
On the chaotic character of some parabolicSPDEs
Davar Khoshnevisan(joint with Daniel Conus, Mathew Joseph, and Shang-YuanShiu)
Department of MathematicsUniversity of Utah

http://www.math.utah.edu/˜davar



Large-scale distribution of galaxiesS. F. Shandarin and Ya. B. Zeldovitch, Rev. Modern Phys. 61(2) (1989) 185–220



A simple model for intermittency(Zeldovich–Ruzmaikin–Sokoloff, 1990)
I Intermittency occurs when we multiply manyroughly-independent r.v.’s ; e.g., ξ1, ξ2, . . . i.i.d. with

P{ξ1 = 2} = P{ξ1 = 0} = 1/2
I Then

un := n∏
j=1

ξj = {2n with probab. 2−n,
0 with probab. 1− 2−n.

I Conclusions:
I un = 0 for all n large [a.s.]; in particular, un → 0 a.s.
I n−1 log E (uk

n )→ γk := (k − 1) log 2 for all k > 1

I Now replicate this experiment
I Is this degeneracy because of the many zeros? No



A second simple model for intermittency(Zeldovich–Ruzmaikin–Sokoloff, 1990)
I Let b denote 1-D Brownian motion and consider theexponential martingale ut := eλbt−(λ2t/2)
I ut → 0 as t →∞ [strong law]
I t−1 log E (uk

t ) = 1
2λ2k(k − 1)→ γk := 1

2λ2k(k − 1) for k > 1
I In the first example, γk ≈ k log 2; in the second,
γk ≈ 1

2λ2k2

I The examples are “similar,”
ebt−(t/2) ≈∏

j

(
1− (∆b)j − 1

2
(∆t)j)



A simulation [u̇t(x ) = (1/2)u′′t (x ) + λut(x )ηt , u0 ≡ 1]
ut = exp{λbt − (λ2t/2)} with λ = 0.5 (left) and λ = 5 (right)



A simulation [u̇t(x ) = (1/2)u′′t (x ) + λut(x )ηt(x ),
u0(x ) = sin(πx ), 0 ≤ x ≤ 1; ut(0) = ut(1) = 0.]
λ = 0 (left; ut (x ) = sin(πx ) exp(−π2t/2)) and λ = 0.1 (right)



A simulation [u̇t(x ) = (1/2)u′′t (x ) + λut(x )ηt(x ),
u0(x ) = sin(πx ), 0 ≤ x ≤ 1; ut(0) = ut(1) = 0.]
λ = 1.3 (left) and λ = 2 (right)



The model
∂
∂t ut (x ) = κ

2
∂2

∂x2 ut (x ) + σ (ut (x ))ηt (x ),
where:1. κ > 0;2. σ : R→ R is Lipschitz continuous;3. η is space-time white noise; i.e., a centered GGRF with

Cov (ηt (x ) , ηs (y )) = δ0(t − s)δ0(x − y )
4. u0 : R→ R+ nonrandom, bounded, and measurable;5. u exists, is unique and continuous (Walsh, 1986)



The model
∂tu = (κ/2)∂xxu + σ (u)η

I Many physically-interesting choices of σ 6≡ 0:
I σ periodic/quasi-periodic/stationary process [randommedia];
I σ (u) ∝ u [the parabolic Anderson model/KPZ/Br. Br.motion in random environment];
I σ (u) ∝ √u [super processes];
I σ (u) ∝√u(1− u) [stoch. KPP]; . . . .

I Today, we will say a few things about the first twoexamples [where σ is Lipschitz]



Weak intermittency
∂tu = (κ/2)∂xxu + σ (u)η

I (weak) intermittency [Bertini–Cancrini, 1994;Carmona–Molchanov, 1994; Molchanov, 1991;Foondun–K., 2010; Zel’dovitch et al, 1985, 1988, 1990; . . . ]:
0 < lim sup

t→∞

1
t

log E
(
|ut (x )|k) < ∞ (k ≥ 2, x ∈ R)

I Weak intermittency implies “localization” on large timescales.
I Physical intermittency is expected to hold because theSPDE is typically “chaotic,” and for many choices of σ :

I For all t > 0; and
I both in time, and space

I Today: What happens before the onset of localization?



