
EMBEDDINGS OF NUCLEARLY EMBEDDABLE C*-ALGEBRAS

MARIUS DADARLAT

Abstract. Let B be a unital simple C*-algebra and let U =
⊗∞

n=1 Mn(C) be the universal UHF
algebra. We give sufficient conditions for a nuclearly embeddable C*-subalgebra of

∏∞
n=1 B to

embed into B⊗U . In particular we prove that a nuclearly embeddable residually finite-dimensional
C*-algebra A is embeddable in U , provided that either the Hausdorff quotient of the rational K-
homology of A is finitely generated, or A satisfies the Universal Coefficient Theorem (UCT) for the
Kasparov groups. This yields a new proof of Kirchberg’s characterization of separable nuclearly
embeddable C*-algebras as subquotients of U . It also implies that the C*-algebra of a second
countable locally compact amenable maximally almost periodic group embeds in U . More generally,
if a discrete countable amenable group Γ embeds in a product

∏∞
n=1 U(Bn) of unitary groups of

simple unital quasidiagonal C*-algebras Bn and B = (
⊗∞

n=1 Bn) ⊗ U has bounded exponential
length, then C∗(Γ) embeds in

⊗∞
n=1 B.

1. Introduction

In recent years there have been spectacular advances in the structure theory of C*-algebras. A
C*-algebraA is called nuclearly embeddable if there is a C*-algebra C and a nuclear ∗-monomorphism
A→ C. Equivalently, any completely positive map σ : A→ L(H) is nuclear [Vo3]. S. Wassermann
[W1] has shown that any nuclearly embeddable C*-algebra is exact. By an important theorem of
Kirchberg, the converse is also true: any exact C*-algebra is nuclearly embeddable [Ki2]. Moreover,
Kirchberg has shown that a separable C*-algebra is nuclearly embeddable if and only if it embeds
in the Cuntz algebra O2 [Ki4]. The property of O2 of being infinite is essential here not only
to accommodate embeddings of infinite exact algebras but also for deeper structural reasons. In-
deed, Kirchberg has pointed out that there are stably finite exact C*-algebras (such as the reduced
C*-algebra of the free group on two generators) which do not embed in any stably finite nuclear
C*-algebra [Ki5].

A major open problem is to characterize the C*-subalgebras of AF algebras. In view of the very
interesting results on AF embeddings of [PV], [Pi], [Vo2], [Sp], [Br1, Br2] and [L1], it is natural to
conjecture that a separable C*-algebra embeds in an AF algebra if and only if it is quasidiagonal
and nuclearly embeddable [BK], [Br3].

In this paper we give sufficient conditions for a separable nuclearly embeddable C*-subalgebra
of
∏∞
n=1Bn to embed in

⊗∞
n=1Bn ⊗ U , where U =

⊗∞
n=1Mn(C) is the universal UHF algebra

(Theorem 1.1). In view of Kirchberg’s results which give embeddings into infinite C*-algebras, the
most interesting cases are those when B is stably finite, quasidiagonal or AF. As corollaries, we
prove that any nuclear embeddable residually finite-dimensional C*-algebra which satisfies the UCT
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embeds in U (Corollary 1.2) and that if A is a separable nuclearly embeddable quasidiagonal C*-
algebra satisfying the UCT, then A + K(H), the essential trivial extension of A by the compacts,
is the closure of an increasing sequence of C*-algebras embeddable in U (Corollary 1.4). We
do not rely on the equivalence between nuclear embeddability, subnuclearity and exactness. In
fact, Kirchberg’s fundamental characterization of nuclearly embeddable separable C*-algebras as
subquotients of UHF algebras [Ki2] is an immediate consequence of Corollary 1.2 below (see also
[D4] where we distill our arguments to a completely elementary proof which does not use K-theory).
In a different direction, we obtain embedding results for C*-algebras of certain amenable groups,
see Corollary 1.5, Theorem 1.6 and Corollary 1.7.

Our methods rely on KK-theory [Kas1], [Sk], [DE2] and approximation results for nuclearly
embeddable C*-algebras in the spirit of [D3]. The main results are Theorems 3.1–3.2. Some of
their consequences are discussed in more detail in the remaining of the introduction.

We refer the reader to [Sk] for a discussion of KKnuc(A,B), the nuclear version of the Kasparov
groups. The group KKnuc(A,B) admits a natural topology. Its Hausdorff quotient is denoted by
K̂Knuc(A,B), see Definition 2.3 and Remark 2.5. Throughout the paper we consider only minimal
tensor products [Ta]. We say that a sequence (xn) is an infinite-multiplicity sequence if each element
xn occurs infinitely many times.

Theorem 1.1. Let (Bn) be an infinite-multiplicity sequence of unital simple C*-algebras and let B
denote either the infinite tensor product

⊗∞
n=1Bn or B = B1 if Bn are mutually isomorphic. Let A

be a separable unital C*-algebra which admits a unital nuclear embedding A ↪→
∏∞
n=1Bn. Suppose

that A is quasidiagonal, satisfies the UCT [RS] and B ⊗ U has bounded exponential length. Then
there is a unital nuclear embedding A ↪→ B ⊗ U .

The theorem remains true if we don’t require A to be quasidiagonal and satisfy the UCT, but
instead we assume that there is a sequence of C*-subalgebras (Ai) of A (not necessarily nested)
whose union is dense in A and such that the vector spaces K̂Knuc(Ai, B)⊗Q are finitely generated.
In this case no assumption of the exponential length of B ⊗ U is necessary.

Recall that a separable C*-algebra A is said to satisfy the UCT of [RS] if the sequence

0→ Ext(K∗(A),K∗−1(B))→ KK∗(A,B)→ Hom(K∗(A),K∗(B))→ 0

is exact for any σ-unital C*-algebra B. A unital C*-algebra B is said to have bounded exponential
length if there is a constant L such that any two homotopic unitaries in B can be connected by a
continuous path of unitaries of length at most L [Ri], [Ph].

A separable C*-algebra A is called residually finite-dimensional (abbreviated RFD) if it has a
separating sequence of finite-dimensional representations. Equivalently, A embeds in a C*-algebra
of the form

∏∞
n=1Mk(n). The RFD C*-algebras approximate the quasidiagonal C*-algebras in the

same way that block-diagonal operators approximate quasidiagonal operators. It was shown in [D2]
that a nuclear separable RFD algebra which is homotopically dominated by an AF algebra embeds
in an AF algebra. Lin [L2] showed that the nuclear separable RFD algebras satisfying the UCT are
AF embeddable. Using Theorem 1.1 we extend those results (in an improved form) to nuclearly
embeddable RFD algebras.

Corollary 1.2. If A is a unital separable nuclearly embeddable RFD C*-algebra satisfying the
UCT, then A embeds as a unital C*-subalgebra of U .

Let K0(A) = KK(A,C) denote the K-homology of A and K̂0(A) = K̂K(A,C). The corollary
remains true if one replaces the assumption that A satisfies the UCT by the condition that there
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is a sequence of C*-subalgebras (Ai) of A (not necessarily nested) whose union is dense in A and
K̂0(Ai)⊗Q are finitely generated.

As an application of Corollary 1.2, one obtains a short new proof of Kirchberg’s characterization
of nuclearly embeddable C*-algebras as subquotients of UHF algebras. Indeed, if C is a separable
nuclearly embeddable C*-algebra, it is not hard to show that there is a semisplit short exact
sequence 0→ J → C0[0, 1)⊗A→ C → 0 with A a nuclearly embeddable RFD algebra [D4]. Since
C0[0, 1)⊗A embeds in U by Corollary 1.2, this proves that C is a quotient of a subalgebra of U .

