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Motivation

Let M be a smooth manifold endowed with a smooth measure µ.

Let X1, · · · ,Xd be locally Lipschitz vector fields defined on M. We
consider the Schrödinger operator,

L = −1
2

d∑
i=1

X ∗i Xi + V ,

where X ∗i denotes the formal adjoint of Xi with respect to µ and
where V : M→ R is a non-positive smooth function.
We study the boundedness in Lp, 1 < p <∞ of the operator

SAf =
d∑

i ,j=1

∫ ∞
0

PtX ∗i Aij(t, ·)XjPt fdt,

where Pt = etL and A(t, x) is a matrix of smooth bounded
functions.
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Motivation

I Such operators naturally appear as projections of martingale
transforms.

I For instance, if A(t, x) = a(t)Id and V = 0, then

SAf = −2
∫ ∞

0
a(t)LP2t fdt = Ψa(−L)f ,

where Ψa(λ) = −2λ
∫∞
0 a(t)e−2λtdt. This is a so-called

multiplier of Laplace transform type.
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I If L is the Laplace-Beltrami operator on a Lie group G of
compact type and if A is constant, then

SAf =
∑
i ,j

Aij

(
d∑

i=1

X 2
i

)−1

XiXj f .

Defining then the Riesz transforms on G by

Rj f =

(
−
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X 2
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)−1/2

Xj f
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Probabilistic representation of SA

The diffusion (Yt)t≥0 with generator −1
2
∑d

i=1 X
∗
i Xi can be

constructed via the Stratonovitch stochastic differential equation

dYt = X0(Yt)dt +
d∑

i=1

Xi (Yt) ◦ dB i
t ,

The celebrated Feynman-Kac formula reads

Pt f (x) = Ex

(
e
∫ t
0 V (Ys)ds f (Yt)

)
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Probabilistic representation of SA

Theorem
In Lp, 1 < p <∞, we have limT→∞ ST

A = SA, where

ST
A f (x) = E

(
e
∫ T
0 V (Ys)ds

∫ T

0
e−

∫ t
0 V (Ys)dsdMt | YT = x

)
.

and

dMt =
d∑

i ,j=1

Aij(T − t,Yt)(XjPT−t f )(Yt)dB i
t

Since the conditional expectation is a contraction in Lp, we now
essentially need to control the Lp norm of the stochastic integral

e
∫ T
0 V (Ys)ds

∫ T

0
e−

∫ t
0 V (Ys)dsdMt



Probabilistic representation of SA

Theorem
In Lp, 1 < p <∞, we have limT→∞ ST

A = SA, where

ST
A f (x) = E

(
e
∫ T
0 V (Ys)ds

∫ T

0
e−

∫ t
0 V (Ys)dsdMt | YT = x

)
.

and

dMt =
d∑

i ,j=1

Aij(T − t,Yt)(XjPT−t f )(Yt)dB i
t

Since the conditional expectation is a contraction in Lp, we now
essentially need to control the Lp norm of the stochastic integral

e
∫ T
0 V (Ys)ds

∫ T

0
e−

∫ t
0 V (Ys)dsdMt



A variation of the BDG inequality

Theorem
Let T > 0 and (Mt)0≤t≤T be a continuous local martingale.
Consider the process

Zt = e
∫ t
0 Vsds

∫ t

0
e−

∫ s
0 VududMs ,

where (Vt)0≤t≤T is a non positive adapted and continuous process.
For every 0 < p <∞, there is a universal constant Cp, independent
of T , (Mt)0≤t≤T and (Vt)0≤t≤T such that

E

((
sup

0≤t≤T
|Zt |

)p)
≤ CpE

(
[M,M]

p
2
T

)
.



Proof of the variation of the BDG inequality

By stopping it is enough to prove the result for bounded M. Let
q ≥ 2. We have

dZt = ZtVtdt + dMt

and from Itô’s formula we have

d |Zt |q = q|Zt |q−1sgn(Zt)dZt +
1
2
q(q − 1)|Zt |q−2d [M]t

= q|Zt |qVtdt + qsgn(Zt)|Zt |q−1dMt +
1
2
q(q − 1)|Zt |q−2d [M]t .

