A DIXMIER-DOUADY THEORY FOR STRONGLY SELF-ABSORBING C^* -ALGEBRAS II: THE BRAUER GROUP

MARIUS DADARLAT AND ULRICH PENNIG

ABSTRACT. We have previously shown that the isomorphism classes of orientable locally trivial fields of C^* -algebras over a compact metrizable space X with fiber $D \otimes \mathbb{K}$, where D is a strongly self-absorbing C^* -algebra, form an abelian group under the operation of tensor product. Moreover this group is isomorphic to the first group $\bar{E}_D^1(X)$ of the (reduced) generalized cohomology theory associated to the unit spectrum of topological K-theory with coefficients in D. Here we show that all the torsion elements of the group $\bar{E}_D^1(X)$ arise from locally trivial fields with fiber $D \otimes M_n(\mathbb{C})$, $n \geq 1$, for all known examples of strongly self-absorbing C^* -algebras D. Moreover the Brauer group generated by locally trivial fields with fiber $D \otimes M_n(\mathbb{C})$, $n \geq 1$ is isomorphic to $Tor(\bar{E}_D^1(X))$.

1. Introduction

Let X be a compact metrizable space. Let \mathbb{K} denote the C^* -algebra of compact operators on an infinite dimensional separable Hilbert space. It is well-known that $\mathbb{K} \otimes \mathbb{K} \cong \mathbb{K}$ and $M_n(\mathbb{C}) \otimes \mathbb{K} \cong \mathbb{K}$. Dixmier and Douady [7] showed that the isomorphism classes of locally trivial fields of C^* -algebras over X with fiber \mathbb{K} form an abelian group under the operation of tensor product over C(X) and this group is isomorphic to $H^3(X,\mathbb{Z})$. The torsion subgroup of $H^3(X,\mathbb{Z})$ admits the following description. Each element of $Tor(H^3(X,\mathbb{Z}))$ arises as the Dixmier-Douady class of a field A which is isomorphic to the stabilization $B \otimes \mathbb{K}$ of some locally trivial field of C^* -algebras B over X with all fibers isomorphic to $M_n(\mathbb{C})$ for some integer $n \geq 1$, see [8], [1].

In this paper we generalize this result to locally trivial fields with fiber $D \otimes \mathbb{K}$ where D is a strongly self-absorbing C^* -algebra [17]. For a C^* -algebra B, we denote by $\mathscr{C}_B(X)$ the isomorphism classes of locally trivial continuous fields of C^* -algebras over X with fibers isomorphic to B. The isomorphism classes of orientable locally trivial continuous fields is denoted by $\mathscr{C}_B^0(X)$, see Definition 2.1. We have shown in [4] that $\mathscr{C}_{D\otimes \mathbb{K}}(X)$ is an abelian group under the operation of tensor product over C(X), and moreover, this group is isomorphic to the first group $E_D^1(X)$ of a generalized cohomology theory $E_D^*(X)$ which we have proven to be isomorphic to the theory associated to the unit spectrum of topological K-theory with coefficients in D, see [5]. Similarly $(\mathscr{C}_{D\otimes \mathbb{K}}^0(X), \otimes) \cong \bar{E}_D^1(X)$ where $\bar{E}_D^*(X)$ is the reduced theory associated to $E_D^*(X)$. For $D = \mathbb{C}$, we have, of course, $E_{\mathbb{C}}^1(X) \cong H^3(X, \mathbb{Z})$.

We consider the stabilization map $\sigma: \mathscr{C}_{D\otimes M_n(\mathbb{C})}(X) \to (\mathscr{C}_{D\otimes \mathbb{K}}(X), \otimes) \cong E_D^1(X)$ given by $[A] \mapsto [A \otimes \mathbb{K}]$ and show that its image consists entirely of torsion elements. Moreover, if D is any

M.D. was partially supported by NSF grant #DMS-1101305.

U.P. was partially supported by the SFB 878 – "Groups, Geometry & Actions".

of the known strongly self-absorbing C^* -algebras, we show that the stabilization map

$$\sigma: \bigcup_{n>1} \mathscr{C}_{D\otimes M_n(\mathbb{C})}(X) \to Tor(\bar{E}_D^1(X))$$

is surjective, see Theorem 2.8. In this situation $\mathscr{C}_{D\otimes M_n(\mathbb{C})}(X)\cong \mathscr{C}^0_{D\otimes M_n(\mathbb{C})}(X)$ by Lemma 2.1 and hence the image of the stabilization map is contained in the reduced group $\bar{E}^1_D(X)$. In analogy with the classic Brauer group generated by continuous fields of complex matrices $M_n(\mathbb{C})$ [8], we introduce a Brauer group $Br_D(X)$ for locally trivial fields of C*-algebras with fibers $M_n(D)$ for D a strongly self-absorbing C^* -algebra and establish an isomorphism $Br_D(X) \cong Tor(\bar{E}^1_D(X))$, see Theorem 2.10.

Our proof is new even in the classic case $D = \mathbb{C}$ whose original proof relies on an argument of Serre, see [8, Thm.1.6], [1, Prop.2.1]. In the cases $D = \mathcal{Z}$ or $D = \mathcal{O}_{\infty}$ the group $\bar{E}_D^1(X)$ is isomorphic to $H^1(X, BSU_{\otimes})$, which appeared in [20], where its equivariant counterpart played a central role.

We introduced in [4] characteristic classes

$$\delta_0: E_D^1(X) \to H^1(X, K_0(D)_+^{\times}) \quad \text{and} \quad \delta_k: E_D^1(X) \to H^{2k+1}(X, \mathbb{Q}), \quad k \ge 1.$$

If X is connected, then $\bar{E}_D^1(X) = \ker(\delta_0)$. We show that an element a belongs $Tor(E_D^1(X))$ if and only if $\delta_0(a)$ is a torsion element and $\delta_k(a) = 0$ for all $k \ge 1$.

In the last part of the paper we show that if A^{op} is the opposite C*-algebra of a locally trivial continuous field A with fiber $D \otimes \mathbb{K}$, then $\delta_k(A^{op}) = (-1)^k \delta_k(A)$ for all $k \geq 0$. This shows that in general $A \otimes A^{op}$ is not isomorphic to a trivial field, unlike what happens in the case $D = \mathbb{C}$. Similar arguments show that in general $[A^{op}]_{Br} \neq -[A]_{Br}$ in $Br_D(X)$ for $A \in \mathscr{C}_{D \otimes M_n(\mathbb{C})}(X)$, see Example 3.5.

2. Background and main result

The class of strongly self-absorbing C^* -algebras was introduced by Toms and Winter [17]. They are separable unital C^* -algebras D singled out by the property that there exists an isomorphism $D \to D \otimes D$ which is unitarily homotopic to the map $d \mapsto d \otimes 1_D$ [6], [19].

If p is a prime number we denote by $M_{p^{\infty}}$ the UHF-algebra $M_p(\mathbb{C})^{\otimes \infty}$. If P is a nonempty set of primes, we denote by $M_{P^{\infty}}$ the UHF-algebra of infinite type $\bigotimes_{p\in P} M_{p^{\infty}}$. If P is the set of all primes, then $M_{P^{\infty}}$ is the universal UHF-algebra, which we denote by $M_{\mathbb{Q}}$.

