Martingale transforms and their projection operators on manifolds

Fabrice Baudoin

Purdue University
Probability seminar
Based on a joint work with Rodrigo Bañuelos
To appear in Potential Analysis

Motivation

Let \mathbb{M} be a smooth manifold endowed with a smooth measure μ.

Motivation

Let \mathbb{M} be a smooth manifold endowed with a smooth measure μ. Let X_{1}, \cdots, X_{d} be locally Lipschitz vector fields defined on \mathbb{M}.

Motivation

Let \mathbb{M} be a smooth manifold endowed with a smooth measure μ. Let X_{1}, \cdots, X_{d} be locally Lipschitz vector fields defined on \mathbb{M}. We consider the Schrödinger operator,

$$
L=-\frac{1}{2} \sum_{i=1}^{d} X_{i}^{*} X_{i}+V
$$

where X_{i}^{*} denotes the formal adjoint of X_{i} with respect to μ and where $V: \mathbb{M} \rightarrow \mathbb{R}$ is a non-positive smooth function.

Motivation

Let \mathbb{M} be a smooth manifold endowed with a smooth measure μ. Let X_{1}, \cdots, X_{d} be locally Lipschitz vector fields defined on \mathbb{M}. We consider the Schrödinger operator,

$$
L=-\frac{1}{2} \sum_{i=1}^{d} X_{i}^{*} X_{i}+V
$$

where X_{i}^{*} denotes the formal adjoint of X_{i} with respect to μ and where $V: \mathbb{M} \rightarrow \mathbb{R}$ is a non-positive smooth function.
We study the boundedness in $L^{p}, 1<p<\infty$ of the operator

$$
\mathcal{S}_{A} f=\sum_{i, j=1}^{d} \int_{0}^{\infty} P_{t} X_{i}^{*} A_{i j}(t, \cdot) X_{j} P_{t} f d t
$$

Motivation

Let \mathbb{M} be a smooth manifold endowed with a smooth measure μ. Let X_{1}, \cdots, X_{d} be locally Lipschitz vector fields defined on \mathbb{M}. We consider the Schrödinger operator,

$$
L=-\frac{1}{2} \sum_{i=1}^{d} X_{i}^{*} X_{i}+V
$$

where X_{i}^{*} denotes the formal adjoint of X_{i} with respect to μ and where $V: \mathbb{M} \rightarrow \mathbb{R}$ is a non-positive smooth function. We study the boundedness in $L^{p}, 1<p<\infty$ of the operator

$$
\mathcal{S}_{A} f=\sum_{i, j=1}^{d} \int_{0}^{\infty} P_{t} X_{i}^{*} A_{i j}(t, \cdot) X_{j} P_{t} f d t
$$

where $P_{t}=e^{t L}$ and $A(t, x)$ is a matrix of smooth bounded functions.

Motivation

- Such operators naturally appear as projections of martingale transforms.

Motivation

- Such operators naturally appear as projections of martingale transforms.
- For instance, if $A(t, x)=a(t) \mathbf{I d}$ and $V=0$, then

$$
\mathcal{S}_{A} f=-2 \int_{0}^{\infty} a(t) L P_{2 t} f d t
$$

Motivation

- Such operators naturally appear as projections of martingale transforms.
- For instance, if $A(t, x)=a(t) \mathbf{I d}$ and $V=0$, then

$$
\mathcal{S}_{A} f=-2 \int_{0}^{\infty} a(t) L P_{2 t} f d t=\Psi_{a}(-L) f
$$

Motivation

- Such operators naturally appear as projections of martingale transforms.
- For instance, if $A(t, x)=a(t)$ Id and $V=0$, then

$$
\mathcal{S}_{A} f=-2 \int_{0}^{\infty} a(t) L P_{2 t} f d t=\Psi_{a}(-L) f
$$

where $\Psi_{a}(\lambda)=-2 \lambda \int_{0}^{\infty} a(t) e^{-2 \lambda t} d t$.

Motivation

- Such operators naturally appear as projections of martingale transforms.
- For instance, if $A(t, x)=a(t)$ Id and $V=0$, then

$$
\mathcal{S}_{A} f=-2 \int_{0}^{\infty} a(t) L P_{2 t} f d t=\Psi_{a}(-L) f
$$

where $\Psi_{a}(\lambda)=-2 \lambda \int_{0}^{\infty} a(t) e^{-2 \lambda t} d t$. This is a so-called multiplier of Laplace transform type.

