \(d \in F \) we have

\[
\begin{align*}
\|(w_t, \sigma(d))\| & = \|w_t \sigma(d) w_t^* - \sigma(d)\| \\
& < \|w_t \varphi(\sigma(d) \otimes 1_D)w_t^* - \varphi(\sigma(d) \otimes 1_D)\| + 2 \cdot \frac{\varepsilon}{20} \\
& \leq \|((\sigma \otimes \text{id}_D)(u)^*(\tilde{w}_t \otimes 1_D)((\sigma \otimes \text{id}_D)(u(d \otimes 1_D)u^*))((\tilde{w}_t^* \otimes 1_D) \\
& \quad - ((\sigma \otimes \text{id}_D)(d \otimes 1_D))\| + \frac{\varepsilon}{10} \\
& \leq \|((\sigma \otimes \text{id}_D)(u)^*(\tilde{w}_t \otimes 1_D)((\sigma \otimes \text{id}_D)(1_D \otimes d)(\tilde{w}_t^* \otimes 1_D) \\
& \quad - ((\sigma \otimes \text{id}_D)(d \otimes 1_D))\| + \frac{\varepsilon}{10} + \frac{\varepsilon}{20} \\
& = \|((\sigma \otimes \text{id}_D)(u)^*(1_D \otimes d)u - d \otimes 1_D)\| + \frac{\varepsilon}{10} + \frac{\varepsilon}{20} \\
& < \frac{\varepsilon}{20} + \frac{\varepsilon}{10} + \frac{\varepsilon}{20} \\
& < \frac{\varepsilon}{3};
\end{align*}
\]
where for the last equality we have used that the \bar{w}_t are unitaries and that σ is a unital \ast-homomorphism. Furthermore, we have

$$\|w_{\frac{1}{2}} - w\| \leq \|\varphi((\sigma \otimes \text{id}_D)(u)) - \varphi((\sigma \otimes \text{id}_D)(w))\| + \frac{\varepsilon}{20}$$

for all $t \in [0, \frac{1}{2})$, $d \in F$. We have now constructed a path $(w_t)_{t \in [\frac{1}{2}, 1]}$ to the whole interval $[0, 1]$ in the desired way: We have $\|w_{\frac{1}{2}} - 1\| < \frac{\varepsilon}{3} < 2$, whence -1 is not in the spectrum of $w_{\frac{1}{2}}$. By functional calculus, there is $a = a^* \in A \otimes D$ with $\|a\| < 1$ such that $w_{\frac{1}{2}} = \exp(\pi ia)$. For $t \in [0, \frac{1}{2})$ we may therefore define a continuous path of unitaries

$$w_t := (\exp(2\pi ita))w \in \mathcal{U}(A \otimes D).$$

It is clear that $w_0 = w$ and $w_t \rightarrow w_{\frac{1}{2}}$ as $t \rightarrow (\frac{1}{2})^-$, whence $(w_t)_{t \in [0, 1]}$ is a continuous path of unitaries in A satisfying $w_0 = w$ and $w_1 = 1_A \otimes D$. Moreover, it is easy to see that

$$\|w_t - w\| < \frac{\varepsilon}{3}$$

for all $t \in [0, \frac{1}{2})$, whence

$$\|w_t, \sigma(d)\| < \|w_{\frac{1}{2}}, \sigma(d)\| + \frac{2}{3} \varepsilon < \varepsilon$$

for $t \in [0, \frac{1}{2})$, $d \in F$.

We have now constructed a path $(w_t)_{t \in [0, 1]} \subset \mathcal{U}(A)$ with the desired properties.

2.2 Theorem: Let A and D be unital C^*-algebras, with D separable, strongly self-absorbing and K_1-injective. Then, any two unital \ast-homomorphisms $\sigma, \gamma : D \rightarrow A \otimes D$ are strongly asymptotically unitarily equivalent. In particular, any two unital endomorphisms of D are strongly asymptotically unitarily equivalent.
Proof: Note that the second statement follows from the first one with $A = D$, since $D \cong D \otimes D$ by assumption.

Let A be a unital C^*-algebra such that $A \cong A \otimes D$ and let $\sigma, \gamma : D \to A$ be unital *-homomorphisms. We shall prove that σ and γ are strongly asymptotically unitarily equivalent. Choose an increasing sequence $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots$ of finite subsets of D such that $\bigcup \mathcal{F}_n$ is a dense subset of D. Let $1 > \varepsilon_0 > \varepsilon_1 > \ldots$ be a decreasing sequence of strictly positive numbers converging to 0.