The class \mathcal{D}_{pi} of all purely infinite strongly self-absorbing C^* -algebras that satisfy the Universal Coefficient Theorem in KK-theory (UCT) was completely described in [17]. \mathcal{D}_{pi} consists of the Cuntz algebras \mathcal{O}_2 , \mathcal{O}_{∞} and of all C^* -algebras $M_{P^{\infty}} \otimes \mathcal{O}_{\infty}$ with P an arbitrary set of primes. Let \mathcal{D}_{qd} denote the class of strongly self-absorbing C^* -algebras which satisfy the UCT and which are quasidiagonal. A complete description of \mathcal{D}_{qd} has become possible due to the recent results of Matui and Sato [13, Cor. 6.2] that build on results of Winter [18], and Lin and Niu [12]. Thus \mathcal{D}_{qd} consists of \mathbb{C} , the Jiang-Su algebra \mathcal{Z} and all UHF-algebras $M_{P^{\infty}}$ with P an arbitrary set of primes. The class $\mathcal{D} = \mathcal{D}_{qd} \cup \mathcal{D}_{pi}$ contains all known examples of strongly self-absorbing C^* -algebras. It is closed under tensor products. If D is strongly self-absorbing, then $K_0(D)$ is a unital commutative ring. The group of positive invertible elements of $K_0(D)$ is denoted by $K_0(D)^*_+$.

Let B be a C^* -algebra. We denote by $\operatorname{Aut}_0(B)$ the path component of the identity of $\operatorname{Aut}(B)$ endowed with the point-norm topology. Recall that we denote by $\mathscr{C}_B(X)$ the isomorphism classes of locally trivial continuous fields over X with fibers isomorphic to B. The structure group of $A \in \mathscr{C}_B(X)$ is $\operatorname{Aut}(B)$, and A is in fact given by a principal $\operatorname{Aut}(B)$ -bundle which is determined up to an isomorphism by an element of the homotopy classes of continuous maps from X to the classifying space of the topological group $\operatorname{Aut}(B)$, denoted by $[X, B\operatorname{Aut}(B)]$.

Definition 2.1. A locally trivial continuous field A of C^* -algebras with fiber B is *orientable* if its structure group can be reduced to $\operatorname{Aut}_0(B)$, in other words if A is given an element of $[X, B\operatorname{Aut}_0(B)]$.

The corresponding isomorphism classes of orientable and locally trivial fields is denoted by $\mathscr{C}^0_B(X)$.

Lemma 2.2. Let D be a strongly self-absorbing C^* -algebra satisfying the UCT. Then $\operatorname{Aut}(M_n(D)) = \operatorname{Aut}_0(M_n(D))$ for all $n \geq 1$ and hence $\mathscr{C}_{D \otimes M_n(\mathbb{C})}(X) \cong \mathscr{C}^0_{D \otimes M_n(\mathbb{C})}(X)$.

Proof. First we show that for any $\beta \in \operatorname{Aut}(D \otimes M_n(\mathbb{C}))$ there exist $\alpha \in \operatorname{Aut}(D)$ and a unitary $u \in D \otimes M_n(\mathbb{C})$ such that $\beta = u(\alpha \otimes id_{M_n(\mathbb{C})})u^*$. Let $e_{11} \in M_n(\mathbb{C})$ be the rank-one projection that appears in the canonical matrix units (e_{ij}) of $M_n(\mathbb{C})$ and let 1_n be the unit of $M_n(\mathbb{C})$. Then $n[1_D \otimes e_{11}] = [1_D \otimes 1_n]$ in $K_0(D)$ and hence $n[\beta(1_D \otimes e_{11})] = n[1_D \otimes e_{11}]$ in $K_0(D)$. Under the assumptions of the lemma, it is known that $K_0(D)$ is torsion free (by [17]) and that D has cancellation of projections by [19] and [15]. It follows that there is a partial isometry $v \in D \otimes M_n(\mathbb{C})$ such that $v^*v = 1_D \otimes e_{11}$ and $vv^* = \beta(1_D \otimes e_{11})$. Then $u = \sum_{i=1}^n \beta(1_D \otimes e_{i1})v(1_D \otimes e_{1i}) \in D \otimes M_n(\mathbb{C})$ is a unitary such that the automorphism $u^*\beta u$ acts identically on $1_D \otimes M_n(\mathbb{C})$. It follows that $u^*\beta u = \alpha \otimes id_{M_n(\mathbb{C})}$ for some $\alpha \in \operatorname{Aut}(D)$. Since both U(D) and $\operatorname{Aut}(D)$ are path connected by [17], [15] and respectively [6] we conclude that $\operatorname{Aut}(D \otimes M_n(\mathbb{C}))$ is path-connected as well.

Let us recall the following results contained in Cor. 3.7, Thm. 3.8 and Cor. 3.9 from [4]. Let D be a strongly self-absorbing C^* -algebra.

(1) The classifying spaces $B\mathrm{Aut}(D\otimes \mathbb{K})$ and $B\mathrm{Aut}_0(D\otimes \mathbb{K})$ are infinite loop spaces giving rise to generalized cohomology theories $E_D^*(X)$ and respectively $\bar{E}_D^*(X)$.

- (2) The monoid $(\mathscr{C}_{D\otimes \mathbb{K}}(X), \otimes)$ is an abelian group isomorphic to $E_D^1(X)$. Similarly, the monoid $(\mathscr{C}_{D\otimes \mathbb{K}}^0(X), \otimes)$ is a group isomorphic to $\bar{E}_D^1(X)$. In both cases the tensor product is understood to be over C(X).
- $(3) \ E^1_{M_{\mathbb{Q}}}(X) \cong H^1(X, \mathbb{Q}_+^{\times}) \oplus \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q}),$ $E^1_{M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty}}(X) \cong H^1(X, \mathbb{Q}^{\times}) \oplus \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q}),$
- $(4) \ \bar{E}^1_{M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty}}(X) \cong \bar{E}^1_{M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty}}(X) \cong \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q}).$
- (5) If D satisfies the UCT then $D \otimes M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty} \cong M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty}$, by [17]. Therefore the tensor product operation $A \mapsto A \otimes M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty}$ induces maps

$$\mathscr{C}_{D\otimes \mathbb{K}}(X) \to \mathscr{C}_{M_{\mathbb{Q}}\otimes \mathcal{O}_{\infty}\otimes \mathbb{K}}(X), \quad \mathscr{C}^{0}_{D\otimes \mathbb{K}}(X) \to \mathscr{C}^{0}_{M_{\mathbb{Q}}\otimes \mathcal{O}_{\infty}\otimes \mathbb{K}}(X) \quad \text{and hence maps}$$

$$E^{1}_{D}(X) \stackrel{\delta}{\longrightarrow} E^{1}_{M_{\mathbb{Q}}\otimes \mathcal{O}_{\infty}}(X) \cong H^{1}(X, \mathbb{Q}^{\times}) \oplus \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q}),$$

$$\delta(A) = (\delta_0^s(A), \delta_1(A), \delta_2(A), \dots), \quad \delta_k(A) \in H^{2k+1}(X, \mathbb{Q}),$$

$$\bar{E}_D^1(X) \xrightarrow{\bar{\delta}} \bar{E}_{M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty}}^1(X) \cong \bigoplus_{k \ge 1} H^{2k+1}(X, \mathbb{Q}),$$

$$\bar{\delta}(A) = (\delta_1(A), \delta_2(A), \dots), \quad \delta_k(A) \in H^{2k+1}(X, \mathbb{Q}),$$

The invariants $\delta_k(A)$ are called the rational characteristic classes of the continuous field A, see [4, Def.4.6]. The first class δ_0^s lifts to a map $\delta_0 : E_D^1(X) \to H^1(X, K_0(D)_+^{\times})$ induced by the morphism of groups $\operatorname{Aut}(D \otimes \mathbb{K}) \to \pi_0(\operatorname{Aut}(D \otimes \mathbb{K})) \cong K_0(D)_+^{\times}$. $\delta_0(A)$ represents the obstruction to reducing the structure group of A to $\operatorname{Aut}_0(D \otimes \mathbb{K})$.