Motivation

- If L is the Laplace-Beltrami operator on a Lie group G of compact type and if A is constant, then

$$
\mathcal{S}_{A} f=\sum_{i, j} A_{i j}\left(\sum_{i=1}^{d} X_{i}^{2}\right)^{-1} X_{i} X_{j} f
$$

Motivation

- If L is the Laplace-Beltrami operator on a Lie group G of compact type and if A is constant, then

$$
\mathcal{S}_{A} f=\sum_{i, j} A_{i j}\left(\sum_{i=1}^{d} X_{i}^{2}\right)^{-1} X_{i} X_{j} f
$$

Defining then the Riesz transforms on G by

$$
R_{j} f=\left(-\sum_{i=1}^{d} X_{i}^{2}\right)^{-1 / 2} X_{j} f
$$

we see that

$$
\mathcal{S}_{A} f=\sum_{i, j=1}^{d} A_{i j} R_{i} R_{j} f
$$

Probabilistic representation of \mathcal{S}_{A}

The diffusion $\left(Y_{t}\right)_{t \geq 0}$ with generator $-\frac{1}{2} \sum_{i=1}^{d} X_{i}^{*} X_{i}$ can be constructed via the Stratonovitch stochastic differential equation

$$
d Y_{t}=X_{0}\left(Y_{t}\right) d t+\sum_{i=1}^{d} X_{i}\left(Y_{t}\right) \circ d B_{t}^{i}
$$

Probabilistic representation of \mathcal{S}_{A}

The diffusion $\left(Y_{t}\right)_{t \geq 0}$ with generator $-\frac{1}{2} \sum_{i=1}^{d} X_{i}^{*} X_{i}$ can be constructed via the Stratonovitch stochastic differential equation

$$
d Y_{t}=X_{0}\left(Y_{t}\right) d t+\sum_{i=1}^{d} X_{i}\left(Y_{t}\right) \circ d B_{t}^{i}
$$

The celebrated Feynman-Kac formula reads

$$
P_{t} f(x)=\mathbb{E}_{x}\left(e^{\int_{0}^{t} V\left(Y_{s}\right) d s} f\left(Y_{t}\right)\right) .
$$

Probabilistic representation of \mathcal{S}_{A}

Theorem

In $L^{p}, 1<p<\infty$, we have $\lim _{T \rightarrow \infty} \mathcal{S}_{A}^{T}=\mathcal{S}_{A}$, where

$$
\mathcal{S}_{A}^{T} f(x)=\mathbb{E}\left(e^{\int_{0}^{T} V\left(Y_{s}\right) d s} \int_{0}^{T} e^{-\int_{0}^{t} V\left(Y_{s}\right) d s} d M_{t} \mid Y_{T}=x\right)
$$

and

$$
d M_{t}=\sum_{i, j=1}^{d} A_{i j}\left(T-t, Y_{t}\right)\left(X_{j} P_{T-t} f\right)\left(Y_{t}\right) d B_{t}^{i}
$$

Probabilistic representation of \mathcal{S}_{A}

Theorem

In $L^{p}, 1<p<\infty$, we have $\lim _{T \rightarrow \infty} \mathcal{S}_{A}^{T}=\mathcal{S}_{A}$, where

$$
\mathcal{S}_{A}^{T} f(x)=\mathbb{E}\left(e^{\int_{0}^{T} V\left(Y_{s}\right) d s} \int_{0}^{T} e^{-\int_{0}^{t} V\left(Y_{s}\right) d s} d M_{t} \mid Y_{T}=x\right)
$$

and

$$
d M_{t}=\sum_{i, j=1}^{d} A_{i j}\left(T-t, Y_{t}\right)\left(X_{j} P_{T-t} f\right)\left(Y_{t}\right) d B_{t}^{i}
$$

Since the conditional expectation is a contraction in L^{p}, we now essentially need to control the L^{p} norm of the stochastic integral

$$
e^{\int_{0}^{T} V\left(Y_{s}\right) d s} \int_{0}^{T} e^{-\int_{0}^{t} V\left(Y_{s}\right) d s} d M_{t}
$$