Corollary 1.3. [Ki2] Any separable nuclearly embeddable C*-algebra is a (semisplit) quotient of a
C*-subalgebra of U .

Corollary 1.4. Let A ⊂ L(H), A∩K(H) = {0}, be a separable nuclearly embeddable quasidiagonal
C*-algebra satisfying the UCT. Then there is an increasing sequence (Ai) of C*-subalgebras of
A+K(H) such that

⋃
iAi = A+K(H) and each Ai embeds in U .

Indeed, one can arrange that the subalgebras Ai are RFD and satisfy the UCT (see Propo-
sition 3.4). The result will then follow from Corollary 1.2. Note that Corollary 1.4 applies to
A = C0[0, 1)⊗B where B is any nuclearly embeddable separable C*-algebra, since C0[0, 1)⊗B is
quasidiagonal by [Vo4].

In a different direction, we give results on embeddings of group C*-algebras. A locally compact
group G is called maximally almost periodic (abbreviated MAP) if it has a separating family of
finite dimensional unitary representations. Residually finite groups are examples of MAP groups.
If G is a second countable amenable locally compact MAP group, then C∗(G) is residually finite
dimensional by [BLS] and satisfies the UCT by [Tu]. By Corollary 1.2 we have the following.

Corollary 1.5. The C*-algebra of a second countable amenable locally compact MAP group G is
embeddable in U . If, moreover, G is discrete, then G injects in the unitary group of U .

Corollary 1.5 shows that in general the unitary group of a simple C*-algebra may contain inter-
esting discrete amenable groups. This observation motivates the following result.

Theorem 1.6. Let (Bn) be an infinite-multiplicity sequence of unital simple C*-algebras and let
Γ be a discrete countable amenable subgroup of

∏∞
n=1 U(Bn). Suppose that the algebras Bn are

quasidiagonal and (
⊗∞

n=1Bn)⊗U has bounded exponential length. Then there is a unital embedding
C∗(Γ) ↪→ (

⊗∞
n=1Bn)⊗ U .

The theorem remains true if we replace the assumption thatBn are quasidiagonal and (
⊗∞

n=1Bn)⊗
U has bounded exponential length by the assumption that there is a sequence of subgroups (Γi) of
Γ with

⋃∞
i=1 Γi = Γ and such that the vector spaces K∗(C∗(Γi))⊗Q are finitely generated.

Corollary 1.7. Let Γ be a discrete countable amenable group. The following are equivalent.
(i) There is a sequence (Bn) of simple unital separable AF algebras with Γ ⊂

∏∞
n=1 U(Bn).

(ii) There is a simple unital separable AF algebra B with Γ ⊂ U(B).
(iii) There is a simple unital separable AF algebra B such that C∗(Γ) ⊂ B.

If Γ satisfies these conditions and Γ acts on a compact metrisable space X such that the points
with finite orbits are dense in X, then the crossed-product C(X)× Γ embeds in a simple unital AF
algebra.



4 MARIUS DADARLAT

2. Approximate unitary equivalence and KK-theory

We refer the reader to [Kas1] for a background discussion on Hilbert C*-modules. Let A be a
separable C*-algebra and let B be a σ-unital C*-algebra.

Definition 2.1. If σ : A −→ LB(E) and σ′ : A −→ LB(E′) are two representations, with E and E′

Hilbert B-modules, we say that σ and σ′ are approximately unitarily equivalent and write σ ' σ′,
if there exists a sequence of unitaries un ∈ LB(E′, E) such that

lim
n→∞

‖σ(a)− unσ′(a)u∗n‖ = 0, a ∈ A(1)

σ(a)− unσ′(a)u∗n ∈ KB(E), a ∈ A(2)

We say that the representations σ and σ′ are properly approximately unitarily equivalent and write
σ ud σ

′, if E = E′ and there is a sequence of unitaries un ∈ C1E + KB(E) satisfying (1) and
(2). The equivalence relation ud is the discrete version of the equivalence relation u introduced
in [DE2]. The representations σ, σ′ : A→ LB(E) are properly asymptotically unitarily equivalent,
written σ u σ′, if there is a norm-continuous unitary valued map u : [0,∞)→ C1E+KB(E), t 7→ ut
such that

lim
t→∞
‖σ(a)− utσ′(a)u∗t ‖ = 0, a ∈ A(3)

σ(a)− utσ′(a)u∗t ∈ KB(E), a ∈ A, t ∈ [0,∞).(4)

Note that σ u σ′ ⇒ σ ud σ
′ ⇒ σ(a)− σ′(a) ∈ KB(E), a ∈ A.

A representation σ : A→ LB(E) is strictly nuclear if the map x∗σ(−)x : A→ KB(E) is nuclear
for any x ∈ KB(E) [Sk]. A (unital) representation π : A → LB(E) is called (unitally) absorbing
(respectively nuclearly absorbing) if π ⊕ σ ' π for any (unital) (respectively, strictly nuclear)
representation σ : A→ LB(F ). If either A or B is nuclear, then any representation σ : A→ LB(E)
is strictly nuclear. In this case the notions of (unitally) nuclearly absorbing and (unitally) absorbing
coincide. By [Kas1, Theorem 4](see [DE1, Proposition 2.18]), if ρ : A → L(H) is a faithful unital
representation with ρ(A)∩K(H) = {0}, then by composing the inclusion L(H) ↪→ L(HB) with ρ one
obtains a strictly nuclear unitally nuclearly absorbing representation. It follows that the restriction
of a unitally nuclearly absorbing representation σ : A → L(HB) to a unital C*-subalgebra of A is
unitally nuclearly absorbing (see [DE1, Proposition 2.19]).

The Cuntz picture of KK(A,B) is described in terms of pairs of representations (ϕ,ψ) : A →
L(HB) satisfying ϕ(a) − ψ(a) ∈ K(HB) for a ∈ A. Such a pair is called a Cuntz pair. The
set of Cuntz pairs is denoted by E(A,B). A homotopy of Cuntz pairs is a Cuntz pair (Φ,Ψ) ∈
E(A,B[0, 1]). The quotient of E(A,B) by homotopy equivalence is a group isomorphic to KK(A,B)
[Bl]. Let Enuc(A,B) denote the set of Cuntz pairs consisting of strictly nuclear representations.
Similarly, the group KKnuc(A,B) of [Sk] is isomorphic to the quotient of Enuc(A,B) by homotopy
equivalence. The following result shows that after stabilization it suffices to work with just unitary
homotopy equivalence.

Theorem 2.2 ([DE2]). Let A be a (unital) separable C*-algebra and let B be a σ-unital C*-algebra.
If ϕ,ψ ∈ Enuc(A,B) is a Cuntz pair of (unital) representations then the following are equivalent:

(i) [ϕ,ψ] = 0 in KKnuc(A,B).
(ii) There exists a (unital) strictly nuclear representation σ : A→ L(HB) with ϕ⊕ σ u ψ ⊕ σ.
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(iii) For any strictly nuclear (unitally) absorbing (unital) representation γ : A→ L(HB), ϕ⊕γ∞ u
ψ ⊕ γ∞, where γ∞ = γ ⊕ γ ⊕ · · · .

Consequently KKnuc(A,B) can be described as the quotient of Enuc(A,B) by the equivalence
relation (ϕ,ψ) ∼ (ϕ′, ψ′) if and only if ϕ⊕ψ′⊕σ u ψ⊕ϕ′⊕σ for some strictly nuclear representation
σ : A→ L(HB).

It is useful to repeat the same construction with u replaced by ud.