Proposition 2.3. A continuous field $A \in \mathscr{C}_{D \otimes \mathbb{K}}(X)$ is orientable if and only if $\delta_0(A) = 0$. If X is connected, then $\bar{E}_D^1(X) \cong \ker(\delta_0)$.

Proof. Let us recall from [4, Cor. 2.19] that there is an exact sequence of topological groups

$$(1) 1 \to \operatorname{Aut}_0(D \otimes \mathbb{K}) \to \operatorname{Aut}(D \otimes \mathbb{K}) \xrightarrow{\pi} K_0(D)_+^{\times} \to 1.$$

The map π takes an automorphism α to $[\alpha(1_D \otimes e)]$ where $e \in \mathbb{K}$ is a rank-one projection. If G is a topological group and H is a normal subgroup of G such that $H \to G \to G/H$ is a principal H-bundle, then there is a homotopy fibre sequence $G/H \to BH \to BG \to B(G/H)$ and hence an exact sequence of pointed sets $[X, G/H] \to [X, BH] \to [X, BG] \to [X, B(G/H)]$. In particular, in the case of the fibration (1) we obtain

$$(2) [X, K_0(D)_+^{\times}] \to [X, B \operatorname{Aut}_0(D \otimes \mathbb{K})] \to [X, B \operatorname{Aut}(D \otimes \mathbb{K})] \xrightarrow{\delta_0} H^1(X, K_0(D)_+^{\times}).$$

A continuous field $A \in \mathscr{C}^0_{D \otimes \mathbb{K}}(X)$ is associated to a principal $\operatorname{Aut}(D \otimes \mathbb{K})$ -bundle whose classifying map gives a unique element in $[X, B\operatorname{Aut}(D \otimes \mathbb{K})]$ whose image in $H^1(X, K_0(D)_+^{\times})$ is denoted by $\delta_0(A)$. It is clear from (2) that the class $\delta_0(A) \in H^1(X, K_0(D)_+^{\times})$ represents the obstruction for reducing this bundle to a principal $\operatorname{Aut}_0(D \otimes \mathbb{K})$ -bundle. If X is connected, $[X, K_0(D)_+^{\times}] = \{*\}$ and hence $\bar{E}^1_D(X) \cong \ker(\delta_0)$.

Remark 2.4. If $D = \mathbb{C}$ or $D = \mathcal{Z}$ then A is automatically orientable since in those cases $K_0(D)_+^{\times}$ is the trivial group.

Remark 2.5. Let Y be a compact metrizable space and let $X = \Sigma Y$ be the suspension of Y. Since the rational Künneth isomorphism and the Chern character on $K^0(X)$ are compatible with the ring structure on $K_0(C(Y) \otimes D)$, we obtain a ring homomorphism

ch:
$$K_0(C(Y) \otimes D) \to K^0(Y) \otimes K_0(D) \otimes \mathbb{Q} \to \prod_{k=0}^{\infty} H^{2k}(Y, \mathbb{Q}) =: H^{ev}(Y, \mathbb{Q})$$
,

which restricts to a group homomorphism ch: $\bar{E}_D^0(Y) \to SL_1(H^{\text{ev}}(Y,\mathbb{Q}))$, where the right hand side denotes the units, which project to $1 \in H^0(Y,\mathbb{Q})$. If A is an orientable locally trivial continuous field with fiber $D \otimes \mathbb{K}$ over X, then we have

(3)
$$\delta_k(A) = \log \operatorname{ch}(f_A) \in H^{2k}(Y, \mathbb{Q}) \cong H^{2k+1}(X, \mathbb{Q}) ,$$

where $f_A: Y \to \Omega B \operatorname{Aut}_0(D \otimes \mathbb{K}) \simeq \operatorname{Aut}_0(D \otimes \mathbb{K})$ is induced by the transition map of A. The homomorphism $\log: SL_1(H^{\operatorname{ev}}(Y,\mathbb{Q})) \to H^{\operatorname{ev}}(Y,\mathbb{Q})$ is the rational logarithm from [14, Section 2.5].

For the proof of (3) it suffices to treat the case $D = M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty}$, where it can be easily checked on the level of homotopy groups, but since $\bar{E}_D^0(Y)$ and $H^{\text{ev}}(Y,\mathbb{Q})$ have rational vector spaces as coefficients this is enough.

Lemma 2.6. Let D be a strongly self-absorbing C^* -algebra in the class \mathcal{D} . If $p \in D \otimes \mathbb{K}$ is a projection such that $[p] \neq 0$ in $K_0(D)$, then there is an integer $n \geq 1$ such that $p(D \otimes \mathbb{K})p \cong M_n(D)$. Moreover, if $n, m \geq 1$, then $M_n(D) \cong M_m(D)$ if and only $nK_0(D)_+^{\times} = mK_0(D)_+^{\times}$.

Proof. Recall that $K_0(D)$ is an ordered unital ring with unit $[1_D]$ and with positive elements $K_0(D)_+$ corresponding to classes of projections in $D \otimes \mathbb{K}$. The group of invertible elements is denoted by $K_0(D)^{\times}$ and $K_0(D)_+^{\times}$ consists of classes [p] of projections $p \in D \otimes \mathbb{K}$ such that $[p] \in K_0(D)^{\times}$. It was shown in [4, Lemma 2.14] that if $p \in D \otimes \mathbb{K}$ is a projection, then $[p] \in K_0(D)_+^{\times}$ if and only if $p(D \otimes \mathbb{K})p \cong D$. The ring $K_0(D)$ and the group $K_0(D)_+^{\times}$ are known for all $D \in \mathcal{D}$, [17]. In fact $K_0(D)$ is a unital subring of \mathbb{Q} , $K_0(D)_+ = \mathbb{Q}_+ \cap K_0(D)$ if $D \in \mathcal{D}_{qd}$ and $K_0(D)_+ = K_0(D)$ if $D \in \mathcal{D}_{pi}$. Moreover:

```
K_{0}(\mathbb{C}) \cong K_{0}(\mathcal{Z}) \cong K_{0}(\mathcal{O}_{\infty}) \cong \mathbb{Z}, K_{0}(\mathcal{O}_{2}) = \{0\},
K_{0}(M_{P^{\infty}}) \cong K_{0}(M_{P^{\infty}} \otimes \mathcal{O}_{\infty}) \cong \mathbb{Z}[1/P] \cong \bigotimes_{p \in P} \mathbb{Z}[1/p] \cong \{np_{1}^{k_{1}}p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} : p_{i} \in P, n, k_{i} \in \mathbb{Z}\},
K_{0}(\mathbb{C})_{+}^{\times} \cong K_{0}(\mathcal{Z})_{+}^{\times} = \{1\}, K_{0}(\mathcal{O}_{\infty})_{+}^{\times} = \{\pm 1\},
K_{0}(M_{P})_{+}^{\times} \cong \{p_{1}^{k_{1}}p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} : p_{i} \in P, k_{i} \in \mathbb{Z}\}.
K_{0}(M_{P} \otimes \mathcal{O}_{\infty})_{+}^{\times} \cong \{\pm p_{1}^{k_{1}}p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} : p_{i} \in P, k_{i} \in \mathbb{Z}\}.
```

In particular, we see that in all cases $K_0(D)_+ = \mathbb{N} \cdot K_0(D)_+^{\times}$. Hence if $p \in D \otimes \mathbb{K}$ is a projection such that $[p] \neq 0$, then there is $n \geq 1$ and a projection $q \in D \otimes \mathbb{K}$ such that $[q] \in K_0(D)_+^{\times}$ and $[p] = [\operatorname{diag}(q, q, \dots, q)]$. It follows then immediately that $p(D \otimes \mathbb{K})p \cong M_n(D)$.