For each $n \in \mathbb{N}$, employ Lemma 2.1 (with \mathcal{F}_n and ε_n in place of \mathcal{F} and ε) to obtain a finite subset $\mathcal{G}_n \subset D$ and $\delta_n > 0$. We may clearly assume that

$(10) \quad \mathcal{F}_n \subset \mathcal{G}_n \subset \mathcal{G}_{n+1}$

and that $\delta_{n+1} < \delta_n < \varepsilon_n$ for all $n \in \mathbb{N}$.

Since σ and γ are strongly approximately unitarily equivalent by Proposition 1.3 and Remark 1.5, there is a sequence of unitaries $(u_n)_{n \in \mathbb{N}} \subset U_0(A)$ such that

$(11) \quad \|u_n \sigma(d) u_n^* - \gamma(d)\| < \frac{\delta_n}{2}$

for all $d \in \mathcal{G}_n$ and $n \in \mathbb{N}$. Let us set

$w_n := u_{n+1}^* u_n, \quad n \in \mathbb{N}.$

Then $w_n \in U_0(A)$ and

$\|([w_n, \sigma(d)])\|$

$= \|w_n \sigma(d) w_n^* - \sigma(d)\|

\leq \|u_{n+1}^* u_n \sigma(d) u_n^* u_{n+1} - u_{n+1}^* \gamma(d) u_{n+1}\|

+ \|u_{n+1}^* \gamma(d) u_{n+1} - \sigma(d)\|

< \frac{\delta_n}{2} + \frac{\delta_{n+1}}{2}

< \delta_n$

for $d \in \mathcal{G}_n, \quad n \in \mathbb{N}$. Now by Lemma 2.1 (and the choice of the \mathcal{G}_n and δ_n), for each n there is a continuous path $(w_{n,t})_{t \in [0,1]}$ of unitaries in $U_0(A)$ such that $w_{n,0} = w_n, \quad w_{n,1} = 1_A$ and

$(12) \quad \|[w_{n,t}, \sigma(d)]\| < \varepsilon_n$

for all $d \in \mathcal{F}_n, \quad t \in [0,1]$.

Next, define a path $(\bar{w}_t)_{t \in [0, \infty)}$ of unitaries in $U_0(A)$ by

$\bar{w}_t := u_{n+1} w_{n,t-n}$ if $t \in [n, n+1).$
We have that
\begin{equation}
\tilde{u}_n = u_{n+1} w_n = u_n
\end{equation}
and that
\[\tilde{u}_t \to u_{n+1}\]
as \(t \to n + 1\) from below, which implies that the path \((\tilde{u}_t)_{t \in [0, \infty)}\) is continuous in \(U_0(A)\). Furthermore, for \(t \in [n, n + 1)\) and \(d \in F_n\) we obtain
\begin{align*}
\|\tilde{u}_t \sigma(d) \tilde{u}_t^* - \gamma(d)\| &\leq \|u_{n+1} w_{n,t-n} \sigma(d) w_{n,t-n}^* u_{n+1}^* - \gamma(d)\| \\
&\overset{(12)}{<} \|u_{n+1} \sigma(d) u_{n+1}^* - \gamma(d)\| + \varepsilon_n \\
&\overset{(11),(10)}{<} \frac{\delta_{n+1}}{2} + \varepsilon_n \\
&\overset{(10)}{<} 2\varepsilon_n.
\end{align*}
Since the \(F_n\) are nested and the \(\varepsilon_n\) converge to 0, we have
\begin{equation}
\|\tilde{u}_t \sigma(d) \tilde{u}_t^* - \gamma(d)\| \xrightarrow{t \to \infty} 0
\end{equation}
for all \(d \in \bigcup_{n=0}^{\infty} F_n\); by continuity and since \(\bigcup_{n=0}^{\infty} F_n\) is dense in \(D\), we have (14) for all \(d \in D\). Since \(\tilde{u}_0 \in U_0(A)\) we may arrange that \(\tilde{u}_0 = 1_A\).

3. The group \(KK(D, A \otimes D)\) and some applications

3.1 For a separable \(C^*\)-algebra \(D\) we endow the group of automorphisms \(\text{Aut}(D)\) with the point-norm topology.