Optimal regularity
I Can frequently understand parabolic equations via optimalregularity [Lunardi, 1995, and older works by Pazy, Kato,. . . ]
I If σ (0) = 0, then the fact that u0(x ) ≥ 0 implies that

ut (x ) ≥ 0 [Mueller’s comparison principle]
I If σ (0) = 0 and u0 ∈ L2(R) then ut ∈ L2(R) a.s.(Dalang–Mueller, 2003, but likely known earlier also)
I If u0 ∈ Cα(R) for some α > 1

2 and has compact support,and if σ (0) = 0, then supx∈R ut (x ) < ∞ a.s. for all t > 0(Foondun–Kh, 2010+)
I Today’s goal: The solution can be sensitive to the choiceof u0 (we study cases where ut is unbounded for all t > 0)



A reduction
I u̇ = (κ/2)u′′ + σ (u)η
I Suppose σ (x0) = 0 for some x0 > 0
I If u0(x ) ≤ x0 then ut (x ) ≤ x0 [Mueller’s comparisontheorem]
I Therefore, today we are interested only in the case that
σ (x ) > 0 for all x > 0

I We consider the case that infx∈R u0(x ) > 0 only



Theorem (Conus–Joseph–K)A case of minimum noise
I u̇ = (κ/2)u′′ + σ (u)η
I If infx∈R σ (x ) > 0, then

lim sup
|x |→∞

ut (x )(log |x |)1/6 ≥ const · κ−1/12 a.s. for all t > 0

I ∃ weaker versions that allow mild decay for σ ; e.g.,suppose σ (x ) > 0 for all x ≥ 0 and ∃γ ∈ (0 , 1/6) such that
σ (x )� (log |x |)−(1/6)+γ . Then a.s. for all t > 0,

lim sup
|x |→∞

ut (x )(log |x |)γ ≥ const · κ−1/12.



Theorem (Conus–Joseph–K)The moderately noisy case

I u̇ = (κ/2)u′′ + σ (u)η
I If 0 < infx≥0 σ (x ) ≤ supx≥0 σ (x ) < ∞, then

lim sup
|x |→∞

ut (x )(log |x |)1/2 � κ−1/4 a.s. for all t > 0

I Power of κ suggests the universality class of randomwalks in weak interactions with their randomenvironment



Theorem (Conus–Joseph–K)The parabolic Anderson case

I u̇ = (κ/2)u′′ + cuη [σ (x ) = cx ]
I If c > 0, then

lim sup
|x |→∞

log ut (x )(log |x |)2/3 � 1
κ1/3 a.s. for all t > 0

I ut (x ) ≈ exp{const · (log |x |/
√
κ)2/3}

I Power of κ suggests the universality class of randommatrix models
I “scaling exponents” (1/3 , 2/3)



A connection to KPZ
I The KPZ equation (1986): If λ ∈ R is fixed then

ḣ = κ
2
h′′ + κλ

2
(h′)2 + η

I Rigorous meaning (?): A formal Hopf–Coletransformation [ut (x ) = exp{ht (x )}] yields
u̇ = κ

2
u′′ + uη

I “Therefore,” if h∗t (x ) := sup|z |≤x ht (z ), then
const
κ1/3 ≤ lim inf

R→∞

h∗t (eR )
R2/3 ≤ lim sup

|x |→∞

h∗t (eR )
R2/3 ≤

const
κ1/3 a.s. for all t > 0

I Related to recent results by Balázs–Quastel–Seppäläinen(2011) & Amir–Corwin–Quastel (2011)



Colored noise
u̇t (x ) = (κ/2)(∆ut )(x ) + σ (ut (x ))ηt (x ), t > 0, x ∈ Rd

I Now Cov (ηt (x ) , ηs (y )) = δ0(s − t)f (x − y )(Dalang, 1999; Hu–Nualart, 2009, . . . )
I Suppose f = h ∗ h̃ for some h ∈ L2(Rd ), so ∃ a uniquesolution for all d ≥ 1
I ∃ KPZ version also (Medina–Hwa–Kardar–Zhang, 1989)



Theorem (Conus–Joseph–K–Shiu)The parabolic Anderson case

I u̇ = (κ/2)∆u + cuη [σ (x ) = cx ]
I If c > 0 and ∫‖z‖>N |h(z)|2 dz = O(N−a) for some a > 0,then

lim sup
|x |→∞

log ut (x )(log |x |)1/2 � 1 a.s. for all t > 0 and κ small
I There are other variations as well
I “scaling exponents” (0 , 1/2)
I Are there in-between models? Yes.



Theorem (Conus–Joseph–K–Shiu)The parabolic Anderson case
I u̇ = (κ/2)∆u + cuη [σ (x ) = cx ]
I Cov(ηt (x ) , ηs (y )) = δ0(t − s) · ‖x − y‖−α
I The solution ∃! when α < min(d , 2) [Dalang, 1999]
I If c > 0, then

lim sup
|x |→∞

log ut (x )(log ‖x‖)2/(4−α) � κ−α/(4−α) a.s. for all t > 0

I “scaling exponents” (2ψ − 1 , ψ) = (α/(4−α) , 2/(4−α))KPZ relation︷ ︸︸ ︷[T + 1 = 2X ]
I f = h ∗ h̃ ⇔ α = 0, and f = δ0 ⇔ α = 1 = min(d , 2)[spectral analogies]