A variation of the BDG inequality

Theorem

Let $T>0$ and $\left(M_{t}\right)_{0 \leq t \leq T}$ be a continuous local martingale. Consider the process

$$
Z_{t}=e^{\int_{0}^{t} V_{s} d s} \int_{0}^{t} e^{-\int_{0}^{s} V_{u} d u} d M_{s}
$$

where $\left(V_{t}\right)_{0 \leq t \leq T}$ is a non positive adapted and continuous process. For every $0<p<\infty$, there is a universal constant C_{p}, independent of $T,\left(M_{t}\right)_{0 \leq t \leq T}$ and $\left(V_{t}\right)_{0 \leq t \leq T}$ such that

$$
\mathbb{E}\left(\left(\sup _{0 \leq t \leq T}\left|Z_{t}\right|\right)^{p}\right) \leq C_{p} \mathbb{E}\left([M, M]_{T}^{\frac{p}{2}}\right)
$$

Proof of the variation of the BDG inequality

By stopping it is enough to prove the result for bounded M. Let $q \geq 2$. We have

$$
d Z_{t}=Z_{t} V_{t} d t+d M_{t}
$$

Proof of the variation of the BDG inequality

By stopping it is enough to prove the result for bounded M. Let $q \geq 2$. We have

$$
d Z_{t}=Z_{t} V_{t} d t+d M_{t}
$$

and from Itô's formula we have

$$
\begin{aligned}
d\left|Z_{t}\right|^{q} & =q\left|Z_{t}\right|^{\mid-1} \operatorname{sgn}\left(Z_{t}\right) d Z_{t}+\frac{1}{2} q(q-1)\left|Z_{t}\right|^{q-2} d[M]_{t} \\
& =q\left|Z_{t}\right|^{q} V_{t} d t+q \operatorname{sgn}\left(Z_{t}\right)\left|Z_{t}\right|^{q-1} d M_{t}+\frac{1}{2} q(q-1)\left|Z_{t}\right|^{q-2} d[M]_{t}
\end{aligned}
$$

Proof of the variation of the BDG inequality

By stopping it is enough to prove the result for bounded M. Let $q \geq 2$. We have

$$
d Z_{t}=Z_{t} V_{t} d t+d M_{t}
$$

and from Itô's formula we have

$$
\begin{aligned}
d\left|Z_{t}\right|^{q} & =q\left|Z_{t}\right|^{\mid-1} \operatorname{sgn}\left(Z_{t}\right) d Z_{t}+\frac{1}{2} q(q-1)\left|Z_{t}\right|^{q-2} d[M]_{t} \\
& =q\left|Z_{t}\right|^{q} V_{t} d t+q \operatorname{sgn}\left(Z_{t}\right)\left|Z_{t}\right|^{q-1} d M_{t}+\frac{1}{2} q(q-1)\left|Z_{t}\right|^{q-2} d[M]_{t}
\end{aligned}
$$

Since $V_{t} \leq 0$, as a consequence of the Doob's optional sampling theorem, we get that for every bounded stopping time τ,

$$
\mathbb{E}\left(\left|Z_{\tau}\right|^{q}\right) \leq \frac{1}{2} q(q-1) \mathbb{E}\left(\int_{0}^{\tau}\left|Z_{t}\right|^{q-2} d[M]_{t}\right)
$$

Lenglart's domination inequality

Theorem (Lenglart)

Let $\left(N_{t}\right)_{t \geq 0}$ be a positive adapted right-continuous process and $\left(A_{t}\right)_{t \geq 0}$ be an increasing process. Assume that for every bounded stopping time τ,

$$
\mathbb{E}\left(N_{\tau}\right) \leq \mathbb{E}\left(A_{\tau}\right)
$$

Lenglart's domination inequality

Theorem (Lenglart)

Let $\left(N_{t}\right)_{t \geq 0}$ be a positive adapted right-continuous process and $\left(A_{t}\right)_{t \geq 0}$ be an increasing process. Assume that for every bounded stopping time τ,

$$
\mathbb{E}\left(N_{\tau}\right) \leq \mathbb{E}\left(A_{\tau}\right)
$$

Then, for every $k \in(0,1)$,

$$
\mathbb{E}\left(\left(\sup _{0 \leq t \leq T} N_{t}\right)^{k}\right) \leq \frac{2-k}{1-k} \mathbb{E}\left(A_{T}^{k}\right)
$$

Proof of the variation of the BDG inequality

From the Lenglart's domination inequality, we deduce then that for every $k \in(0,1)$,

$$
\mathbb{E}\left(\left(\sup _{0 \leq t \leq T}\left|Z_{t}\right|^{q}\right)^{k}\right) \leq C_{k, q} \mathbb{E}\left(\left(\int_{0}^{T}\left|Z_{t}\right|^{q-2} d[M]_{t}\right)^{k}\right)
$$