Corollary: Let \(D\) be a separable, unital, strongly self-absorbing and \(K_1\)-injective \(C^*\)-algebra. Then \([X, \text{Aut}(D)]\) reduces to a point for any compact Hausdorff space \(X\).

Proof: Let \(\varphi, \psi : X \to \text{Aut}(D)\) be continuous maps. We identify \(\varphi\) and \(\psi\) with unital \(^*\)-homomorphisms \(\varphi, \psi : D \to C(X) \otimes D\). By Theorem 2.2, \(\varphi\) is strongly asymptotically unitarily equivalent to \(\psi\). This gives a homotopy between the two maps \(\varphi, \psi : X \to \text{Aut}(D)\).

Remark: The conclusion of Corollary 3.1 was known before for \(D\) a UHF algebra of infinite type and \(X\) a CW complex by [13], for \(D = O_2\) by [8] and [10], and for \(D = O_{\infty}\) by [2]. It is new for the Jiang–Su algebra.

3.3 For unital \(C^*\)-algebras \(D\) and \(B\) we denote by \([D, B]\) the set of homotopy classes of unital \(^*\)-homomorphisms from \(D\) to \(B\). By a similar argument as above we also have the following corollary.
Corollary: Let \mathcal{D} and A be unital C^*-algebras. If \mathcal{D} is separable, strongly self-absorbing and K_1-injective, then $[\mathcal{D}, A \otimes \mathcal{D}]$ reduces to a singleton.

3.4 For separable unital C^*-algebras \mathcal{D} and B, let $\chi_i : KK_i(\mathcal{D}, B) \to KK_i(\mathbb{C}, B) \cong K_i(B)$, $i = 0, 1$ be the morphism of groups induced by the unital inclusion $\nu : \mathbb{C} \to \mathcal{D}$.

Theorem: Let \mathcal{D} be a unital, separable and strongly self-absorbing C^*-algebra. Then for any separable C^*-algebra A, the map $\chi_i : KK_i(\mathcal{D}, A \otimes \mathcal{D}) \to K_i(A \otimes \mathcal{D})$ is bijective, for $i = 0, 1$. In particular both groups $KK_i(\mathcal{D}, A \otimes \mathcal{D})$ are countable and discrete with respect to their natural topology.

Proof: Since \mathcal{D} is KK-equivalent to $\mathcal{D} \otimes O_\infty$, we may assume that \mathcal{D} is purely infinite and in particular K_1-injective by [11, Prop. 4.1.4]. Let $C_\nu \mathcal{D}$ denote the mapping cone C^*-algebra of ν. By [3, Cor. 3.10], there is a bijection $[\mathcal{D}, A \otimes \mathcal{D}] \to KK(C_\nu \mathcal{D}, SA \otimes \mathcal{D})$ and hence $KK(C_\nu \mathcal{D}, SA \otimes \mathcal{D}) = 0$ for all separable and unital C^*-algebras A as a consequence of Corollary 3.3. Since $KK(C_\nu \mathcal{D}, A \otimes \mathcal{D})$ is isomorphic to $KK(C_\nu \mathcal{D}, S^2 A \otimes \mathcal{D})$ by Bott periodicity and the latter group injects in $KK(C_\nu \mathcal{D}, SC(\mathbb{T}) \otimes A \otimes \mathcal{D}) = 0$, we have that $KK_i(C_\nu \mathcal{D}, A \otimes \mathcal{D}) = 0$ for all unital and separable C^*-algebras A and $i = 0, 1$. Since $KK(C_\nu \mathcal{D}, \mathcal{D} \otimes A)$ is a subgroup of $KK_i(C_\nu \mathcal{D}, \mathcal{D} \otimes A) = 0$ (where \tilde{A} is the unitization of A) we see that $KK_i(C_\nu \mathcal{D}, \mathcal{D} \otimes A) = 0$ for all separable C^*-algebras A. Using the Puppe exact sequence, where $\chi_i = \nu^*$,

$$KK_{i+1}(C_\nu \mathcal{D}, A \otimes \mathcal{D}) \to KK_i(\mathcal{D}, A \otimes \mathcal{D}) \xrightarrow{\chi_i} KK_i(\mathbb{C}, A \otimes \mathcal{D}) \to KK_i(C_\nu \mathcal{D}, A \otimes \mathcal{D})$$

we conclude that χ_i is an isomorphism, $i = 0, 1$. The map $\chi_i = \nu^*$ is continuous since it is given by the Kasparov product with a fixed element (we refer the reader to [12], [9] or [1] for a background on the topology of the Kasparov groups). Since the topology of K_i is discrete and χ_i is injective, it follows that the topology of $KK_i(\mathcal{D}, A \otimes \mathcal{D})$ is also discrete. The countability of $KK_i(\mathcal{D}, A \otimes \mathcal{D})$ follows from that of $K_i(A \otimes \mathcal{D})$, as $A \otimes \mathcal{D}$ is separable.