Definition 2.3. We define

K̂Knuc(A,B) = { [ϕ,ψ]̂ : (ϕ,ψ) ∈ Enuc(A,B)}
where [ϕ,ψ]̂= [ϕ′, ψ′]̂ if and only if ϕ⊕ψ′⊕σ ud ψ⊕ϕ′⊕σ for some strictly nuclear representation
σ : A→ L(HB).

Proposition 2.4. K̂Knuc(A,B) is an abelian group isomorphic to a quotient of KKnuc(A,B). If
ϕ,ψ ∈ Enuc(A,B) is a Cuntz pair of (unital) representations then the following are equivalent:

(id) [ϕ,ψ]̂= 0 in K̂Knuc(A,B).
(iid) There exists a (unital) strictly nuclear representation σ : A→ L(HB) with

ϕ⊕ σ ud ψ ⊕ σ.
(iiid) For any (unital) strictly nuclear (unitally) absorbing representation γ : A→ L(HB), ϕ⊕γ ud

ψ ⊕ γ.

Proof. It is easy to see that ud has the following properties.
(A) If ϕ⊕ σ ud ψ ⊕ σ and σ ' γ then ϕ⊕ γ ud ψ ⊕ γ (cf. [DE2, Lemma 3.4]).
(B) If ϕ ud ψ, then wϕw∗ ud wψw

∗ for any unitary w ∈ L(HB).
The addition on K̂Knuc(A,B) is induced by the direct sum of Cuntz pairs. Let us check that the

addition is well-defined. Suppose that [ϕ,ψ]̂= [ϕ′, ψ′]̂ and [α, β]̂= [α′, β′] .̂ Then ϕ⊕ψ′⊕σ ud
ψ⊕ϕ′⊕σ and α⊕β′⊕ γ ud β⊕α′⊕ γ for some strictly nuclear representations σ, γ : A→ L(HB).
By taking direct sums, ϕ ⊕ ψ′ ⊕ σ ⊕ α ⊕ β′ ⊕ γ ud ψ ⊕ ϕ′ ⊕ σ ⊕ β ⊕ α′ ⊕ γ. Using (B) we obtain
ϕ⊕α⊕ψ′⊕β′⊕σ⊕γ ud ψ⊕β⊕ϕ′⊕α′⊕σ⊕γ hence [ϕ⊕α, ψ⊕β]̂= [ϕ′⊕α′, ψ′⊕β′] .̂ Since ϕ u ψ⇒
ϕ ud ψ, the map KKnuc(A,B)→ K̂Knuc(A,B) is a well-defined surjective morphism of semigroups.
Since KKnuc(A,B) is an abelian group, so is K̂Knuc(A,B). In particular, the neutral element of
K̂Knuc(A,B) is given by the class of [σ, σ] for some strictly nuclear representation σ : A→ L(HB).
By using (A) and (B) one checks immediately the equivalence of (id), (iid) and (iiid).

Finally, let us observe that the unital case follows from the following remark. Assume that A, ϕ
and ψ are unital, (ϕ,ψ) ∈ Enuc(A,B) and

ϕ⊕ σ ud ψ ⊕ σ(5)

for some strictly nuclear representation σ : A→ L(HB). We claim that ϕ⊕γ ud ψ⊕γ for any unital
unitally absorbing strictly nuclear representation γ : A→ L(HB). Indeed, let E = σ(1)HB and let
σ′ : A→ LB(E) be the corestriction of σ to E. If un is the sequence of unitaries implementing (5)
and p = 1HB ⊕ σ(1), then [p, un]→ 0. By functional calculus we find a sequence of vn unitaries in
C1HB⊕E+K(HB⊕E), satisfying ‖vn−punp‖ → 0 and implementing ϕ⊕σ′ ud ψ⊕σ′. Consequently
we have ϕ⊕ σ′ ⊕ γ ud ψ ⊕ σ′ ⊕ γ and the claim follows from (A) since σ′ ⊕ γ ' γ.

Let (an) be a sequence dense in the unit ball of A. If α, β : A → L(HB) are two representations
we set dist(α, β) =

∑∞
n=1 2−n‖α(an) − β(an)‖. There is a natural topology on KKnuc(A,B) (cf.
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[BDF], [Sa], [Sch1]) defined by the invariant pseudo-metric

d([ϕ,ψ], [ϕ′, ψ′]) = inf
u,γ
{dist(ϕ⊕ ψ′ ⊕ γ, u(ψ ⊕ ϕ′ ⊕ γ)u∗) }

where the infimum is taken after all unitaries u ∈ C1+K(HB) and all strictly nuclear representations
γ : A→ L(HB).

Remark 2.5. (a) It is easy to see that d([ϕ,ψ], [ϕ′, ψ′]) = 0 if and only if [ϕ,ψ]̂= [ϕ′, ψ′] .̂ There-
fore [ϕ,ψ] ∈ {0} in KKnuc(A,B) ⇔ [ϕ,ψ]̂= 0 in K̂Knuc(A,B) ⇔ (iid) ⇔ (iiid).

(b) K̂Knuc(A,B) ∼= KKnuc(A,B)/{0} is the Hausdorff quotient of KKnuc(A,B).
(c) Let A, B be unital C*-algebras with A separable quasidiagonal (relative to B) nuclear satis-

fying the UCT. Let ϕ,ψ : A→ B be two unital ∗-homomorphisms. Then [ϕ,ψ]̂= 0 in K̂K(A,B)
if and only if [ϕ]− [ψ] ∈ Pext(K∗(A),K∗+1(B)) in KK(A,B) [D5, Theorem 5.1].

Proposition 2.6. Let A, B be unital C*-algebras with A separable. Suppose that there exists
an infinite-multiplicity sequence (χn) of unital ∗-homomorphisms from A to B such that for any
nonzero element a ∈ A the two-sided closed ideal of B generated by the set {χ1(a), χ2(a), . . . } is
equal to B. Then the representation χ = χ1⊕χ2⊕· · · , χ : A→M(K(H)⊗B) is unitally nuclearly
absorbing.

Proof. This is very similar to the proof of [DE1, Theorem 2.22] which extends a result of Lin [L1].
As in [DE1, Proposition 2.19 and Lemma 2.21] it suffices to show that for any pure state ϕ of A, any
F ⊂ A a finite subset and ε > 0, there is a unit vector ξ ∈ HB such that ‖ϕ(a)1B −〈χ(a)ξ, ξ〉‖ < ε,
a ∈ F . By applying the excision proposition of [AAP], one finds a pair of norm-one positive elements
x, y such that xy = yx = y and ‖ϕ(a)x2−xax‖ < ε, a ∈ F . By assumption, we find b1, . . . , bm ∈ B
such that b∗1χ1(y2)b1 + · · · + b∗mχm(y2)bm = 1B. Then ξ = (χ1(y)b1, . . . , χm(y)bm) has the desired
property. Indeed, ‖ϕ(a)1B − 〈χ(a)ξ, ξ〉‖ = ‖

∑m
i=1 b

∗
iχi(y)χi(ϕ(a)x2 − xax)χi(y)bi‖ < ε.

For an alternate proof, if B is separable, one can apply the main result of [EKu]. Since each χn has
infinite multiplicity in the given sequence, we may identify χ with χ′ : A→M(K(H)⊗K(H)⊗B),
χ′(a) = 1 ⊗ χ(a). Our assumption on (χn) clearly implies that for each non-zero element a ∈ A,
the two-sided closed ideal of K(H) ⊗ B generated by χ(a)(K(H) ⊗ B) is equal to K(H) ⊗ B. By
[EKu, Theorems 6 and 17(iii)] it follows that the representation χ′ (hence χ) is unitally nuclearly
absorbing.