Proof of the variation of the BDG inequality

From the Lenglart's domination inequality, we deduce then that for every $k \in(0,1)$,

$$
\mathbb{E}\left(\left(\sup _{0 \leq t \leq T}\left|Z_{t}\right|^{q}\right)^{k}\right) \leq C_{k, q} \mathbb{E}\left(\left(\int_{0}^{T}\left|Z_{t}\right|^{q-2} d[M]_{t}\right)^{k}\right)
$$

We finally compute

$$
\begin{aligned}
& \mathbb{E}\left(\left(\int_{0}^{T}\left|Z_{t}\right|^{q-2} d[M]_{t}\right)^{k}\right) \\
\leq & \mathbb{E}\left(\left(\sup _{0 \leq t \leq T}\left|Z_{t}\right|\right)^{k(q-2)}\left(\int_{0}^{T} d[M]_{t}\right)^{k}\right) \\
\leq & \mathbb{E}\left(\left(\sup _{0 \leq t \leq T}\left|Z_{t}\right|\right)^{k q}\right)^{1-\frac{2}{q}} \mathbb{E}\left([M]_{T}^{\frac{k q}{2}}\right)^{\frac{2}{q}} .
\end{aligned}
$$

Control of \mathcal{S}_{A}^{T}

Thanks to the previous result, we are let with the problem of controlling, in L^{p}, the quantity

$$
\int_{0}^{T} \sum_{i=1}^{d}\left(X_{i} P_{T-t} f\right)^{2}\left(Y_{t}\right) d t
$$

Control of \mathcal{S}_{A}^{T}

Thanks to the previous result, we are let with the problem of controlling, in L^{p}, the quantity

$$
\int_{0}^{T} \sum_{i=1}^{d}\left(X_{i} P_{T-t} f\right)^{2}\left(Y_{t}\right) d t
$$

We can use the chain rule to easily check that

$$
\sum_{i=1}^{d}\left(X_{i} P_{T-t} f\right)^{2}\left(Y_{t}\right) \leq\left(\frac{1}{2} \sum_{i=1}^{d} X_{i}^{2}+X_{0}+\frac{\partial}{\partial t}\right)\left(P_{T-t} f\right)^{2}\left(Y_{t}\right)
$$

Control of \mathcal{S}_{A}^{T}

From Itô's formula, the quantity

$$
\left(\frac{1}{2} \sum_{i=1}^{d} X_{i}^{2}+X_{0}+\frac{\partial}{\partial t}\right)\left(P_{T-t} f\right)^{2}\left(Y_{t}\right)
$$

is the bounded variation part of the sub-martingale $\left(P_{T-t} f\right)^{2}\left(Y_{t}\right)$.

Control of \mathcal{S}_{A}^{T}

From Itô's formula, the quantity

$$
\left(\frac{1}{2} \sum_{i=1}^{d} X_{i}^{2}+X_{0}+\frac{\partial}{\partial t}\right)\left(P_{T-t} f\right)^{2}\left(Y_{t}\right)
$$

is the bounded variation part of the sub-martingale $\left(P_{T-t} f\right)^{2}\left(Y_{t}\right)$. From Lenglart-Lépingle-Pratelli inequality, we have therefore

Control of \mathcal{S}_{A}^{T}

From Itô's formula, the quantity

$$
\left(\frac{1}{2} \sum_{i=1}^{d} X_{i}^{2}+X_{0}+\frac{\partial}{\partial t}\right)\left(P_{T-t} f\right)^{2}\left(Y_{t}\right)
$$

is the bounded variation part of the sub-martingale $\left(P_{T-t} f\right)^{2}\left(Y_{t}\right)$.
From Lenglart-Lépingle-Pratelli inequality, we have therefore

$$
\begin{aligned}
& \mathbb{E}\left(\left(\int_{0}^{T}\left(\frac{1}{2} \sum_{i=1}^{d} X_{i}^{2}+X_{0}+\frac{\partial}{\partial t}\right)\left(P_{T-t} f\right)^{2}\left(Y_{t}\right) d t\right)^{\frac{p}{2}}\right) \\
\leq & p^{p / 2} \mathbb{E}\left(\sup _{0 \leq t \leq T}\left(\left(P_{T-t} f\right)^{2}\left(Y_{t}\right)\right)^{p / 2}\right) \\
\leq & p^{p / 2}\left(\frac{p}{p-2}\right)^{p / 2} \mathbb{E}\left(f\left(Y_{T}\right)^{p}\right) \\
\leq & p^{p / 2}\left(\frac{p}{p-2}\right)^{p / 2}\|f\|_{p}^{p}
\end{aligned}
$$

