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where X denotes the formal adjoint of X; with respect to ;1 and
where V : M — R is a non-positive smooth function.
We study the boundedness in LP, 1 < p < oo of the operator
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where P; = et and A(t, x) is a matrix of smooth bounded
functions.
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» Such operators naturally appear as projections of martingale
transforms.

» For instance, if A(t,x) = a(t)ld and V =0, then
Saf = —2/ S(£)LPocfdt = W ,(—L)F,
0

where W,(X) = =2\ [;¥ a(t)e 2 dt. This is a so-called
multiplier of Laplace transform type.
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Defining then the Riesz transforms on G by
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The diffusion (Y}:)¢>0 with generator —% 27:1 X*X; can be
constructed via the Stratonovitch stochastic differential equation

d
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The celebrated Feynman-Kac formula reads

Pef (x) = Ex (&8 VO9%#1(v1))
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InLP, 1< p < oo, we have lim7_,4 SZ\- = Sy, where

SIf(x) = <ef0 Ys) / e oV (Yo)ds gy, |YT—X).
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and

d
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Since the conditional expectation is a contraction in LP, we now
essentially need to control the LP norm of the stochastic integral

ef0 Ye) / e~ Jo V(¥ )95 M,
0



A variation of the BDG inequality

Let T > 0 and (M;)o<t<T be a continuous local martingale.
Consider the process

t
t
L = efo Vsds/ e fos V”dud/\/]s7
0

where (Vi )o<t<T Is a non positive adapted and continuous process.
For every 0 < p < oo, there is a universal constant C,, independent
of T, (Mt)Ogth and (Vt)ogth such that

E <<02$£T|Zt>p> < GE (M, M]?) .
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Proof of the variation of the BDG inequality

By stopping it is enough to prove the result for bounded M. Let
q > 2. We have
dZt - Zt tht + th

and from It&'s formula we have
_ 1 _
d|Z:|9 = q|Z:|9 sgn(Z,)dZ; + 5q(q —1)|Z|972d[M];
1
= q|Z;|V;dt + qsgn(Z:)|Z;|7 *dM, + 5a(a— 1)|Z:|9 2 d[M]..

Since V; <0, as a consequence of the Doob's optional sampling
theorem, we get that for every bounded stopping time T,

B(21% < gata— s ( [ 124 2am).
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Lenglart's domination inequality

Theorem (Lenglart)
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From the Lenglart's domination inequality, we deduce then that for
every k € (0,1),
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We finally compute
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Thanks to the previous result, we are let with the problem of
controlling, in LP, the quantity

T d
/ D (XiPr_ef)?(Ye)dt.
0 =1

We can use the chain rule to easily check that

d d
Z(XIPTftf)2(Yt) < (; ZX/’Z + Xo + (i) (Pr—ef)*(Ye)
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Control of SAT

From 1t&’s formula, the quantity
1< 9
- E 2 il 2
(2 2 X, + Xo + @t) (PT_tf) (Yt)

is the bounded variation part of the sub-martingale (P1_.f)?(Y;).
From Lenglart-Lépingle-Pratelli inequality, we have therefore

T d g
E ((/0 <;,Z;X’2+X°+aat> (PT_tf)z(Yt)dt> )

SPP/2E< sup ((PT—tf)z(Yt))p/2>

0<t<T
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As a conclusion we proved:

Theorem

For any 1 < p < oo, there is a constant C, depending only on p
such that for every f € Li(M),

-
ISa ]l < GllAIlNIF -
In particular this constant does not depend on T and thus for every

f e LB(M),
ISafll < CollAlll[f]]p-
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Application |

On a smooth manifold M, consider the Schrodinger operator
L=-19 XX+ V.
Let W : [0,00) — R be a function that can be written as

W) = A /0 T a(t)e e

for some bounded function a.

Theorem
Assume that —M < V < —m, then for every f € Li(M),

m

W (L)l < (cpnanm . M‘“(’”)) 1l
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Let G be a Lie group of compact type with Lie algebra g. We
endow G with a bi-invariant Riemannian structure and consider an
orthonormal basis X1, -+, Xy of g. Define the Riesz transforms on

G by
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Theorem

For any constant coefficient matrix A,

d
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An alternative argument for the main estimate

We have

| (STedn
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Let (X¢)t>0 and (Y:)e>0 be continuous martingales. We say that Y
is differentially subordinate to X if the process if |Yp| < |Xo| and
([X,X]e = [Y, Y]t)e>0 is nondecreasing and nonnegative as a
function of t.

Theorem (Bafiuelos-Wang)
If Y is differentially subordinate to X, then

IYllp < (" =DIX[lp,  1<p<oo.
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and thus we have
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