3.5 Remark: In contrast to Theorem 3.4, if \mathcal{D} is the universal UHF algebra, then $KK(\mathcal{D}, \mathbb{C}) \cong \text{Ext}(\mathbb{Q}, \mathbb{Z}) \cong \mathbb{Q}^\mathbb{N}$ has the power of the continuum [6, p. 221].

3.6 Let \mathcal{D} and A be as in Theorem 3.4 and assume in addition that \mathcal{D} is K_1-injective and A is unital. Let $\iota : \mathcal{D} \to A \otimes \mathcal{D}$ be defined by $\iota(d) = 1_A \otimes d$.

Corollary: If $e \in \mathcal{K} \otimes A \otimes \mathcal{D}$ is a projection, and $\varphi, \psi : \mathcal{D} \to e(\mathcal{K} \otimes A \otimes \mathcal{D})e$ are two unital *-homomorphisms, then $\varphi \approx_{\text{suh}} \psi$ and hence $[\varphi] = [\psi] \in KK(\mathcal{D}, A \otimes \mathcal{D})$. Moreover:

$$KK(\mathcal{D}, A \otimes \mathcal{D}) = \{[\varphi] - n[\iota] | \varphi : \mathcal{D} \to \mathcal{K} \otimes A \otimes \mathcal{D} \text{ is a } *\text{-homomorphism, } n \in \mathbb{N}\}.$$
4. Characterizing O_2 and the Universal UHF Algebra

In the remainder of the paper we give characterizations for the Cuntz algebra O_2 and for the universal UHF-algebra which do not require the UCT. The latter result is a variation of a theorem of Effros and Rosenberg [5]. The results of this section do not depend on those of Section 2.

4.1 Proposition: Let D be a separable unital strongly self-absorbing C^*-algebra. If $[1_D] = 0$ in $K_0(D)$, then $D \cong O_2$.

Proof: Since D must be nuclear (see [14]), D embeds unitally in O_2 by Kirchberg’s theorem. D is not stably finite since $[1_D] = 0$. By the dichotomy of [14, Thm. 1.7] D must be purely infinite. Since $[1_D] = 0$ in $K_0(D)$, there is a unital embedding $O_2 \to D$, see [11, Prop. 4.2.3]. We conclude that D is isomorphic to O_2 by [14, Prop. 5.12].

4.2 Proposition: Let D, A be separable, unital, strongly self-absorbing C^*-algebras. Suppose that for any finite subset F of D and any $\varepsilon > 0$ there is a u.c.p. map $\varphi : D \to A$ such that $\|\varphi(cd) - \varphi(c)\varphi(d)\| < \varepsilon$ for all $c, d \in F$. Then $A \cong A \otimes D$.

Proof: By [14, Thm. 2.2] it suffices to show that for any given finite subsets F of D, G of A and any $\varepsilon > 0$ there is a u.c.p. map $\Phi : D \to A$ such that (i) $\|\Phi(cd) - \Phi(c)\Phi(d)\| < \varepsilon$ for all $c, d \in F$ and (ii) $\|\Phi(d), a\| < \varepsilon$ for all $d \in F$ and $a \in G$. We may assume that $\|d\| \leq 1$ for all $d \in F$. Since A is strongly self-absorbing, by [14, Prop. 1.10] there is a unital *-homomorphism $\gamma : A \otimes A \to A$ such that $\|\gamma(a \otimes 1_A) - a\| < \varepsilon/2$ for all $a \in G$. On the other hand, by assumption there is a u.c.p. map $\varphi : D \to A$ such that $\|\varphi(cd) - \varphi(c)\varphi(d)\| < \varepsilon$ for all $c, d \in F$. Let us define a u.c.p. map $\Phi : D \to A$ by $\Phi(d) = \gamma(1_A \otimes \varphi(d))$. It is clear that Φ satisfies (i) since γ is a *-homomorphism. To conclude the proof we check
now that Φ also satisfies (ii). Let $d \in \mathcal{F}$ and $a \in \mathcal{G}$. Then

$$
\|\Phi(d), a\| \\
\leq \|\Phi(d), a - \gamma(a \otimes 1_A)\| + \|\Phi(d), \gamma(a \otimes 1_A)\| \\
\leq 2\|\Phi(d)\| \|a - \gamma(a \otimes 1_A)\| + \|\gamma(1_A \otimes \varphi(d)), \gamma(a \otimes 1_A)\| \\
< 2\varepsilon/2 + 0 = \varepsilon.
$$