To prove the second part of the lemma, suppose now that $\alpha: D \otimes M_n(\mathbb{C}) \to D \otimes M_m(\mathbb{C})$ is a *isomorphism. Let $e \in M_n(\mathbb{C})$ be a rank one projection. Then $\alpha(1_D \otimes e)(D \otimes M_m(\mathbb{C}))\alpha(1_D \otimes e) \cong D$.
By [4, Lemma 2.14] it follows that $\alpha_*[1_D] = [\alpha(1_D \otimes e)] \in K_0(D)_+^{\times}$. Since α is unital, $\alpha_*(n[1_D]) = m[1_D]$ and hence $m[1_D] \in nK_0(D)_+^{\times}$. This is equivalent to $nK_0(D)_+^{\times} = mK_0(D)_+^{\times}$.

Conversely, suppose that $m[1_D] = nu$ for some $u \in K_0(D)_+^{\times}$. Let $\alpha \in \operatorname{Aut}(D \otimes \mathbb{K})$ be such that $[\alpha(1_D \otimes e)] = u$. Then $\alpha_*(n[1_D]) = nu = m[1_D]$. This implies that α maps a corner of $D \otimes \mathbb{K}$ that is isomorphic to $M_n(D)$ to a corner that is isomorphic to $M_m(D)$.

Corollary 2.7. Let $D \in \mathcal{D}$ and let $A \in \mathscr{C}_{D \otimes \mathbb{K}}(X)$ with X a connected compact metrizable space. If $p \in A$ is a projection such that $[p(x_0)] \in K_0(D) \setminus \{0\}$ for some point x_0 , then there is an integer $n \geq 1$ such that $(pAp)(x) \cong M_n(D)$ for all $x \in X$ and hence $pAp \in \mathscr{C}_{D \otimes M_n(\mathbb{C})}(X)$.

Proof. Let $V_1, ..., V_k$ be a finite cover of X by compact sets such that there are bundle isomorphisms $\phi_i: A(V_i) \cong C(V_i) \otimes D \otimes \mathbb{K}$. Let p_i be the image of the restriction of p to V_i under ϕ_i . After refining the cover (V_i) , if necessary, we may assume that $||p_i(x) - p_i(y)|| < 1$ for all $x, y \in V_i$. This allows us to find a unitary u_i in the multiplier algebra of $C(V_i) \otimes D \otimes \mathbb{K}$ such that after replacing ϕ_i by $u_i \phi_i u_i^*$ and p_i by $u_i p_i u_i^*$, we may assume that p_i are constant projections. Since X is connected and $[p(x_0)] \neq 0$, it follows that $[p_i(x)] \neq 0$ for $x \in V_i$. By Lemma 2.6, there are integers $n_i \geq 1$ such that $(pAp)(V_i) \cong C(V_i) \otimes M_{n_i}(D)$. Since X is connected, we must have $M_{n_i}(D) \cong M_{n_j}(D)$ for all $1 \leq i, j \leq k$ and so $n := n_1$ has the desired properties.

We study the image of the stabilization map

$$\mathscr{C}_{D\otimes M_n(\mathbb{C})}(X) \to \mathscr{C}_{D\otimes \mathbb{K}}(X)$$

induced by the map $A \mapsto A \otimes \mathbb{K}$, or equivalently by the map

$$\operatorname{Aut}(D \otimes M_n(\mathbb{C})) \to \operatorname{Aut}(D \otimes M_n(\mathbb{C}) \otimes \mathbb{K}) \cong \operatorname{Aut}(D \otimes \mathbb{K}).$$

Let us recall that \mathcal{D} denotes the class of strongly self-absorbing C^* -algebras which satisfy the UCT and which are either quasidiagonal or purely infinite.

Theorem 2.8. Let D be a strongly self-absorbing C^* -algebra in the class \mathcal{D} . Let A be a locally trivial continuous field of C^* -algebras over a connected compact metrizable space X such that $A(x) \cong D \otimes \mathbb{K}$ for all $x \in X$. The following assertions are equivalent:

- (1) $\delta_k(A) = 0$ for all $k \geq 0$.
- (2) The field $A \otimes M_{\mathbb{O}}$ is trivial.
- (3) There is an integer $n \geq 1$ and a unital locally trivial continuous field \mathcal{B} over X with all fibers isomorphic to $M_n(D)$ such that $A \cong \mathcal{B} \otimes \mathbb{K}$.
- (4) A is orientable and $A^{\otimes m} \cong C(X) \otimes D \otimes \mathbb{K}$ for some $m \in \mathbb{N}$.

Proof. The statement is immediately verified if $D \cong \mathcal{O}_2$. Indeed all locally trivial fields with fiber $\mathcal{O}_2 \otimes \mathbb{K}$ are trivial since $\operatorname{Aut}(\mathcal{O}_2 \otimes \mathbb{K})$ is contractible by [4, Cor. 17 & Thm. 2.17]. For the remainder of the proof we may therefore assume that $D \ncong \mathcal{O}_2$.

- $(1) \Leftrightarrow (2)$ If $D \in \mathcal{D}_{qd}$, then it is known that $D \otimes M_{\mathbb{Q}} \cong M_{\mathbb{Q}}$. Similarly, if $D \in \mathcal{D}_{pi}$ and $D \ncong \mathcal{O}_2$ then $D \otimes M_{\mathbb{Q}} \cong \mathcal{O}_{\infty} \otimes M_{\mathbb{Q}}$. If A is as in the statement, then $A \otimes M_{\mathbb{Q}}$ is a locally trivial field whose fibers are all isomorphic to either $M_{\mathbb{Q}} \otimes \mathbb{K}$ or to $\mathcal{O}_{\infty} \otimes M_{\mathbb{Q}} \otimes \mathbb{K}$. In either case, it was shown in [4, Cor. 4.5] that such a field is trivial if and only if $\delta_k(A) = 0$ for all $k \geq 0$. As reviewed earlier in this section, this follows from the explicit computation of $E^1_{M_{\mathbb{Q}}}(X)$ and $E^1_{M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty}}(X)$.
- $(2) \Rightarrow (3)$ Assume now that $A \otimes M_{\mathbb{Q}}$ is trivial, i.e. $A \otimes M_{\mathbb{Q}} \cong C(X) \otimes D \otimes M_{\mathbb{Q}} \otimes \mathbb{K}$. Let $p \in A \otimes M_{\mathbb{Q}}$ be the projection that corresponds under this isomorphism to the projection $1 \otimes e \in C(X) \otimes D \otimes M_{\mathbb{Q}} \otimes \mathbb{K}$ where 1 is the unit of the C^* -algebra $C(X) \otimes D \otimes M_{\mathbb{Q}}$ and $e \in \mathbb{K}$ is a rank-one projection. Then $[p(x)] \neq 0$ in $K_0(A(x) \otimes M_{\mathbb{Q}})$ for all $x \in X$ (recall that $D \ncong O_2$). Let us write $M_{\mathbb{Q}}$ as the direct limit of an increasing sequence of its subalgebras $M_{k(i)}(\mathbb{C})$. Then $A \otimes M_{\mathbb{Q}}$ is the direct limit of the sequence $A_i = A \otimes M_{k(i)}(\mathbb{C})$. It follows that there exist $i \geq 1$ and a projection $p_i \in A_i$ such that $\|p p_i\| < 1$. Then $\|p(x) p_i(x)\| < 1$ and so $[p_i(x)] \neq 0$ in $K_0(A_i(x))$ for each $x \in X$, since its image in $K_0(A(x) \otimes M_{\mathbb{Q}})$ is equal to $[p(x)] \neq 0$. Let us consider the locally trivial unital field $\mathcal{B} := p_i(A \otimes M_{k(i)}(\mathbb{C}))p_i$. Since the fibers of $A \otimes M_{k(i)}(\mathbb{C})$ are isomorphic to $D \otimes \mathbb{K} \otimes M_{k(i)}(\mathbb{C}) \cong D \otimes \mathbb{K}$, it follows by Corollary 2.7 that there is $n \geq 1$ such that all fibers of \mathcal{B} are isomorphic to $M_n(D)$. Since \mathcal{B} is isomorphic to a full corner of $A \otimes \mathbb{K}$, it follows by [3] that $A \otimes \mathbb{K} \cong \mathcal{B} \otimes \mathbb{K}$. We conclude by noting that since A is locally trivial and each fiber is stable, then $A \cong A \otimes \mathbb{K}$ by [9] and so $A \cong \mathcal{B} \otimes \mathbb{K}$.
- $(3) \Rightarrow (2)$ This implication holds for any strongly self-absorbing C^* -algebra D. Let A and \mathcal{B} be as in (3). Let us note that $\mathcal{B} \otimes M_{\mathbb{Q}}$ is a unital locally trivial field with all fibers isomorphic to the strongly self-absorbing C^* -algebra $D \otimes M_{\mathbb{Q}}$. Since $\operatorname{Aut}(D \otimes M_{\mathbb{Q}})$ is contractible by [4, Thm. 2.3], it follows that $\mathcal{B} \otimes M_{\mathbb{Q}}$ is trivial. We conclude that $A \otimes M_{\mathbb{Q}} \cong (\mathcal{B} \otimes M_{\mathbb{Q}}) \otimes \mathbb{K} \cong C(X) \otimes D \otimes M_{\mathbb{Q}} \otimes \mathbb{K}$.