Conclusion

As a conclusion we proved:

Theorem

For any $1<p<\infty$, there is a constant C_{p} depending only on p such that for every $f \in L_{\mu}^{p}(\mathbb{M})$,

$$
\left\|\mathcal{S}_{A}^{T} f\right\| \leq C_{p}\|A\|\|f\|_{p}
$$

Conclusion

As a conclusion we proved:

Theorem

For any $1<p<\infty$, there is a constant C_{p} depending only on p such that for every $f \in L_{\mu}^{p}(\mathbb{M})$,

$$
\left\|\mathcal{S}_{A}^{T} f\right\| \leq C_{p}\|A\|\|f\|_{p}
$$

In particular this constant does not depend on T and thus for every $f \in L_{\mu}^{p}(\mathbb{M})$,

$$
\left\|\mathcal{S}_{A} f\right\| \leq C_{p}\|A\|\|f\|_{p}
$$

Application I

On a smooth manifold \mathbb{M}, consider the Schrödinger operator $L=-\frac{1}{2} \sum_{i=1}^{d} X_{i}^{*} X_{i}+V$.

Application I

On a smooth manifold \mathbb{M}, consider the Schrödinger operator $L=-\frac{1}{2} \sum_{i=1}^{d} X_{i}^{*} X_{i}+V$.
Let $\Psi:[0, \infty) \rightarrow \mathbb{R}$ be a function that can be written as

$$
\Psi(\lambda)=\lambda \int_{0}^{\infty} a(t) e^{-2 \lambda t} d t
$$

for some bounded function a.

Application I

On a smooth manifold \mathbb{M}, consider the Schrödinger operator $L=-\frac{1}{2} \sum_{i=1}^{d} X_{i}^{*} X_{i}+V$.
Let $\Psi:[0, \infty) \rightarrow \mathbb{R}$ be a function that can be written as

$$
\Psi(\lambda)=\lambda \int_{0}^{\infty} a(t) e^{-2 \lambda t} d t
$$

for some bounded function a.

Theorem

Assume that $-M \leq V \leq-m$, then for every $f \in L_{\mu}^{p}(\mathbb{M})$,

$$
\|\Psi(-L) f\|_{p} \leq\left(C_{p}\|a\|_{\infty}+M \frac{\Psi(m)}{m}\right)\|f\|_{p}
$$

Application II

Let G be a Lie group of compact type with Lie algebra \mathfrak{g}. We endow G with a bi-invariant Riemannian structure and consider an orthonormal basis X_{1}, \cdots, X_{d} of \mathfrak{g}.

Application II

Let G be a Lie group of compact type with Lie algebra \mathfrak{g}. We endow G with a bi-invariant Riemannian structure and consider an orthonormal basis X_{1}, \cdots, X_{d} of \mathfrak{g}. Define the Riesz transforms on G by

$$
R_{j} f=\left(-\sum_{i=1}^{d} X_{i}^{2}\right)^{-1 / 2} X_{j} f
$$

Application II

Let G be a Lie group of compact type with Lie algebra \mathfrak{g}. We endow G with a bi-invariant Riemannian structure and consider an orthonormal basis X_{1}, \cdots, X_{d} of \mathfrak{g}. Define the Riesz transforms on G by

$$
R_{j} f=\left(-\sum_{i=1}^{d} X_{i}^{2}\right)^{-1 / 2} X_{j} f
$$

Theorem

For any constant coefficient matrix A,

$$
\left\|\sum_{i, j=1}^{d} A_{i j} R_{i} R_{j} f\right\|_{p} \leq C_{p}\|A\|\|f\|_{p}
$$

An alternative argument for the main estimate

We have

$$
\begin{aligned}
& \int_{\mathbb{M}}\left(\mathcal{S}_{A}^{T} f\right) g d \mu \\
= & \mathbb{E}\left(\sum_{i, j=1}^{d} \int_{0}^{T} A_{i j}(T-t)\left(X_{j} P_{T-t} f\right)\left(Y_{t}\right) d B_{t}^{i} \sum_{i=1}^{d} \int_{0}^{T}\left(X_{i} P_{T-t} g\right)\left(Y_{t}\right) d B_{t}^{i}\right) \\
\leq & \left\|\sum_{i, j=1}^{d} \int_{0}^{T} A_{i j}(T-t)\left(X_{j} P_{T-t} f\right)\left(Y_{t}\right) d B_{t}^{i}\right\|_{p} \\
& \times\left\|\sum_{i=1}^{d} \int_{0}^{T}\left(X_{i} P_{T-t} g\right)\left(Y_{t}\right) d B_{t}^{i}\right\|_{q}
\end{aligned}
$$

Burkholder's domination inequality

Let $\left(X_{t}\right)_{t \geq 0}$ and $\left(Y_{t}\right)_{t \geq 0}$ be continuous martingales.

