MA 265 Practice Test 1 (Dr. Park)

Name

ID number.....

Test 1: Feb 20, 2020

INSTRUCTIONS in the Test

- 1. Do not open this exam booklet until told to do so.
- 2. Show all your work if you need more space, continue on the back of the page for that problem.
- 3. Show your final answer by enclosing it in a box or circle.

4. If in multiple-choice problems your work is not directly related to the correct answers, no partial credit will be given.

1

Problem 1. Let A and B be $n \times n$ matrices. Which of the following statements are always TRUE?

(a) $(-A)^T = -A^T$ (b) $(A - B)^T = A^T - B^T$ (c) $(A^T B)^T = AB^T$ (d) $(AB^{-1})^{-1} = A^{-1}B$ (e) AB = BA

Answer: (a), (b)

Problem 2. Let A, B and C be arbitrary $n \times n$ matrices. What is the transpose of the matrix?

$$(A^T + 2020B)C^{-1}$$

Answer: $(C^{-1})^T (A + 2020B^T)$

Problem 3. Let *A* be a nonsingular matrix with its inverse:

$$A^{-1} = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 3 & 5 \\ -1 & 5 & 0 \end{array} \right]$$

Which of the following statements is FALSE?

- (a) For arbitrary 3×3 matrices B and C if BA = BC, then A = C.
- (b) A^T is invertible.
- (c) For arbitrary 3×3 matrices B and C if AB = AC, then B = C.
- (d) $AA^{-1} = A^{-1}A$.

Answer: (a)

Problem 4. Let

$$A = \left[\begin{array}{rrrr} 1 & 1 & 3 \\ 2 & 1 & 4 \\ 2 & a & 10 \end{array} \right].$$

Find the value(s) of a such that the columns of A are linearly dependent.

Answer: a = 4

Problem 5. For what values of h and k does the system $A\mathbf{x} = \mathbf{b}$ have infinitely many solutions?

$$A = \begin{bmatrix} 1 & 1 & 4 \\ -3 & -3 & h \\ 1 & 8 & 0 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -2 \\ k \\ 0 \end{bmatrix}.$$

Answer: h = -12, k = 6

Problem 6. Let A, B and C be invertible $n \times n$ matrices. If $A^{-1}B^{-1} = C^{-1}$, then what is A?

(a) $A = CB^{-1}$ (b) $A = C^{-1}B^{-1}$ (c) $A = BC^{-1}$ (d) $A = B^{-1}C$ (e) A = BC

Answer: (d)

Problem 7. Which of the following statements are true?

- (i) A linear system of four equations in three unkowns is always inconsistent.
- (ii) A linear system with fewer equations than unkowns must have infinitely many solutions.

(iii) If for any $\mathbf{b} \in \mathbb{R}^n$ the system $AX = \mathbf{b}$ has a unique solution, then A must be a square matrix.

- (iv) For a square matrix A if AX = 0 has a nonzero solution, then the homogeneous linear system has infinitely many solutions.
- (a) all of them (b) (i) and (ii) (c) (ii) and (iii) (d) (iii) and (iv)
- (e) (iv) only.

Answer: (d)

Problem 8. Let

	$\begin{bmatrix} 2 \end{bmatrix}$	1	2	3]
$A^T =$	4	5	6	$\overline{7}$.
	8	9	10	11	

Find the (3,1) entry of AA^T .

Answer: 108

Problem 9. Find the solution (x_1, x_2, x_3) of the linear system of equations

Answer: $x_1 = -59/9$; $x_2 = 20/9$; $x_3 = 8/9$

Problem 10. Consider the linear system $AX = \mathbf{b}$ where A is a 3×2 matrix and **b** is in \mathbb{R}^3 . Which of the following statements is TRUE for every matrix A?

- (a) The equation $AX = \mathbf{b}$ is inconsistent for every \mathbf{b} in \mathbb{R}^3 .
- (b) Whenever the equation $AX = \mathbf{b}$ is consistent, it has exactly one solution X.
- (c) Whenever the equation AX = b is consistent, it has infinitely many solutions X.
- (d) The equation $AX = \mathbf{b}$ is inconsistent for at least one \mathbf{b} in \mathbb{R}^3 .
- (e) If the columns of A are a scalar multiple of one another, then the equation $AX = \mathbf{b}$ has exactly one solution.

Answer: (d)

Problem 11. Let T be the linear transformation whose standard matrix is

$$A = \begin{bmatrix} 1 & 4 & 8 & 1 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Which of the following statement is TRUE?

- (a) T maps \mathbb{R}^3 onto \mathbb{R}^4 (b) T maps \mathbb{R}^4 onto \mathbb{R}^3
- (c) T is one-to-one
- (d) The columns of the matrix A are linearly independent.

Answer: (b)

Problem 12. Find the values of α for which A is singular:

$$A = \begin{bmatrix} 2 & 1 & 3\alpha & 4 \\ 0 & \alpha - 1 & 4 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & \alpha & 4 \end{bmatrix}.$$

Answer: $\alpha = 1$ or 8

Problem 13. Let A be an $n \times n$ matrix, and let \mathbb{R}^n be the vector space of all the vectors in the *n*-dimensional space. Prove that the following subsets of \mathbb{R}^n are its subspaces.

(a) $\mathbf{U} = {\mathbf{X} \in \mathbf{R}^n : A\mathbf{X} = \mathbf{0}}$ is the set of all the solutions of the homogeneous system $A\mathbf{X} = \mathbf{0}$.

(b) $\mathbf{W} = {\mathbf{X} \in \mathbf{R}^n : \mathbf{X} \text{ is a linear combination of the columns of } A}$ is the set of all the vectors that can be written as a linear combination of the columns of A.

Answer: They were proved in class

Problem 14. Which of the following set of vectors span \mathbb{R}^2 and are linearly independent?

$(a)\left\{ \left[\begin{array}{c}1\\2\end{array}\right], \left[\begin{array}{c}0\\0\end{array}\right], \left[\begin{array}{c}1\\3\end{array}\right] \right\}$	$(b)\left\{ \left[\begin{array}{c} 2\\ -5 \end{array}\right], \left[\begin{array}{c} -4\\ 10 \end{array}\right] \right\}$
$(c)\left\{ \left[\begin{array}{c} 2\\1 \end{array}\right], \left[\begin{array}{c} 1\\3 \end{array}\right] \right\}$	$(d)\left\{ \left[\begin{array}{c} 3\\5 \end{array} \right], \left[\begin{array}{c} -2\\1 \end{array} \right], \left[\begin{array}{c} 7\\3 \end{array} \right] \right\}$

Answer: (c)

Problem 15. Let $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be a linear transformation such that

$$L\left(\left[\begin{array}{c}1\\2\end{array}\right]\right) = \left[\begin{array}{c}0\\1\\4\end{array}\right] \quad \text{and} \quad L\left(\left[\begin{array}{c}3\\2\end{array}\right]\right) = \left[\begin{array}{c}-2\\0\\1\end{array}\right]$$

Find $L\left(\left[\begin{array}{c}-1\\2\end{array}\right]\right)$

Answer: $L([-1,2]^T) = 2L([1,2]^T) - L([3,2]^T) = [2,2,7]^T$

Problem 16. Let A be an $m \times n$ matrix. Which of the following statements is ALWAYS TRUE?

- (a) The nullity of A is the same as the nullity of A^T .
- (b) The rank of A is the same as the rank of A^T .
- (c) The column space of A is the same as the null space of A^T .
- (d) The columns of A form a basis of the column space of A.
- (e) The columns of A^T form a basis of the null space of A.

Answer: (b)