 $(2)\Leftrightarrow (4)$ This equivalence holds for any strongly self-absorbing C^* -algebra D if A is orientable. In particular we do not need to assume that D satisfies the UCT. In the UCT case we note that since the map $K_0(D)\to K_0(D\otimes M_{\mathbb Q})$ is injective, it follows that A is orientable if and only if $A\otimes M_{\mathbb Q}$ is orientable, i.e. $\delta_0(A)=0$ if and only if $\delta_0^s(A)=0$. Since $\delta_0(A)=0$, A is determined up to isomorphism by its class $[A]\in \bar E^1_D(X)$. To complete the proof it suffices to show that the kernel of the map $\tau:\bar E^1_D(X)\to \bar E^1_{D\otimes M_{\mathbb Q}}(X)$, $\tau[A]=[A\otimes M_{\mathbb Q}]$, consists entirely of torsion elements. Consider the natural transformation of cohomology theories:

$$\tau \otimes \mathrm{id}_{\mathbb{Q}} : \bar{E}_D^*(X) \otimes \mathbb{Q} \to \bar{E}_{D \otimes M_{\mathbb{Q}}}^*(X) \otimes \mathbb{Q} \cong \bar{E}_{D \otimes M_{\mathbb{Q}}}^*(X).$$

If $D \neq \mathbb{C}$, it induces an isomorphism on coefficients since $\bar{E}_D^{-i}(pt) = \pi_i(\operatorname{Aut}_0(D \otimes \mathbb{K})) \cong K_i(D)$ by [4, Thm.2.18] and since the map $K_i(D) \otimes \mathbb{Q} \to K_i(D \otimes M_{\mathbb{Q}})$ is bijective. We conclude that the kernel of τ is a torsion group. The same property holds for $D = \mathbb{C}$ since $\bar{E}_{\mathbb{C}}^*(X)$ is a direct summand of $\bar{E}_{\mathbb{Z}}^*(X)$ by [4, Cor.3.8].

Definition 2.9. Let D be a strongly self-absorbing C^* -algebra. If X is connected compact metrizable space we define the Brauer group $Br_D(X)$ as equivalence classes of continuous fields $A \in \bigcup_{n\geq 1} \mathscr{C}_{M_n(D)}(X)$. Two continuous fields $A_i \in \mathscr{C}_{M_n(D)}(X)$, i=1,2 are equivalent, if

$$A_1 \otimes p_1 C(X, M_{N_1}(D)) p_1 \cong A_2 \otimes p_2 C(X, M_{N_2}(D)) p_2,$$

for some full projections $p_i \in C(X, M_{N_i}(D))$. We denote by $[A]_{Br}$ the class of A in $Br_D(X)$. The multiplication on $Br_D(X)$ is induced by the tensor product operation, after fixing an isomorphism $D \otimes D \cong D$. We will show in a moment that the monoid $Br_D(X)$ is a group.

One has the following generalization of a result of Serre, [8, Thm.1.6].

Theorem 2.10. Let D be a strongly self-absorbing C^* -algebra in \mathcal{D} .

- (i) $Tor(\bar{E}_D^1(X)) = ker\left(\bar{E}_D^1(X) \xrightarrow{\bar{\delta}} \bigoplus_{k \geq 1} H^{2k+1}(X,\mathbb{Q})\right)$
- (ii) The map $\theta: Br_D(X) \to Tor(\bar{E}_D^1(X)), [A]_{Br} \mapsto [A \otimes \mathbb{K}]$ is an isomorphism of groups.

Proof. (i) was established in the last part of the proof of Theorem 2.8.

(ii) We denote by L_p the continuous field $p C(X, M_N(D))p$. Since $L_p \otimes \mathbb{K} \cong C(X, D \otimes \mathbb{K})$ it follows that the map θ is a well-defined morphism of monoids.

We use the following observation. Let $\theta: S \to G$ be a unital surjective morphism of commutative monoids with units denoted by 1. Suppose that G is a group and that $\{s \in S : \theta(s) = 1\} = \{1\}$. Then S is a group and θ is an isomorphism. Indeed if $s \in S$, there is $t \in S$ such that $\theta(t) = \theta(s)^{-1}$ by surjectivity of θ . Then $\theta(st) = \theta(s)\theta(t) = 1$ and so st = 1. It follows that S is a group and that θ is injective.

We are going to apply this observation to the map $\theta: Br_D(X) \to Tor(\bar{E}_D^1(X))$. By condition (3) of Theorem 2.8 we see that θ is surjective. Let us determine the set $\theta^{-1}(\{0\})$. We are going to show that if $B \in \mathscr{C}_{D \otimes M_n(\mathbb{C})}(X)$, then $[B \otimes \mathbb{K}] = 0$ in $\bar{E}_D^1(X)$ if and only if

$$B \cong p\left(C(X) \otimes D \otimes M_N(\mathbb{C})\right) p \cong \mathcal{L}_{C(X,D)}(p\,C(X,D)^N)$$

for some selfadjoint projection $p \in C(X) \otimes D \otimes M_N(\mathbb{C}) \cong M_N(C(X,D))$. Let $B \in \mathscr{C}_{D \otimes M_n(\mathbb{C})}(X)$ be such that $[B \otimes \mathbb{K}] = 0$ in $\bar{E}^1_D(X)$. Then there is an isomorphism of continuous fields ϕ :

 $B \otimes \mathbb{K} \xrightarrow{\cong} C(X) \otimes D \otimes \mathbb{K}$. After conjugating ϕ by a unitary we may assume that $p := \phi(1_B \otimes e_{11}) \in C(X) \otimes D \otimes M_N(\mathbb{C})$ for some integer $N \geq 1$. It follows immediately that the projection p has the desired properties. Conversely, if $B \cong p(C(X) \otimes D \otimes M_N(\mathbb{C})) p$ then there is an isomorphism of continuous fields $B \otimes \mathbb{K} \cong C(X) \otimes D \otimes \mathbb{K}$ by [3]. We have thus shown that that $\theta([B]_{Br}) = 0$ iff and only if $[B]_{Br} = 0$.