Let A, B be C*-algebras, let F ⊂ A be a finite subset and let ε > 0. If ϕ : A → LB(Eϕ)
and ψ : A → LB(Eψ) are two maps, we write ϕ ≺

F,ε
ψ if there is an isometry v ∈ LB(Eϕ, Eψ)

such that ‖ϕ(a) − v∗ψ(a)v‖ < ε for all a ∈ F . If v can be chosen to be a unitary, then we write
ϕ ∼
F,ε
ψ. We write ϕ ≺ ψ ( ϕ ∼ ψ ) if ϕ ≺

F,ε
ψ (respectively ϕ ∼

F,ε
ψ ) for all finite sets F and ε > 0.

Note that if ϕ ∼
F,ε1

ψ and ψ ∼
F,ε2

γ, then ϕ ∼
F,ε1+ε2

γ. Also, if two representations are approximately

unitarily equivalent, σ ' σ′, then σ ∼ σ′. Given a map ϕ : A→ LB(E) we denote by ϕ∞ the map
⊕∞n=1ϕ : A→ LB(⊕∞n=1E).

Lemma 2.7. Let A be a C*-algebra, let F ⊂ A be a finite subset and let ε > 0. There exist G ⊂ A
a finite subset and δ > 0 such that if ϕ : A → LB(Eϕ) and ψ : A → LB(Eψ) are selfadjoint maps
with ‖ϕ(a∗a)− ϕ(a∗)ϕ(a)‖ < δ, ‖ψ(a∗a)− ψ(a∗)ψ(a)‖ < δ, a ∈ G, then we have the following.
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(i) If ϕ∞ ≺
G,δ
ψ, then ϕ⊕ ψ ∼

F,ε
ψ.

(ii) If ϕ∞ ≺
G,δ
ψ and ψ∞ ≺

G,δ
ϕ, then ϕ ∼

F,ε
ψ.

Proof. This was proved in [D4] in the case B = C. The same proof is valid in the general case
considered here.

Definition 2.8. Let A, B be unital C*-algebras with A separable. Let F ⊂ A be a finite subset
and let ε > 0. A unital ∗-homomorphism π : A → Mk(B) is called (F , ε)-admissible if there is a
unitally nuclearly absorbing representation σ : A→ L(HB), ( HB = Bk ⊕Bk ⊕ . . . ) such that

‖σ(a)− π∞(a)‖ < ε a ∈ F .(6)

Remark 2.9. (a) If π is (F , ε)-admissible, then ‖π(a)‖ ≥ ‖a‖ − ε, a ∈ F . Moreover, π ⊕ γ is
(F , ε)-admissible for any unital ∗-homomorphism γ : A→Mr(B).

(b) If γ : A → L(HB) is any unitally nuclearly absorbing representation, then σ ' γ hence
‖uγ(a)u∗ − π∞(a)‖ < ε, a ∈ F , for some unitary u ∈ L(HB).

(c) Let A′ ⊂ A be a C*-subalgebra of A such that 1A ∈ A′. Let F ⊂ A′ be a finite subset
and let ε > 0. If π : A → Mk(B) is (F , ε)-admissible, then so is its restriction to A′. Indeed,
as noticed earlier, the restriction to A′ of a unitally nuclearly absorbing representation of A is a
unitally nuclearly absorbing representation of A′.

Proposition 2.10. Let A, B be unital C*-algebras with A separable and nuclearly embeddable.
Suppose that there exists an infinite-multiplicity sequence (χn) of unital nuclear ∗-homomorphisms
from A to B such that for any nonzero element a ∈ A the two-sided closed ideal of B generated by
the set {χ1(a), χ2(a), . . . } is equal to B. Then for any F ⊂ A a finite set and any ε > 0 there is a
positive integer k such that π = χ1 ⊕ · · · ⊕ χk : A→Mk(B) is (F , ε)-admissible.

Proof. Let θ : A → L(H) be a unital faithful representation with θ(A) ∩ K(H) = {0}. Since
A is nuclearly embeddable, θ is nuclear. Denote C = L(H) and define γ0 : A → B ⊗ C by
γ0(a) = 1B ⊗ θ(a). Define χC : A → M(K(H) ⊗ B ⊗ C) by χC(a) = ⊕∞n=1χn(a) ⊗ 1C . By
Proposition 2.6, the representation χC is unitally nuclearly absorbing. In particular it will absorb
the nuclear ∗-homomorphism γ0. Therefore γ0 ≺ γ0 ⊕ χC ∼ χC , hence γ0 ≺ χC . Let G ⊂ A
and δ > 0 be as in Lemma 2.7 corresponding to the given F ⊂ A and ε > 0. Then we find an
isometry v ∈ LB⊗C(B ⊗C,H⊗B ⊗C) such that ‖γ0(a)− v∗χC(a)v‖ < δ for a ∈ G. After a small
perturbation we may assume that the range of v is contained in Ck ⊗B ⊗ C for some k. Then we
can regard v as an isometry in LB⊗C(B ⊗ C,Ck ⊗ B ⊗ C) and v∗χC(a)v = v∗(π(a) ⊗ 1C)v where
π = χ1 ⊕ χ2 ⊕ · · · ⊕ χk. Thus we obtain

‖γ0(a)− v∗(π(a)⊗ 1C)v‖ < δ, a ∈ G.(7)

Let γ : A→M(B⊗K(H)) be defined as the composition of the inclusion map B ⊗ C = B⊗L(H) ⊂
M(B⊗K(H)) with γ0. Since v can be also viewed as an element of Mk(B⊗C) = Mk(B⊗L(H)) ⊂
Mk(M(B⊗K(H))), hence as an element (isometry) in LB(B⊗H,Ck ⊗B⊗H), it follows from (7)
that γ ≺

G,δ
π ⊗ 1L(H). Since π ⊗ 1L(H) is unitarily equivalent to π∞ we obtain

γ ≺
G,δ
π∞.(8)

On the other hand the representation γ : A → M(K(H) ⊗ B) is unitally nuclearly absorbing by
[Kas1, Theorem 4](see [DE1, Proposition 2.18]). Since each χn is nuclear, π∞ is nuclear. Thus
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π∞ ≺ π∞ ⊕ γ ∼ γ, hence

π∞ ≺ γ.(9)

By Lemma 2.7(ii), it follows from (8) and (9) that γ ∼
F,ε
π∞, hence ‖uγ(a)u∗ − π∞(a)‖ < ε, a ∈ F ,

for some unitary u ∈M(K(H)⊗B). We conclude the proof by setting σ(a) = uγ(a)u∗.

If n is a positive integer and π : A→ B is a ∗-homomorphism, then nπ : A→Mn(B) will denote
the ∗-homomorphism π ⊕ · · · ⊕ π (n-times). Let ϕ,ψ : A→ K(HB) be nuclear ∗-homomorphisms.
We will write [ϕ]̂ for the class of the Cuntz pair (ϕ, 0). Therefore [ϕ,ψ]̂ = [ϕ]̂− [ψ]̂ in
K̂Knuc(A,B). The following proposition is crucial for our embedding result.

Proposition 2.11. Let A, B be unital C*-algebras with A separable. Let F ⊂ A be a finite subset
and let ε > 0. Then for any (F , ε)-admissible ∗-homomorphism π : A → Mk(B) and any two
unital nuclear ∗-homomorphisms ϕ,ψ : A → Mm(B) with [ϕ]̂= [ψ]̂ in K̂Knuc(A,B), there exist
a positive integer N and a unitary u ∈Mm+Nk(B) satisfying

‖u(ϕ(a)⊕Nπ(a))u∗ − ψ(a)⊕Nπ(a)‖ < 3ε, a ∈ F .