Burkholder's domination inequality

Let $\left(X_{t}\right)_{t \geq 0}$ and $\left(Y_{t}\right)_{t \geq 0}$ be continuous martingales. We say that Y is differentially subordinate to X if the process if $\left|Y_{0}\right| \leq\left|X_{0}\right|$ and $\left([X, X]_{t}-[Y, Y]_{t}\right)_{t \geq 0}$ is nondecreasing and nonnegative as a function of t.

Burkholder's domination inequality

Let $\left(X_{t}\right)_{t \geq 0}$ and $\left(Y_{t}\right)_{t \geq 0}$ be continuous martingales. We say that Y is differentially subordinate to X if the process if $\left|Y_{0}\right| \leq\left|X_{0}\right|$ and $\left([X, X]_{t}-[Y, Y]_{t}\right)_{t \geq 0}$ is nondecreasing and nonnegative as a function of t.

Theorem (Bañuelos-Wang)

If Y is differentially subordinate to X, then

$$
\|Y\|_{p} \leq\left(p^{*}-1\right)\|X\|_{p}, \quad 1<p<\infty .
$$

An alternative argument for the main estimate

Coming back to our problem, we get

$$
\begin{aligned}
& \left\|\sum_{i, j=1}^{d} \int_{0}^{T} A_{i j}(T-t)\left(X_{j} P_{T-t} f\right)\left(Y_{t}\right) d B_{t}^{i}\right\|_{p} \\
\leq & \|A\|\left(p^{*}-1\right)\left\|\sum_{i=1}^{d} \int_{0}^{T}\left(X_{i} P_{T-t} f\right)\left(Y_{t}\right) d B_{t}^{i}\right\|_{p}
\end{aligned}
$$

An alternative argument for the main estimate

Coming back to our problem, we get

$$
\begin{aligned}
&\left\|\sum_{i, j=1}^{d} \int_{0}^{T} A_{i j}(T-t)\left(X_{j} P_{T-t} f\right)\left(Y_{t}\right) d B_{t}^{i}\right\|_{p} \\
& \leq\|A\|\left(p^{*}-1\right)\left\|\sum_{i=1}^{d} \int_{0}^{T}\left(X_{i} P_{T-t} f\right)\left(Y_{t}\right) d B_{t}^{i}\right\|_{p}
\end{aligned}
$$

and thus we have

$$
\begin{aligned}
& \int_{\mathbb{M}}\left(\mathcal{S}_{A}^{T} f\right) g d \mu \\
\leq & \|A\|\left(p^{*}-1\right)\left\|\sum_{i=1}^{d} \int_{0}^{T}\left(X_{i} P_{T-t} f\right)\left(Y_{t}\right) d B_{t}^{i}\right\|_{p} \\
& \times\left\|\sum_{i=1}^{d} \int_{0}^{T}\left(X_{i} P_{T-t} g\right)\left(Y_{t}\right) d B_{t}^{i}\right\|_{q}
\end{aligned}
$$

An alternative argument for the main estimate

Using finally the same type of arguments as before, we may prove

$$
\left\|\sum_{i=1}^{d} \int_{0}^{T}\left(X_{i} P_{T-t} f\right)\left(Y_{t}\right) d B_{t}^{i}\right\|_{p} \leq \frac{2^{2-\frac{1}{p}} p^{2}}{p-1}\|f\|_{p}
$$

An alternative argument for the main estimate

Using finally the same type of arguments as before, we may prove

$$
\left\|\sum_{i=1}^{d} \int_{0}^{T}\left(X_{i} P_{T-t} f\right)\left(Y_{t}\right) d B_{t}^{i}\right\|_{p} \leq \frac{2^{2-\frac{1}{p}} p^{2}}{p-1}\|f\|_{p}
$$

and thus

$$
\int_{\mathbb{M}}\left(\mathcal{S}_{A}^{T} f\right) g d \mu \leq 8\|A\|\left(p^{*}-1\right) \frac{p^{4}}{(p-1)^{2}}\|f\|_{p}\|g\|_{q} .
$$