We are now able to conclude that $Br_D(X)$ is a group and that θ is injective by the general observation made earlier.

Definition 2.11. Let D be a strongly self-absorbing C^* -algebra. Let A be a locally trivial continuous field of C^* -algebras with fiber $D \otimes \mathbb{K}$. We say that A is a torsion continuous field if $A^{\otimes k}$ is isomorphic to a trivial field for some integer $k \geq 1$.

Corollary 2.12. Let A be as in Theorem 2.8. Then A is a torsion continuous field if and only if $\delta_0(A) \in H^1(X, K_0(D)_+^{\times})$ is a torsion element and $\delta_k(A) = 0 \in H^{2k+1}(X, \mathbb{Q})$ for all $k \geq 1$.

Proof. Let $m \geq 1$ be an integer such that $m\delta_0(A) = 0$. Then $\delta_0(A^{\otimes m}) = 0$. We conclude by applying Theorem 2.8 to the orientable continuous field $A^{\otimes m}$.

3. Characteristic classes of the opposite continuous field

Given a C^* -algebra B denote by B^{op} the opposite C^* -algebra with the same underlying Banach space and norm, but with multiplication given by $b^{\mathrm{op}} \cdot a^{\mathrm{op}} = (a \cdot b)^{\mathrm{op}}$. The conjugate C^* -algebra \overline{B} has the conjugate Banach space as its underlying vector space, but the same multiplicative structure. The map $a \mapsto a^*$ provides an isomorphism $B^{\mathrm{op}} \to \overline{B}$. Any automorphism $\alpha \in \mathrm{Aut}(B)$ yields in a canonical way automorphisms $\overline{\alpha} \colon \overline{B} \to \overline{B}$ and $\alpha^{\mathrm{op}} \colon B^{\mathrm{op}} \to B^{\mathrm{op}}$ compatible with $*\colon B^{\mathrm{op}} \to \overline{B}$. Therefore we have group isomorphisms $\theta \colon \mathrm{Aut}(B) \to \mathrm{Aut}(\overline{B})$ and $\mathrm{Aut}(B) \to \mathrm{Aut}(B^{\mathrm{op}})$. Note that $\alpha \in \mathrm{Aut}(B)$ is equal to $\theta(\alpha)$ when regarded as set-theoretic maps $B \to B$. Given a locally trivial continuous field A with fiber B, we can apply these operations fiberwise to obtain the locally trivial fields A^{op} and \overline{A} , which we will call the opposite and the conjugate field. They are isomorphic to each other and isomorphic to the conjugate and the opposite C^* -algebras of A.

A real form of a complex C*-algebra A is a real C*-algebra $A^{\mathbb{R}}$ such that $A \cong A^{\mathbb{R}} \otimes \mathbb{C}$. A real form is not necessarily unique [2] and not all C*-algebras admit real forms [16]. If two C*-algebras A and B admit real forms $A^{\mathbb{R}}$ and $B^{\mathbb{R}}$, then $A^{\mathbb{R}} \otimes_{\mathbb{R}} B^{\mathbb{R}}$ is a real form of $A \otimes B$.

Example 3.1. All known strongly self-absorbing C*-algebras $D \in \mathcal{D}$ admit a real form.

Indeed, the real Cuntz algebras $\mathcal{O}_{\mathbb{Z}}^{\mathbb{R}}$ and $\mathcal{O}_{\infty}^{\mathbb{R}}$ are defined by the same generators and relations as their complex versions. Alternatively $\mathcal{O}_{\infty}^{\mathbb{R}}$ can be realized as follows. Let $H_{\mathbb{R}}$ be a separable infinite dimensional real Hilbert space and let $\mathcal{F}^{\mathbb{R}}(H_{\mathbb{R}}) = \bigoplus_{n=0}^{\infty} H_{\mathbb{R}}^{\otimes n}$ be the real Fock space associated to it. Every $\xi \in H_{\mathbb{R}}$ defines a shift operator $s_{\xi}(\eta) = \xi \otimes \eta$ and we denote the algebra spanned by the s_{ξ} and their adjoints s_{ξ}^* by $\mathcal{O}_{\infty}^{\mathbb{R}}$. If $\mathcal{F}(H_{\mathbb{R}} \otimes \mathbb{C})$ denotes the Fock space associated to the complex Hilbert space $H = H_{\mathbb{R}} \otimes \mathbb{C}$, then we have $\mathcal{F}^{\mathbb{R}} \otimes \mathbb{C} \cong \mathcal{F}(H)$. If we represent \mathcal{O}_{∞} on $\mathcal{F}(H)$ using the above construction, then the map $s_{\xi} + i s_{\xi'} \mapsto s_{\xi+i\xi'}$ induces an isomorphism $\mathcal{O}_{\infty}^{\mathbb{R}} \otimes \mathbb{C} \to \mathcal{O}_{\infty}$. Likewise define $M_{\mathbb{Q}}^{\mathbb{R}}$ to be the infinite tensor product $M_2(\mathbb{R}) \otimes M_3(\mathbb{R}) \otimes M_4(\mathbb{R}) \otimes \ldots$. Since $M_n(\mathbb{C}) \cong M_n(\mathbb{R}) \otimes \mathbb{C}$, we obtain an isomorphism $M_{\mathbb{Q}}^{\mathbb{R}} \otimes \mathbb{C} \cong M_{\mathbb{Q}}$ on the inductive limit. Let $\mathbb{K}^{\mathbb{R}}$

be the compact operators on $H_{\mathbb{R}}$ and \mathbb{K} those on H, then we have $\mathbb{K}^{\mathbb{R}} \otimes \mathbb{C} \cong \mathbb{K}$. Thus, $M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty} \otimes \mathbb{K}$ is the complexification of the real C^* -algebra $M_{\mathbb{Q}}^{\mathbb{R}} \otimes \mathcal{O}_{\infty}^{\mathbb{R}} \otimes \mathbb{K}^{\mathbb{R}}$.

The Jiang-Su algebra \mathcal{Z} admits a real form $\mathcal{Z}^{\mathbb{R}}$ which can be constructed in the same way as \mathcal{Z} . Indeed, one constructs $\mathcal{Z}^{\mathbb{R}}$ as the inductive limit of a system

$$\cdots \to C([0,1], M_{p_n q_n}(\mathbb{R})) \xrightarrow{\phi_n} C([0,1], M_{p_{n+1} q_{n+1}}(\mathbb{R}) \to \cdots$$

where the connecting maps ϕ_n are defined just as in the proof of [11, Prop. 2.5] with only one modification. Specifically, one can choose the matrices u_0 and u_1 to be in special orthogonal group $SO(p_nq_n)$ and this will ensure the existence of a continuous path u_t in $O(p_nq_n)$ from u_0 to u_1 as required.

If B is the complexification of a real C^* -algebra $B^{\mathbb{R}}$, then a choice of isomorphism $B \cong B^{\mathbb{R}} \otimes \mathbb{C}$ provides an isomorphism $c \colon B \to \overline{B}$ via complex conjugation on \mathbb{C} . On automorphisms we have $\mathrm{Ad}_{c^{-1}} \colon \mathrm{Aut}(\overline{B}) \to \mathrm{Aut}(B)$. Let $\eta = \mathrm{Ad}_{c^{-1}} \circ \theta \colon \mathrm{Aut}(B) \to \mathrm{Aut}(B)$. Now we specialize to the case $B = D \otimes \mathbb{K}$ with $D \in \mathcal{D}$ and study the effect of η on homotopy groups, i.e. $\eta_* \colon \pi_{2k}(\mathrm{Aut}(B)) \to \pi_{2k}(\mathrm{Aut}(B))$. By [4, Theorem 2.18] the groups $\pi_{2k+1}(\mathrm{Aut}(B))$ vanish.

