
7.2: Review of Matrices

• For theoretical and computational reasons, we review results of matrix theory 

in this section and the next. 

• A matrix A is an m x n rectangular array of elements, arranged in m rows and 

n columns, denoted

• Some examples of 2 x 2 matrices are given below:
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Transpose

• The transpose of A = (aij) is AT = (aji).  

• For example, 
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Conjugate

• The conjugate of A = (aij) is A = (aij). 

• For example, 
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Adjoint

• The adjoint of A is AT , and is denoted by A*

• For example, 
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Square Matrices

• A square matrix A has the same number of rows and columns. 

That is, A is n x n. In this case, A is said to have order n.  

• For example, 
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Vectors

• A column vector x is an n x 1 matrix. For example,

• A row vector x is a 1 x n matrix.   For example, 

• Note here that  y = xT,  and  that in general,  if  x  is a column 

vector  x,  then  xT is  a row vector.  
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The Zero Matrix

• The zero matrix is defined to be 0 = (0), whose dimensions 

depend on the context. For example, 
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Matrix Equality

• Two matrices A = (aij) and   B = (bij) are  equal if  aij = bij

for all i and j.   For example, 
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Matrix – Scalar Multiplication

• The product of a matrix A = (aij) and a constant k is defined 

to be   kA = (kaij).     For example, 
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Matrix Addition and Subtraction

• The sum of two m x n matrices A = (aij) and B = (bij) is defined to be A + B

= (aij + bij). For example, 

• The difference of two m x n matrices A = (aij) and B = (bij) is defined to be 

A - B = (aij - bij). For example,
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Matrix Multiplication

• The product of an m x n matrix A = (aij) and an n x r matrix B = (bij) is 

defined to be the matrix C = (cij), where 

• Examples (note AB does not necessarily equal BA):
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Example 1: Matrix Multiplication

• To illustrate matrix multiplication and show that it is not commutative, 

consider the following matrices:

• From the definition of matrix multiplication we have:
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Vector Multiplication

• The dot product of two n x 1 vectors x & y is defined as 

• The inner product of two n x 1 vectors x & y is defined as

• Example:
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Vector Length

• The length of an n x 1 vector x is defined as 

• Note here that we have used the fact that if x = a + bi, then 

• Example:
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Orthogonality

• Two n x 1 vectors x & y are orthogonal if  (x,y) = x·y =  0.

i.e.   the angle is   

• Example:
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Identity Matrix

• The multiplicative identity matrix I  is an n x n matrix given by  

• For any square matrix A, it follows that AI = IA = A. 

• The dimensions of  I depend on the context.   For example, 
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Inverse Matrix

• A square matrix A is nonsingular, or invertible, if there exists a matrix B

such that that AB = BA = I. Otherwise A is singular. 

• The matrix B, if it exists, is unique and is denoted by A-1 and is called the 

inverse of A.   

• It turns out that A-1 exists iff detA  0, and A-1 can be found using row 

reduction (also called Gaussian elimination) on the augmented matrix (A|I), 

see example on next slide. 

• The three elementary row operations:    detA is not changed.

– Interchange two rows.

– Multiply a row by a nonzero scalar.

– Add a multiple of one row to another row.   
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Example 2:  Finding the Inverse of a Matrix  (1 of 2)

• Use Gaussian elimination or  elementary row operation to find the inverse of 

the matrix A below, if it exists. 

• Solution: If possible, use elementary row operations to reduce (A|I), 

such that the left side is the identity matrix, for then the right side will be A-1. 

(See next slide.)   
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Example 2:  Finding the Inverse of a Matrix (2 of 2)

• Thus   
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Matrix Functions

• The elements of a matrix can be functions of a real variable. In this case, we 

write

• Such a matrix is continuous at a point, or on an interval

(a, b), if each element is continuous there. Similarly with differentiation and 

integration:
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Example & Differentiation Rules

• Example:

• Many of the rules from calculus apply in this setting. For example:
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