Proof. Let F , ε and π be as in the statement. Then π satisfies (6) for some unitally nuclearly
absorbing representation σ : A → M(K(H) ⊗ B). By applying Proposition 2.4 to ϕ, ψ and σ we
find a unitary v ∈ C1 +KB(Bm ⊕H⊗B) such that

‖v(ϕ(a)⊕ σ(a))v∗ − ψ(a)⊕ σ(a)‖ < ε, a ∈ F .(10)

From (6) and (10) we then obtain

‖v(ϕ(a)⊕ π∞(a))v∗ − ψ(a)⊕ π∞(a)‖ < 3ε, a ∈ F .(11)

Let Hn = Bm ⊕ Bk ⊕ · · · ⊕ Bk ⊂ Bm ⊕H⊗ B (n copies of Bk) and let en denote the orthogonal
projection of Bm ⊕ H ⊗ B onto Hn. After a small perturbation of v we may assume that v ∈
C1 +KB(HN ) for some large N . It is then clear that eN commutes with v and with the images of
ϕ⊕ π∞ and ψ⊕ π∞. Then eN (ϕ⊕ π∞)eN = ϕ⊕Nπ, eN (ψ⊕ π∞)eN = ψ⊕Nπ and u = eNveN is
a unitary in LB(HN ) ∼= Mm+Nk(B). We finish the proof by compressing by eN in (11).

Proposition 2.12. Let A be a separable unital quasidiagonal nuclearly embeddable C*-algebra sat-
isfying the UCT. Let B be a unital C*-algebra such that B has bounded exponential length and
B ∼= B ⊗ U . Let F ⊂ A be a finite subset and let ε > 0. There is a finitely generated subgroup
X ⊂ K∗(A) such that for any two unital nuclear ∗-homomorphisms ϕ,ψ : A → Mm(B) with
ϕ∗(x) = ψ∗(x), x ∈ X, and any (F , ε)-admissible ∗-homomorphism π : A → Mk(B), there exist a
positive integer N and a unitary u ∈Mm+Nk(B) such that

‖u(ϕ(a)⊕Nπ(a))u∗ − ψ(a)⊕Nπ(a)‖ < 3ε, a ∈ F .(12)

Proof. Let A, B, F and ε be as in the statement. Seeking a contradiction, suppose that there is no
finitely generated subgroup X of K∗(A) satisfying the conclusion of the proposition.

Since A is separable, K∗(A) is countable. Therefore we can find an increasing sequence (Xn)
of finitely generated subgroups of K∗(A) whose union is equal to K∗(A), two sequences of unital
nuclear ∗-homomorphisms ϕn, ψn : A → Mm(n)(B) with (ϕn)∗(x) = (ψn)∗(x), x ∈ Xn and a
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sequence πn : A → Mk(n)(B) of (F , ε)-admissible ∗-homomorphisms such that for all positive
integers N and n

inf
v∈Um(n)+Nk(n)(B)

max
a∈F
‖v(ϕn(a)⊕Nπn(a))v∗ − ψn(a)⊕Nπn(a)‖ ≥ 3ε.(13)

A contradiction will be obtained by showing that there is n such that for any (F , ε)-admissible
∗-homomorphism ρ : B →Mk(B) there exists a unitary u ∈ C1 +K(H)⊗B with

max
a∈F
‖u(ϕn(a)⊕ ρ∞(a))u∗ − ψn(a)⊕ ρ∞(a)‖ < 3ε.(14)

Indeed, by taking ρ = πn, after compressing in (14) by a suitable projection as in the proof of
Proposition 2.11, we contradict (13). Let Bn = Mm(n)(B), C =

∏
Bn/

∑
Bn and let Φ,Ψ : A→ C

be the unital ∗-homomorphisms induced canonically by the sequences (ϕn) and (ψn). The maps Φ
and Ψ are nuclear since A is nuclearly embeddable and ϕn, φn are nuclear [D1, Proposition 3.3].
We claim that

Φ∗ = Ψ∗ : K∗(A)→ K∗(C).(15)

Consider the commutative diagram whose rows are exact sequences.

0 −−−→ K∗(
∑
Bn) −−−→ K∗(

∏
Bn) −−−→ K∗(

∏
Bn/

∑
Bn) −−−→ 0∥∥∥ yν∗ yν̇∗

0 −−−→
∑
K∗(Bn) −−−→

∏
K∗(Bn) −−−→

∏
K∗(Bn)/

∑
K∗(Bn) −−−→ 0

Note that if ν∗ is injective, then so is ν̇∗. Since the union of (Xn) is equal to K∗(A), and since
(ϕn)∗(x) = (ψn)∗(x) for x ∈ Xn, we have ν̇∗Φ∗ = ν̇∗Ψ∗. Therefore in order to prove (15) it suffices
to prove that the canonical maps

νi : Ki(
∏

Bn)→
∏

Ki(Bn), i = 0, 1(16)

are injective. Since B is simple and B ∼= B ⊗ U , it follows from [Ro] that either B has stable rank
one (hence cancellation of projections) or B is purely infinite. In either case it is easy to check that
ν0 is injective. As for the injectivity of ν1, that follows from the assumption that B has bounded
exponential length (see [EL] or [L1]).

Next we observe that K∗(
∏
Bn) and hence K∗(C) is a divisible group since Bn ∼= Bn⊗U . Since A

satisfies the UCT [RS] it follows that KK(A,C) = Hom(K∗(A),K∗(C)) and A is KK-equivalent to
an abelian C*-algebra. Therefore A is K-nuclear and KK(A,C) ∼= KKnuc(A,C) [Sk]. In conjunction
with (15) this shows that [Φ] = [Ψ] in KKnuc(A,C).

Let θ : A → L(H) be a unital faithful representation with θ(A) ∩ K(H) = {0}. Then θ ⊗ 1C :
A→ M(K(H)⊗ C) is unitally nuclearly absorbing. By Theorem 2.2 there exists a unitary valued
norm-continuous map u : [0,∞) → C1 + K(H) ⊗ C such that limt→∞ ‖ut(Φ(a) ⊕ θ(a) ⊗ 1C)u∗t −
Ψ(a)⊕ θ(a)⊗ 1C‖ = 0, for all a ∈ A. From this we find a unitary w ∈ C1 + fK(H)f ⊗C (with f a
finite dimensional projection, f ≥ e11) such that

‖w(Φ(a)⊕ θ(a)⊗ 1C)w∗ −Ψ(a)⊕ θ(a)⊗ 1C‖ < ε/5, a ∈ F .(17)

Since A is quasidiagonal, we find a projection e ∈ K(H), e ≥ f , such that if θ′(a) = eθ(a)e and
θ′′(a) = (1− e)θ(a)(1− e), a ∈ A, then

‖θ(a)− θ′(a)− θ′′(a)‖ < ε/5, a ∈ F .(18)
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It is clear that [w, e⊗1C ] = 0 since e ≥ f so that v = (e⊗1C)w(e⊗1C) is a unitary in eK(H)e⊗C ∼=
Mr(C), where r is the rank of e. From (17) and (18) we obtain

‖w(Φ(a)⊕ (θ′(a) + θ′′(a))⊗ 1C)w∗ −Ψ(a)⊕ (θ′(a) + θ′′(a))⊗ 1C‖ < 3ε/5, a ∈ F .(19)

After compressing by e⊗ 1C in (19) we obtain

‖v(Φ(a)⊕ θ′(a)⊗ 1C)v∗ −Ψ(a)⊕ θ′(a)⊗ 1C‖ < 3ε/5, a ∈ F .(20)

Note that θ′ can be regarded as a map into Mr(C), hence Φ⊕ θ′⊗ 1C ,Ψ⊕ θ′⊗ 1C : A→Mr+1(C).
It its clear that θ′ ⊗ 1C lifts to (θ′ ⊗ 1Bn) : A → Mr(