Since Vt ≤ 0, as a consequence of the Doob’s optional sampling
theorem, we get that for every bounded stopping time τ ,

E (|Zτ |q) ≤ 1
2
q(q − 1)E

(∫ τ

0
|Zt |q−2d [M]t

)
.
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Lenglart’s domination inequality

Theorem (Lenglart)

Let (Nt)t≥0 be a positive adapted right-continuous process and
(At)t≥0 be an increasing process. Assume that for every bounded
stopping time τ ,

E(Nτ ) ≤ E(Aτ ).

Then, for every k ∈ (0, 1),

E

( sup
0≤t≤T

Nt

)k
 ≤ 2− k

1− k
E
(
Ak

T

)
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Proof of the variation of the BDG inequality
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Control of ST
A

Thanks to the previous result, we are let with the problem of
controlling, in Lp, the quantity∫ T

0

d∑
i=1

(XiPT−t f )2(Yt)dt.

We can use the chain rule to easily check that

d∑
i=1

(XiPT−t f )2(Yt) ≤

(
1
2

d∑
i=1

X 2
i + X0 +

∂

∂t

)
(PT−t f )2(Yt)
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Conclusion

As a conclusion we proved:

Theorem
For any 1 < p <∞, there is a constant Cp depending only on p
such that for every f ∈ Lp

µ(M),

‖ST
A f ‖ ≤ Cp‖A‖‖f ‖p.

In particular this constant does not depend on T and thus for every
f ∈ Lp

µ(M),
‖SAf ‖ ≤ Cp‖A‖‖f ‖p.
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Application I

On a smooth manifold M, consider the Schrödinger operator
L = −1

2
∑d

i=1 X
∗
i Xi + V .

Let Ψ : [0,∞)→ R be a function that can be written as

Ψ(λ) = λ

∫ ∞
0

a(t)e−2λtdt

for some bounded function a.

Theorem
Assume that −M ≤ V ≤ −m, then for every f ∈ Lp

µ(M),

‖Ψ(−L)f ‖p ≤
(
Cp‖a‖∞ + M

Ψ(m)

m

)
‖f ‖p.
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Application II

Let G be a Lie group of compact type with Lie algebra g. We
endow G with a bi-invariant Riemannian structure and consider an
orthonormal basis X1, · · · ,Xd of g.

Define the Riesz transforms on
G by

Rj f =

(
−

d∑
i=1

X 2
i

)−1/2

Xj f

Theorem
For any constant coefficient matrix A,∥∥∥∥∥∥

d∑
i ,j=1

AijRiRj f

∥∥∥∥∥∥
p

≤ Cp‖A‖‖f ‖p.
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An alternative argument for the main estimate

We have∫
M

(ST
A f )gdµ =

d∑
i ,j=1

∫ T

0

∫
M
Aij(t)(XiPtg)(XjPt f )dµdt

=E

 d∑
i ,j=1

∫ T

0
Aij(T − t)(XjPT−t f )(Yt)dB i

t

d∑
i=1

∫ T

0
(XiPT−tg)(Yt)dB i

t


≤

∥∥∥∥∥∥
d∑

i ,j=1

∫ T

0
Aij(T − t)(XjPT−t f )(Yt)dB i

t

∥∥∥∥∥∥
p

×

∥∥∥∥∥
d∑

i=1

∫ T

0
(XiPT−tg)(Yt)dB i

t

∥∥∥∥∥
q



Burkholder’s domination inequality

Let (Xt)t≥0 and (Yt)t≥0 be continuous martingales.

We say that Y
is differentially subordinate to X if the process if |Y0| ≤ |X0| and
([X ,X ]t − [Y ,Y ]t)t≥0 is nondecreasing and nonnegative as a
function of t.

Theorem (Bañuelos-Wang)

If Y is differentially subordinate to X , then

‖Y ‖p ≤ (p∗ − 1)‖X‖p, 1 < p <∞.
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