Let R be a commutative ring and denote by $\left[K^0(S^{2k})\otimes R\right]^{\times}$ be the group of units of the ring $K^0(S^{2k})\otimes R$. Let $\left[K^0(S^{2k})\otimes R\right]_1^{\times}$ be the kernel of the morphism of multiplicative groups $\left[K^0(S^{2k})\otimes R\right]^{\times}\to R^{\times}$. This is the group of virtual rank 1 vector bundles with coefficients in R over S^{2k} . Let $c_S\colon K^0(S^{2k})\to K^0(S^{2k})$ and $c_R\colon K_0(D)\to K_0(D)$ be the ring automorphisms induced by complex conjugation.

Lemma 3.2. Let D be a strongly self-absorbing C^* -algebra in the class \mathcal{D} , let $R = K_0(D)$ and let k > 0. There is an isomorphism $\pi_{2k}(\operatorname{Aut}(D \otimes \mathbb{K})) \to \left[K^0(S^{2k}) \otimes R\right]_1^{\times}$ (k > 0) such that the following diagram commutes

$$\pi_{2k}(\operatorname{Aut}(D \otimes \mathbb{K})) \xrightarrow{\eta_*} \pi_{2k}(\operatorname{Aut}(D \otimes \mathbb{K}))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\left[K^0(S^{2k}) \otimes R\right]_1^{\times} \xrightarrow{c_S \otimes c_R} \left[K^0(S^{2k}) \otimes R\right]_1^{\times}$$

Proof. Observe that $\pi_{2k}(\operatorname{Aut}(D\otimes\mathbb{K})) = \pi_{2k}(\operatorname{Aut}_0(D\otimes\mathbb{K}))$ (for k>0) and $\operatorname{Aut}_0(D\otimes\mathbb{K})$ is a path connected group, therefore $\pi_{2k}(\operatorname{Aut}(D\otimes\mathbb{K})) = [S^{2k}, \operatorname{Aut}_0(D\otimes\mathbb{K})]$. Let $e\in\mathbb{K}$ be a rank 1 projection such that $c(1_D\otimes e) = 1_D\otimes e$. It follows from the proof of [4, Theorem 2.22] that the map $\alpha\mapsto\alpha(1\otimes e)$ induces an isomorphism $[S^{2k}, \operatorname{Aut}_0(D\otimes\mathbb{K})] \to K_0(C(S^{2k})\otimes D)_1^\times = 1 + K_0(C_0(S^{2k}\setminus x_0)\otimes D)$. We have $\eta(\alpha)(1\otimes e) = c^{-1}(\alpha(c(1\otimes e))) = c^{-1}(\alpha(1\otimes e))$, i.e. the isomorphism intertwines η and c^{-1} . Consider the following diagram of rings:

$$K^{0}(S^{2k}) \otimes R \xrightarrow{c_{S} \otimes c_{R}} K^{0}(S^{2k}) \otimes R$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K_{0}(C(S^{2k}) \otimes D) \xrightarrow{p \mapsto c^{-1}(p)} K_{0}(C(S^{2k}) \otimes D)$$

The vertical maps arise from the Künneth theorem. Since $K_1(D) = 0$, these are isomorphisms. Since c_S corresponds to the operation induced on $K_0(C(S^{2k}))$ by complex conjugation on \mathbb{K} , the above diagram commutes.

Remark 3.3. (i) If $D \in \mathcal{D}$ then $R = K_0(D) \subset \mathbb{Q}$ with $[1_D] = [1_{D^{\mathbb{R}}}] = 1$. Thus $c^{-1}(1_D) = 1_D$ and this shows that the above automorphism c_R is trivial. The K^0 -ring of the sphere is given by $K^0(S^{2k}) \cong \mathbb{Z}[X_k]/(X_k^2)$. The element X_k is the k-fold reduced exterior tensor power of H-1, where H is the tautological line bundle over $S^2 \cong \mathbb{C}P^1$. Since c_S maps H-1 to 1-H, it follows that X_k is mapped to $-X_k$ if k is odd and to X_k if k is even. We have $\left[K^0(S^2) \otimes R\right]_1^\times = \{1+tX_k \mid t \in R\} \subset R[X_k]/(X_k^2)$. Thus, c_S maps $1+tX_k$ to its inverse $1-tX_k$ if k is odd and acts trivially if k is even.

(ii) By [4, Theorem 2.18] there is an isomorphism $\pi_0(\operatorname{Aut}(D \otimes \mathbb{K})) \cong K_0(D)^{\times} = R$ given by $[\alpha] \mapsto [\alpha(1 \otimes e)]$. Arguing as in Lemma 3.2 we see that the action of η on this groups is given by $c_R = \operatorname{id}$.

Theorem 3.4. Let X be a compact metrizable space and let A be a locally trivial continuous field with fiber $D \otimes \mathbb{K}$ for a strongly self-absorbing C^* -algebra $D \in \mathcal{D}$. Then we have for $k \geq 0$:

$$\delta_k(A^{\mathrm{op}}) = \delta_k(\overline{A}) = (-1)^k \, \delta_k(A) \in H^{2k+1}(X,\mathbb{Q})$$
.

Proof. Let $D^{\mathbb{R}}$ be a real form of D. The group isomorphism $\eta \colon \operatorname{Aut}(D \otimes \mathbb{K}) \to \operatorname{Aut}(D \otimes \mathbb{K})$ induces an infinite loop map $B\eta \colon B\operatorname{Aut}(D \otimes \mathbb{K}) \to B\operatorname{Aut}(D \otimes \mathbb{K})$, where the infinite loop space structure is the one described in [4, Section 3]. If $f \colon X \to B\operatorname{Aut}(D \otimes \mathbb{K})$ is the classifying map of a locally trivial field A, then $B\eta \circ f$ classifies \overline{A} . Thus the induced map $\eta_* \colon E_D^1(X) \to E_D^1(X)$ has the property that $\eta_*[A] = [\overline{A}]$.

The unital inclusion $D^{\mathbb{R}} \to B^{\mathbb{R}} := D^{\mathbb{R}} \otimes \mathcal{O}_{\infty}^{\mathbb{R}} \otimes M_{\mathbb{Q}}^{\mathbb{R}}$ induces a commutative diagram

$$\operatorname{Aut}(D \otimes \mathbb{K}) \xrightarrow{\eta} \operatorname{Aut}(D \otimes \mathbb{K})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Aut}(B \otimes \mathbb{K}) \xrightarrow{\eta} \operatorname{Aut}(B \otimes \mathbb{K})$$

with $B:=B^{\mathbb{R}}\otimes\mathbb{C}$. From this we obtain a commutative diagram

$$E_D^1(X) \xrightarrow{\eta_*} E_D^1(X)$$

$$\downarrow \delta \qquad \qquad \downarrow \delta$$

$$E_B^1(X) \xrightarrow{\eta_*} E_B^1(X)$$

As explained earlier, $B \cong M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty}$. Recall that $E^1_{M_{\mathbb{Q}} \otimes \mathcal{O}_{\infty}}(X) \cong H^1(X, \mathbb{Q}^{\times}) \oplus \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q})$. By Lemma 3.2 and Remark 3.3(i) the effect of η on $H^{2k+1}(X, \pi_{2k}(\operatorname{Aut}(B))) \cong H^{2k+1}(X, \mathbb{Q})$ is given by multiplication with $(-1)^k$ for k > 0. By Remark 3.3(ii) η acts trivially on $H^1(X, \pi_0(\operatorname{Aut}(B))) = H^1(X, \mathbb{Q}^{\times})$.