∏
Bn) ∼=

∏
Mr(Bn). Let (vn) be a unitary

lifting of v in
∏
Mr+1(Bn). Then it follows from (20) that there is n such that

‖vn(ϕn(a)⊕ θ′(a)⊗ 1Bn)v∗n − ψn(a)⊕ θ′(a)⊗ 1Bn‖ < 3ε/5, a ∈ F .(21)

If zn = vn + (1− e)⊗ 1Bn , it follows from (21) and (18) that

‖zn(ϕn(a)⊕ θ(a)⊗ 1Bn)z∗n − ψn(a)⊕ θ(a)⊗ 1Bn‖ < ε, a ∈ F .(22)

Let ρ : A → Mk(B) be an (F , ε)-admissible ∗-homomorphism. Since θ ⊗ 1Bn is unitally nuclearly
absorbing, it follows from Remark 2.9(b) that there is a unitary un ∈M(K(H)⊗Bn) ∼= M(K(H)⊗
B) such that

‖un(θ(a)⊗ 1Bn)u∗n − ρ∞(a)‖ < ε, a ∈ F .(23)

Define u = (1Bn ⊕ un)zn(1Bn ⊕ u∗n). Then from (22) and (23)

‖u(ϕn(a)⊕ ρ∞(a))u∗ − ψn(a)⊕ ρ∞(a)‖ = ‖zn(ϕn(a)⊕ u∗nρ∞(a)un)z∗n − ψn(a)⊕ u∗nρ∞(a)un‖
≤ 2‖u∗nρ∞(a)un − θ(a)⊗ 1Bn‖+ ‖zn(ϕn(a)⊕ θ(a)⊗ 1Bn)z∗n − ψn(a)⊕ θ(a)⊗ 1Bn‖

< 2ε+ ε = 3ε.

This proves (14) and concludes the proof.

3. Embedding results

Theorem 3.1. Let A, B be unital C*-algebras with A separable and nuclearly embeddable. Suppose
that there exist a sequence (An) of unital C*-subalgebras of A (not necessarily nested) whose union is
dense in A and a sequence χn : A→ B of unital nuclear ∗-homomorphisms satisfying the following
conditions.

(i) For any nonzero element a ∈ A the two-sided closed ideal of B generated by the set {χ1(a), χ2(a), . . . }
is equal to B.

(ii) For each n, {[χ1|An ]̂ ⊗ 1Q, [χ2|An ]̂ ⊗ 1Q, . . . } generates a finite-dimensional subspace of
K̂Knuc(An, B)⊗Q.

Then A embeds as a unital C*-subalgebra of B ⊗ U where U is the universal UHF algebra.

Proof. We may assume that the sequence (χn) has infinite multiplicity. Let (xn) be a sequence
dense in A and let εn = 2−n. After passing to a subsequence of (An) we find for each n, Fn =
{a(n, 1), a(n, 2), . . . , a(n, n)} ⊂ An such that ‖xi − a(n, i)‖ < εn for 1 ≤ i ≤ n. Let R(χ) denote
the set of unital ∗-homomorphisms from A to Mk(B) which are unitarily equivalent to finite direct
sums of the form χi1 ⊕ · · · ⊕ χir , with k and r variable. By assumption, the image of R(χ) in
K̂Knuc(An, B) ⊗ Q generates a finite dimensional vector subspace Hn. Therefore, for each n, we
find θ(n,1), . . . , θ(n,t(n)) ∈ R(χ) such that ([θ(n,i)|An ]̂⊗1Q), 1 ≤ i ≤ t(n), is a system of generators of
Hn. By Proposition 2.10, there exists a sequence (πn) in R(χ) such that πn is (Fn, εn)-admissible.
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Define θn ∈ R(χ) by θn = θ(n,1)⊕ · · · ⊕ θ(n,t(n))⊕ πn. Then θn|An is (Fn, εn)-admissible since πn|An
is so by Remark 2.9.

We will construct inductively a sequence (r(n)) of positive integers and a sequence of unital
nuclear ∗-homomorphisms γn : A → Mk(n)(B), k(1) = r(1), k(n) = k(n − 1)r(n) for n ≥ 2, such
that

(i) γn is unitarily equivalent to θn ⊕ αn for some αn ∈ R(χ).
(ii) ‖γn+1(a)− r(n)γn(a)‖ < 3εn for a ∈ Fn.

First we set γ1 = θ1, so that r(1) is implicitly defined. Suppose that γ1, . . . , γn and r(1), . . . , r(n)
were constructed. By our choice of θ(n,i), there are integers k > 0, (ki) such that k[θn+1|An ]̂ =
k1[θ(n,1)|An ]̂+ · · · + kt(n)[θ(n,t(n))|An ]̂ in K̂Knuc(An, B). Therefore if we define α′n+1 = (k −
1)θn+1 ⊕ (m − k1)θ(n,1) ⊕ · · · ⊕ (m − kt(n))θ(n,t(n)) ⊕mπn ⊕mαn, where m > max{k1, . . . , kt(n)},
then [θn+1|An ⊕ α′n+1|An ]̂= m[γn|An ]̂ in K̂Knuc(An, B). Since θn|An is (Fn, εn)-admissible, so is
γn|An . By Proposition 2.11 there exist an integer N and a unitary u ∈M(m+N)k(n)(B) such that

‖u(θn+1 ⊕ α′n+1 ⊕Nγn)(a)u∗ − (mγn ⊕Nγn)(a)‖ < 3εn, a ∈ Fn.

Define αn+1 = α′n+1⊕Nγn, γn+1 = u(θn+1⊕αn+1)u∗ and r(n+ 1) = m+N . Then it is clear that
the conditions (i) and (ii) above are satisfied by γ1, . . . , γn+1 and r(1), . . . , r(n+ 1). From (ii) and
the choice of Fn, we have ‖γn+1(xi)− r(n)γn(xi)‖ < 5εn for 1 ≤ i ≤ n. Let ιn : Mk(n)(B) ↪→ B⊗U
be the canonical inclusion. Having the sequence γn available, we construct a unital embedding
γ : A→ lim

−→
Mk(n)

∼= B by defining γ(x), x ∈ {x1, x2, . . . }, to be the limit of the Cauchy sequence

(ιnγn(x)) and then extend to A by continuity. Note that γ is nuclear since all the maps in R(χ)
are nuclear. Also ‖γ(x)‖ = ‖x‖ since ‖γn(a)‖ ≥ ‖a‖ − εn for a ∈ Fn (Remark 2.9(a)), hence
‖γn(xi)‖ ≥ ‖xi‖ − 3εn, 1 ≤ i ≤ n, as ‖a(n, i)− xi‖ < εn.

Theorem 3.2. Let A, B be unital C*-algebras. Suppose that A is separable quasidiagonal nuclearly
embeddable and satisfies the UCT and that B ⊗ U has bounded exponential length. Suppose that
there exists a sequence (χn) of unital nuclear ∗-homomorphisms from A to B such that for any
nonzero element a ∈ A the two-sided closed ideal of B generated by the set {χ1(a), χ2(a), . . . } is
equal to B. Then A embeds as a unital C*-subalgebra of B ⊗ U .