4.3 Proposition: Let \mathcal{D} be a separable, unital, strongly self-absorbing C^*-algebra. Suppose that \mathcal{D} is quasidiagonal, it has cancellation of projections and that $[1_D] \in nK_0(\mathcal{D})^+$ for all $n \geq 1$. Then \mathcal{D} is isomorphic to the universal UHF algebra \mathcal{Q} with $K_0(\mathcal{Q}) \cong \mathbb{Q}$.

Proof: Since \mathcal{D} is separable unital and quasidiagonal, there is a unital $*$-representation $\pi : \mathcal{D} \to B(H)$ on a separable Hilbert space H and a sequence of nonzero projections $p_n \in B(H)$ of finite rank $k(n)$ such that $\lim_{n \to \infty} \|[p_n, \pi(d)]\| = 0$ for all $d \in \mathcal{D}$. Then the sequence of u.c.p. maps $\varphi_n : \mathcal{D} \to \pi_n B(H) p_n \cong M_{k(n)}(\mathbb{C}) \subset \mathcal{Q}$ is asymptotically multiplicative, i.e $\lim_{n \to \infty} \|\varphi_n(cd) - \varphi_n(c)\varphi_n(d)\| = 0$ for all $c, d \in \mathcal{D}$. Therefore $\mathcal{Q} \cong \mathcal{Q} \otimes \mathcal{D}$ by Proposition 4.2.

In the second part of the proof we show that $\mathcal{D} \cong \mathcal{Q} \otimes \mathcal{D}$. Let $E_n : \mathcal{Q} \to M_{n!}(\mathbb{C}) \subset \mathcal{Q}$ be a conditional expectation onto $M_{n!}(\mathbb{C})$. Then $\lim_{n \to \infty} \|E_n(a) - a\| = 0$ for all $a \in \mathcal{Q}$.

By assumption, for each n there is a projection e in $\mathcal{D} \otimes M_{n!}(\mathbb{C})$ (for some m) such that $n!\{e\} = [1_D]$ in $K_0(\mathcal{D})$. Let $\varphi : M_{n!}(\mathbb{C}) \to M_{n!}(\mathbb{C}) \otimes e(\mathcal{D} \otimes M_{m!}(\mathbb{C}))$ be defined by $\varphi(b) = b \otimes e$. Since \mathcal{D} has cancellation of projections and since $n!\{e\} = [1_D]$, there is a partial isometry $v \in M_{n!}(\mathbb{C}) \otimes \mathcal{D} \otimes M_{m!}(\mathbb{C})$ such that $v^*v = 1_M \otimes e$ and $vv^* = e$. Therefore $b \mapsto v \varphi(b) v^*$ gives a unital embedding of $M_{n!}(\mathbb{C})$ into \mathcal{D}. Finally, $\psi_n(a) = v (\varphi \circ E_n(a)) v^*$ defines a sequence of asymptotically multiplicative u.c.p. maps $\mathcal{Q} \to \mathcal{D}$. Therefore $\mathcal{D} \cong \mathcal{D} \otimes \mathcal{Q}$ by Proposition 4.2.

4.4 Remark: Let \mathcal{D} be a separable, unital, strongly self-absorbing and quasidiagonal C^*-algebra. Then $\mathcal{D} \otimes \mathcal{Q} \cong \mathcal{D}$ by the first part of the proof of Proposition 4.3. In particular $K_1(\mathcal{D}) \otimes \mathcal{Q} = 0$ and $K_0(\mathcal{D}) \otimes \mathcal{Q} \cong \mathcal{Q}$ by the Künneth formula (or by writing \mathcal{Q} as an inductive limit of matrices).

References

Department of Mathematics, Purdue University, West Lafayette., IN 47907, USA

E-mail address: mdd@math.purdue.edu

Mathematisches Institut der Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany

E-mail address: wwinter@math.uni-muenster.de