Example 3.5. Let \mathcal{Z} be the Jiang-Su algebra. We will show that in general the inverse of an element in the Brauer group $Br_{\mathcal{Z}}(X)$ is not represented by the class of the opposite algebra. Let

Y be the space obtained by attaching a disk to a circle by a degree three map and let $X_n = S^n \wedge Y$ be n^{th} reduced suspension of Y. Then $E_{\mathcal{Z}}^1(X_3) \cong K^0(X_2)_+^{\times} \cong 1 + \widetilde{K}^0(X_2)$ by [4, Thm.2.22]. Since this is a torsion group, $Br_{\mathcal{Z}}(X_3) \cong E_{\mathcal{Z}}^1(X_3)$ by Theorem 2.10. Using the Künneth formula, $Br_{\mathcal{Z}}(X_3) \cong 1 + \widetilde{K}^0(S^2) \otimes \widetilde{K}^0(Y) \cong 1 + \mathbb{Z}/3$. Reasoning as in Lemma 3.2 with X_2 in place of S^{2k} , we identify the map $\eta_* : E_{\mathcal{Z}}^1(X_3) \to E_{\mathcal{Z}}^1(X_3)$ with the map $K^0(X_2)_+^{\times} \to K^0(X_2)_+^{\times}$ that sends the class $x = [V_1] - [V_2]$ to $\overline{x} = [\overline{V}_1] - [\overline{V}_2]$, where \overline{V}_i is the complex conjugate bundle of V_i . If V is complex vector bundle, and c_1 is the first Chern class, $c_1(\overline{V}) = -c_1(V)$ by [10, p.206]. Since conjugation is compatible with the Künneth formula, we deduce that $x = \overline{x}$ for $x \in K^0(X_2)_+^{\times}$. Indeed, if $\beta \in \widetilde{K}^0(S^2)$, $y \in \widetilde{K}^0(Y)$ and $x = 1 + \beta y$, then $\overline{x} = 1 + (-\beta)(-y) = x$. Let A be a continuous field over X_3 with fibers $M_N(\mathcal{Z})$ such that $[A]_{Br} = 1 + \beta y$ in $Br_{\mathcal{Z}}(X_3) \cong 1 + \widetilde{K}^0(S^2) \otimes \widetilde{K}^0(Y) \cong 1 + \mathbb{Z}/3$, where β a generator of $\widetilde{K}^0(S^2)$ and y is a generator of $\widetilde{K}^0(Y)$. Then $[\overline{A}]_{Br} = 1 + (-\beta)(-y) = [A]_{Br}$ and hence

$$[\overline{A} \otimes_{C(X_3)} A]_{Br} = (1 + \beta y)^2 = 1 + 2\beta y \neq 1.$$

Corollary 3.6. Let X be a compact metrizable space and let A be a locally trivial continuous field with fiber $D \otimes \mathbb{K}$ with D in the class \mathcal{D} . If $H^{4k+1}(X,\mathbb{Q}) = 0$ for all $k \geq 0$, then there is an $N \in \mathbb{N}$ such that

$$(A \otimes_{C(X)} A^{\operatorname{op}})^{\otimes N} \cong C(X, D \otimes \mathbb{K})$$
.

Proof. If $H^{4k+1}(X, \mathbb{Q}) = 0$, then $\delta_{2k}(A \otimes_{C(X)} A^{\text{op}}) = 0$ for all $k \geq 0$. Moreover, $\delta_{2k+1}(A \otimes_{C(X)} A^{\text{op}}) = \delta_{2k+1}(A) - \delta_{2k+1}(A) = 0$. The statement follows from Corollary 2.12. \square

REFERENCES

- [1] Michael Atiyah and Graeme Segal. Twisted K-theory. Ukr. Mat. Visn., 1(3):287–330, 2004. 1, 2
- [2] J. L. Boersema, E. Ruiz and P. J. Stacey. The classification of real purely infinite simple C*-algebras Doc. Math., 16: 619–655, 2011. 8
- [3] Lawrence G. Brown. Stable isomorphism of hereditary subalgebras of C^* -algebras. Pacific J. Math., 71(2):335–348, 1977. 6, 8
- [4] Marius Dadarlat and Ulrich Pennig A Dixmier-Douady theory for strongly self-absorbing C^* -algebras preprint 2013 1, 2, 3, 4, 5, 6, 7, 9, 10, 11
- [5] Marius Dadarlat and Ulrich Pennig Unit spectra of K-theory from strongly self-absorbing C^* -algebras preprint 2013 1
- [6] Marius Dadarlat and Wilhelm Winter. On the KK-theory of strongly self-absorbing C^* -algebras. $Math.\ Scand.$, $104(1):95-107,\ 2009.\ 2,\ 3$
- [7] Jacques Dixmier and Adrien Douady. Champs continus d'espaces hilbertiens et de C^* -algèbres. Bull. Soc. Math. France, 91:227–284, 1963. 1
- [8] Alexander Grothendieck. Le groupe de Brauer. I. Algèbres d'Azumaya et interprétations diverses Séminaire Bourbaki, Vol. 9, Exp. No. 290, 199–219, Soc. Math. France, Paris, 1995. 1, 2, 7
- [9] Ilan Hirshberg, Mikael Rørdam, and Wilhelm Winter. $C_0(X)$ -algebras, stability and strongly self-absorbing C^* -algebras. Math. Ann., 339(3):695–732, 2007. 6
- [10] Max Karoubi. K-theory. Springer-Verlag, Berlin, 2008. Reprint of the 1978 edition; With a new postface by the author and a list of errata
- [11] X. Jiang and H. Su. On a simple unital projectionless C^* -algebra $Amer.\ J.\ Math.$, 121(2):359-413, 1999.
- [12] Huaxin Lin and Zhuang Niu. Lifting KK-elements, asymptotic unitary equivalence and classification of simple C^* -algebras $Adv.\ Math.$, 219(5): 1729–1769, 2008. 11
- [13] H. Matui and Y. Sato. Decomposition rank of UHF-absorbing C^* -algebras preprint 2013, arXiv:1303.4371 9

- [14] Charles Rezk. The units of a ring spectrum and a logarithmic cohomology operation. J. Amer. Math. Soc., 19(4):969–1014, 2006. 2
- [15] Mikael Rørdam. The stable and the real rank of \mathbb{Z} -absorbing C^* -algebras. Internat. J. Math., 15(10):1065–1084, 2004. 2
- [16] N. C. Phillips. A simple separable C^* -algebra not isomorphic to its opposite algebra $Proc.\ Amer.\ Math.\ Soc.$, 132 (10):2997–3005 , 2004. 4
- [17] Andrew S. Toms and Wilhelm Winter. Strongly self-absorbing C^* -algebras. Trans. Amer. Math. Soc., $359(8):3999-4029,\ 2007.\ 3$
- [18] Wilhelm Winter. Localizing the Elliott conjecture at strongly self-absorbing C^* -algebras preprint 2007, arXiv:0708.0283 8
- [19] Wilhelm Winter. Strongly self-absorbing C^* -algebras are \mathcal{Z} -stable. J. Noncommut. Geom., 5(2):253–264, 2011. 1, 2, 3, 5
- [20] Constantin Teleman, K-theory and the moduli space of bundles on a surface and deformations of the Verlinde algebra. In *Topology, geometry and quantum field theory*, volume 308 of *London Math. Soc. Lecture Note Ser.*, pages 358–378. Cambridge Univ. Press, Cambridge, 2004. 2

MD: DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907, USA *E-mail address*: mdd@math.purdue.edu

UP: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany

 $E\text{-}mail\ address{:}\ \mathtt{u.pennig@uni-muenster.de}$