Proof. This is similar to the proof of Theorem 3.1, excepting that Proposition 2.12 replaces Propo-
sition 2.11. Let (Fn) be a sequence of increasing finite subsets of A whose union is dense in A and let
εn = 2−n. We may assume that the sequence (χn) has infinite multiplicity. Let (πn) be a sequence
in R(χ) such that πn is (Fn, εn)-admissible. Let (Xn) be a sequence of finitely generated subgroups
of K∗(A) obtained by applying Proposition 2.12 to A, B, Fn and εn. For each n, the image Hn of
the map R(χ)→ Hom(K∗(A),K∗(B))→ Hom(Xn,K∗(B)) is a finitely generated group. Therefore
we find θ(n,1), . . . , θ(n,t(n)) ∈ R(χ) such that ((θ(n,i))∗|Xn), 1 ≤ i ≤ t(n), is a system of generators of
Hn. Define θn ∈ R(χ) by θn = θ(n,1) ⊕ · · · ⊕ θ(n,t(n)) ⊕ πn. Then θn|An is (Fn, εn)-admissible since
πn|An is so.

As in the proof of Theorem 3.1 it suffices to construct inductively a sequence (r(n)) of positive
integers and a sequence of unital nuclear ∗-homomorphisms γn : A → Mk(n)(B), k(1) = r(1),
k(n) = k(n− 1)r(n) for n ≥ 2, such that

(i) γn is unitarily equivalent θn ⊕ αn for some αn ∈ R(χ).
(ii) ‖γn+1(a)− r(n)γn(a)‖ < 3εn for a ∈ Fn.
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Set γ1 = θ1 and suppose that γ1, . . . , γn and r(1), . . . , r(n) were constructed. By our choice of
θ(n,i), there are integers (ki) such that (θn+1)∗(x) = k1(θ(n,1))∗(x)+ · · ·+kt(n)(θ(n,t(n)))∗(x), x ∈ Xn.
Therefore if m > max{k1, . . . , kt(n)}, and we define α′n+1 = (m−k1)θ(n,1)⊕· · ·⊕(m−kt(n))θ(n,t(n))⊕
mπn⊕mαn, then (θn+1⊕αn+1)∗(x) = m(γn)∗(x), for all x ∈ Xn. Since γn|An is (Fn, εn)-admissible,
by Proposition 2.12 there exist a positive integers N and a unitary u ∈M(m+N)k(n)(B) such that

‖u(θn+1(a)⊕ α′n+1 ⊕Nγn(a))u∗ −mγn(a)⊕Nγn(a)‖ < 3εn.(24)

We conclude the proof by defining αn+1 = α′n+1 ⊕Nγn, γn+1 = u(θn+1 ⊕ αn+1)u∗ and r(n+ 1) =
m+N .

Proof of Theorem 1.1: Let B be any simple unital separable C*-algebra such that Bn ⊂ B for all
n and B satisfies the conditions from the statement. For instance B =

⊗∞
n=1Bn (which is simple

by [Ta, Corollary 4.21] since Bn are simple) or B = B1 if all Bn are isomorphic.
The unital nuclear inclusion A ⊂

∏
Bn defines a separating sequence of unital nuclear ∗-homo-

morphisms χn : A→ B. Since B is simple, the condition (i) of Theorem 3.1 is satisfied. Condition
(ii) is also satisfied since each vector space K̂Knuc(Ai, B)⊗Q is finitely generated by assumption.
We conclude the proof by applying Theorem 3.1.

The proof of the alternate form of Theorem 1.1 is similar, but one uses Theorem 3.2.
Proof of Corollary 1.2: This follows from Theorem 1.1 since if A is RFD, then A is quasidiag-

onal and there is an infinite-multiplicity sequence of positive integers k(n) such that A embeds in∏∞
n=1Mk(n). Moreover, the embedding A ↪→

∏∞
n=1Mk(n) is nuclear since A is nuclearly embeddable

(see for example [D1, 3.3]). To conclude the proof we observe that
⊗∞

n=1Mk(n) ⊗ U ∼= U .
Proof of Corollary 1.5: If G is a second countable amenable locally compact MAP group, then

C∗(G) is nuclear [Co], it is residually finite dimensional by [BLS, Example 1.11(ii)] and satisfies
the UCT by [Tu, Proposition 10.7]. Therefore the result follows from Corollary 1.2.

Let us note that since C∗(G) is nuclear, one can prove that C∗(G) embeds in some simple AF
algebra by arguing as above and applying the main result of [L2] instead of Corollary 1.2.

Corollary 3.3. Let A be a separable unital nuclearly embeddable C*-algebra. Suppose that there
exist a sequence (Bn) of separable simple unital AF algebras and a sequence χn : A→ Bn of unital
∗-homomorphisms separating the elements of A. If A satisfies the UCT, then A embeds as a unital
C*-subalgebra of a simple AF algebra.

Proof. This follows from Theorem 1.1 (2) since if Bn are simple AF algebras, then B = ⊗∞n=1Bn is
a simple AF algebra and the exponential length of any AF algebra is equal to π.

The following proposition is needed in the proof of Corollary 1.4. Related results have appeared in
[BK] (for nuclear C*-algebras) and [D3], [Br3] (for exact C*-algebras).

Proposition 3.4. Let A ⊂ L(H), A ∩ K(H) = {0}, be a unital separable C*-algebra. If A is
quasidiagonal, then there is an increasing sequence (Dn) of unital RFD C*-subalgebras of A+K(H)
such that A + K(H) =

⋃∞
n=1Dn. If A is nuclearly embeddable, then Dn are nuclearly embeddable.

If A satisfies the UCT, then we may arrange that Dn satisfy the UCT.

Proof. Using the quasidiagonality of A, one finds as in [Ar], [Br3, Theorem 5.2] a sequence (en)
of finite-dimensional mutually orthogonal projections with

∑∞
n=1 en = 1, such that δ : A→ L(H),

δ(a) =
∑∞

n=1 enaen is a well-defined unital completely positive map and a− δ(a) ∈ K(H), ‖δ(a)‖ =
‖a‖ for all a ∈ A. We have enL(H)en ∼= L(enH) ∼= Mk(n)(C) where k(n) = dim(en). By identifying
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H with ⊕∞n=1C
k(n), we have embeddings

∏∞
n=1Mk(n) ⊂ L(H) and

∑∞
n=1Mk(n) ⊂ K(H). Let

D = δ(A) +
∑∞

n=1Mk(n) = C∗(δ(A)) +
∑∞

n=1Mk(n). Then D is a unital RFD C*-algebra and
D +K(H) = A+K(H).

Let En = e1⊕· · ·⊕en and K(n) = k1 + · · ·+k(n). Then EnL(H)En ∼= L(EnH) ∼= MK(n)(C). We
define Dn = D+MK(n)(C) = D+EnL(H)En and note that Dn ⊂ Dn+1 and D+K(H) =

⋃∞
n=1Dn.

Let σn : D →Mk(n)(C) be given by σn(x) = enxen. It is then clear that D ∼= {⊕∞n=1σn(x) : x ∈ D}
and

Dn
∼= MK(n)(C)⊕D′n(25)

where D′n = {⊕∞i=1σn+i(x) : x ∈ D}. Note that D′n is a quotient of D by a finite-dimensional ideal
Jn. Since any finite-dimensional C*-algebra is unital, D′n is a direct summand in D.

D ∼= Jn ⊕D′n.(26)

In particular D′n is RFD. Consider the commutative diagram with exact rows

0 // K(H) // L(H) // L(H)/K(H) // 0

0 //
∑
Mk(n)

//
?�

OO

∏
Mk(n)

//
?�

OO

∏
Mk(n)/

∑
Mk(n)

?�

OO

// 0

0 //
∑
Mk(n)

// F //?�

Φ

OO

A
?�

η̇

OO

η

hhP P P P P P P P

δ

aaB
B

B
B

B
B

B
B

B
B

B
// 0

where η(a) = (enaen)∞n=1 and the bottom row is the pullback of the middle row. If A is nuclearly
embeddable, then η is nuclear and F is nuclearly embeddable as proved in [D4, Lemma 3.1].
Since D ∼= Φ(F ), D is nuclearly embeddable. It follows from (25) and (26) that Dn is nuclearly
embeddable. Suppose now that A satisfies the UCT. By [Sk, Prop. 5.3] a separable C*-algebra F
satisfies the UCT if and only if KK(F,B) = 0 for any σ-unital C*-algebra B with K∗(B) = 0. From
this and the KK-theory exact sequence associated with semisplit exact sequence 0 →

∑
Mk(n) →

F → A → 0, we see that D ∼= Φ(F ) satisfies the UCT if A does so. It follows from (25) and (26)
that Dn satisfies the UCT.

4. Embeddings of group C*-algebras

The following proposition and its proof was inspired by [Be, Proposition 1].

Proposition 4.1. Let Γ be a discrete countable amenable group. Let (Bn) be sequence of unital C*-
algebras and let (ωn) be an infinite-multiplicity sequence of group homomorphisms ωn : Γ→ U(Bn)
separating the points of Γ. Then C∗(Γ) embeds unitally in

∏∞
n=1Cn where Cn =

⊗n
k=1M2⊗Bk⊗Bk.

Proof. By assumption, the infinite-multiplicity sequence (ωn) separates the points of Γ. Therefore
there is an injective map s 7→ n(s) from Γ to N such that ωn(s)(s) 6= 1 for s ∈ Γ \ {e}. Define µn :

Γ→ U(M2⊗Bn⊗Bn) by µn(s) =
(
ωn(s)⊗ 1 0

0 ωn(s)⊗ ωn(s)

)
. We regard M2⊗Bn⊗Bn as acting

on a Hilbert space Hn and denote by πn : Cn → L(H1⊗· · ·⊗Hn) the corresponding tensor product
representation. The spectrum of µn(s)(s) contains at least two points since ωn(s)(s) 6= 1. Using the
spectral theorem, we find a sequence a sequence ξn ∈ Hn, ‖ξn‖ = 1, so that if ϕn(s) = 〈µn(s)ξn, ξn〉,
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then |ϕn(s)(s)| < 1, for all s ∈ Γ, s ∈ Γ\{e}. Define χn : Γ→ U(Cn) by χn(s) = µ1(s)⊗· · ·⊗µn(s).
Then φn(s) = ϕ1(s) · · ·ϕn(s) = 〈πnχn(s)ξ1 ⊗ · · · ⊗ ξn, ξ1 ⊗ · · · ⊗ ξn〉 is a positive definite function
associated with the representation πnχn : Γ → L(H1 ⊗ · · · ⊗ Hn). Let δe be the Dirac function
at the unit of Γ. Then limn→∞ φn(s) = δe(s) for all s ∈ Γ, since φn(e) = 1 and |ϕn(s)(s)| < 1
for s 6= e and the sequence (ϕn) has infinite multiplicity. Since the positive definite function δe
corresponds to a cyclic vector of the left regular representation λΓ : Γ → L(`2(Γ)), it follows by
[Dix, 18.1.4] that λΓ is weakly contained in {πnχn : n ∈ N}. Thus if λ̂Γ : C∗(Γ) → L(`2(Γ)) and
χ̂n : C∗(Γ)→ Cn denote the extensions of λΓ and χn to C∗(Γ), then by [Dix, 3.3.4]

ker λ̂Γ ⊃
∞⋂
n=1

kerπnχ̂n =
∞⋂
n=1

ker χ̂n.

Since Γ is amenable, ker λ̂Γ = {0}, hence the unital ∗-homomorphism
∏∞
n=1 χ̂n : C∗(Γ)→

∏∞
n=1Cn

is injective.

Proof of Theorem 1.6: Without loss of generality we may assume that the sequence of ho-
momorphisms ωn : Γ ↪→

∏∞
n=1 U(Bn) → U(Bn) has infinite multiplicity. By Proposition 4.1,

C∗(Γ) ↪→
∏∞
n=1Cn where Cn =

⊗n
k=1M2 ⊗ Bk ⊗ Bk. In particular C∗(Γ) is quasidiagonal since

all the B′ns are so. The C*-algebras Cn are simple by [Ta, Corollary 4.21]. C∗(Γ) is nuclear as Γ
is amenable [La] and it satisfies the UCT by [Tu]. Finally (

⊗∞
n=1Cn) ⊗ U ∼= (

⊗∞
n=1Bn) ⊗ U has

bounded exponential length by assumption. We conclude the proof by applying Theorem 1.1.
The proof of the alternate form of Theorem 1.6 is similar and follows from the alternate form of

Theorem 1.1. Indeed, letting C =
⊗∞

n=1Cn, and using the UCT, we have that KK(C∗(Γi), C ⊗U)
is isomorphic to Hom(K∗(C∗(Γi)),K∗(C)⊗Q) which is finitely generated since K∗(C∗(Γi))⊗Q is
so by assumption.

Lemma 4.2. Let Γ be a discrete group acting by automorphisms on a unital C*-algebra A. Suppose
that A has a sequence of Γ-invariant two-sided closed ideals (In) with

⋂∞
n=1 In = {0}. Then A×r Γ

embeds unitally in
∏∞
n=1(A/In)×r Γ.

Proof. This is similar to the proof of [To, Theorem 4.1.10]. The map `1(Γ, A) → A, (as)s∈Γ 7→ ae
extends to a faithful conditional expectation EA : A ×r Γ → A by [ZM, 4.12]. Consider the
commutative diagram

A×r Γ πn−−−→ A/In ×r ΓyEA yEA/In
A −−−→ A/In

We claim that the map
∏
πn : A×r Γ→

∏
A/In×r Γ is injective. Indeed, let x ∈ A×r Γ, x ≥ 0, be

such that πn(x) = 0 for all n. From the commutative diagram, we obtain that EA(x) ∈ In for all
n hence EA(x) = 0 since

⋂∞
n=1 In = {0} by assumption. Therefore x = 0 since EA is faithful.

Corollary 4.3. Let Γ be a discrete countable amenable group which is isomorphic to a subgroup
of a countable product of unitary groups of simple unital separable AF algebras. Suppose that Γ
acts on a compact metrisable space such that the points with finite orbits are dense in X. Then
C(X)×r Γ embeds in a unital simple separable AF algebra.
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Proof. Since Γ is amenable so is any of its subgroups H and C∗r (H) ∼= C∗(H) ⊂ C∗(Γ) ∼= C∗r (Γ).
By assumption there is a dense sequence (xn) of points of X such that each isotropy group Γxn =
{s ∈ Γ : s · xn = xn} has finite index in Γ, [Γ : Γxn ] = m(n) < ∞. Let In denote the ideal of
C(X) consisting of all functions vanishing on the orbit Xn of xn. Then A/In×r Γ ∼= C(Xn)×r Γ ∼=
C∗r (Γxn) ⊗Mm(n) ⊂ C∗r (Γ) ⊗Mm(n). We have

⋂∞
n=1 In = {0} since (xn) is dense in X. Therefore

C(X)×r Γ embeds unitally in
∏∞
n=1C

∗
r (Γ)⊗Mm(n) by Lemma 4. By Theorem 1.6, C∗r (Γ)⊗Mm(n)

embeds unitally in a simple unital AF algebra B, hence C(X)×r Γ ⊂
∏∞
n=1B. The groupoid X×Γ

is amenable, hence C(X)×r Γ satisfies the UCT by [Tu, Proposition 10.7]. We conclude the proof
by applying Theorem 1.6.

Note that the above corollary applies to actions of countable discrete amenable residually finite
groups (including Zn), provided that they have dense sets of points with finite orbits.

Proof of Corollary 1.7: This is an immediate consequence of Theorem 1.6 and Corollary 4.3.
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