

## Taxi walks and the hard-core model on $\mathbb{Z}^2$

#### David Galvin

University of Notre Dame

with Antonio Blanca, Dana Randall and Prasad Tetali

Hard-core model on  $\mathbb{Z}^2$ 

The hard-core model on a finite graph

A model of occupation of space by particles with non-negligible size



Valid configuration



Invalid configuration

Density parameter  $\lambda > 0$ : Each valid configuration (independent set) I occurs with probability proportional to  $\lambda^{|I|}$ 

A possible liquid-solid phase transition

- Small  $\lambda$ : typical configuration disordered
- Large  $\lambda$ : typical configuration mostly inside some maximum sized independent set

# Example: boxes in $\mathbb{Z}^2$

 $\mathbb{Z}^2$  has two maximum independent sets, the natural even and odd checkerboard sublattices (indicated by red and blue)



## Simulations on a wrapped-around box in $\mathbb{Z}^2$

Some simulations (by Justin Hilyard)



Conjecture: Model on boxes in  $\mathbb{Z}^2$  flips from disorder to order around some  $\lambda_{crit}$ 

# Dealing with infinite graphs



Gibbs measures à la Dobrushin, Lanford, Ruelle

- Hardwire a boundary condition on a finite piece, and extend inside
- Gibbs measure: any limit measure as the finite pieces grow

Can different boundary conditions lead to different Gibbs measures?

## The picture for large $\lambda$ on $\mathbb{Z}^2$



For large  $\lambda$  "influence of boundary" should persist

μ<sup>red</sup>(v ∈ l) > μ<sup>blue</sup>(v ∈ l) equivalent to multiple Gibbs measures
 μ<sup>blue</sup>(v ∈ l) small forces μ<sup>red</sup>(v ∈ l) large, so enough to show
 μ<sup>blue</sup>(v ∈ l) small

## A precise conjecture

#### Conjecture (folklore, 1950's): There is $\lambda_{\rm crit} \approx 3.796$ such that

- $\bullet\,$  for  $\lambda<\lambda_{\rm crit},$  hard-core model on  $\mathbb{Z}^2$  has unique Gibbs measure
- for  $\lambda>\lambda_{\mathrm{crit}}$ , there is phase coexistence (multiple Gibbs measures)

#### What's known (if $\lambda_{crit}$ exists)

- Dobrushin (1968):  $\lambda_{\rm crit} > .25$ (meaning: for  $\lambda \le .25$  there is unique Gibbs measure)
- Restrepo-Shin-Tetali-Vigoda-Yang (2011):  $\lambda_{
  m crit} > 2.38$
- Dobrushin (1968): λ<sub>crit</sub> < C for some large C (meaning: for λ ≥ C there are multiple Gibbs measures)
- $\bullet\,$  Borgs-G. (2002-2011):  $\lambda_{\rm crit} <$  300, with 80 as theoretical limit

Theorem (Blanca-G.-Randall-Tetali 2012):  $\lambda_{crit} < 5.3646$ 



Blue boundary, red center ...



... leads to separating *contour* ...



... shifting inside contour creates a more ordered independent set ...



... shifting inside contour creates a more ordered independent set ...



... and frees up some vertices (in orange) that can be added

#### Facts about contours

- Minimal unoccupied edge cutset separating  $\mathbf{v}$  from boundary
- Interior-exterior edges always from blue sublattice to red
- Length  $4\ell$  for some  $\ell \geq 3$ , with  $\ell$  edges in each direction
- Shift in any direction frees up  $\ell$  vertices to be (potentially) added

#### Using contours

- $\bullet$  One-to-many map with image weight  $(1+\lambda)^\ell$  times larger than input
- Overlap of images controlled by number of possible contours
- The Peierls bound:

$$\mu^{\mathbf{blue}}(\mathbf{v} \in I) \leq \sum_{\ell \geq 3} rac{f_{\mathrm{contour}}(\ell)}{(1+\lambda)^\ell}$$

where  $f_{\text{contour}}(\ell)$  is number of contours of length  $4\ell$ 

## Contours are polygons

Contours are *simple polygons* in a rotated, dilated copy of  $\mathbb{Z}^2$  where

- vertices the midpoints of edges of  $\mathbb{Z}^2$
- vertices adjacent if their corresponding edges meet perpendicularly



Self-avoiding walks and an easy bound on  $\lambda_{
m crit}$ 



- SAW(n) = #(walks of length n)  $\leq 4 \times 3^{n-1}$
- $f_{\text{contour}}(\ell) \leq \text{poly}(\ell) \text{SAW}(4\ell 1) \leq \text{poly}(\ell) 3^{4\ell} \approx 81^{\ell}$

# Upper bounds on $\lambda_{ m crit}$ using Peierls

An easy bound

- For  $\lambda > 300$ ,  $\mu^{\text{blue}}(\mathbf{v} \in I) \leq \sum_{\ell \geq 3} \frac{f_{\text{contour}}(\ell)}{(1+\lambda)^{\ell}} < 1/10$
- Small enough for phase coexistence
- Theoretical limit:  $\lambda_{\rm crit} < 80 + \varepsilon$

The connective constant  $\mu_{\mathrm{SAW}}$ 

- $SAW(n + m) \le SAW(n)SAW(m)$  (by concatenation)
- $\lim_{n\to\infty} SAW(n)^{\frac{1}{n}} = \inf_{n\to\infty} SAW(n)^{\frac{1}{n}} = \mu_{SAW}$  (by Fekete)
- $SAW(n) = subexp(n)\mu_{SAW}^n$

Better bounds

- Theoretical limit  $\lambda_{\mathrm{crit}} < \mu_{\mathrm{SAW}}^{4} 1 + \varepsilon$
- $\mu_{
  m SAW} pprox 2.64$  gives  $\lambda_{
  m crit} pprox 48$
- Best rigorous bound:  $\lambda_{
  m crit} < 120$

## Improving things - crosses and fault lines



Theorem (Randall 2006) Every independent set in a box has one of

- red cross
- blue cross
- fault line

# Improving things - long contours

A new event that distinguishes between  $\mu^{blue}$  and  $\mu^{red}$ 

- $E = \{I : I \text{ has red cross or fault line in } m \text{ by } m \text{ box}\}$
- In n by n box with blue boundary condition, I with red cross or fault line in smaller m by m box has contour of length m/10
- Peierls argument gives

$$\mu^{\text{blue}}(E) \leq \sum_{\ell \geq m/40} \frac{f_{\text{contour}}(\ell)}{(1+\lambda)^{\ell}}$$

- $\mu^{\text{blue}}(E)$  small forces  $\mu^{\text{red}}(E)$  large
- Large *m* absorbs  $\operatorname{subexp}(\ell)$  terms in estimates of  $f_{\operatorname{contour}}(\ell)$

Theorem: For all  $\varepsilon > 0$ ,

$$\lambda_{\rm crit} < \mu_{\rm SAW}^4 - 1 + \varepsilon$$

## Improving things – contours have extra properties



- Two consecutive turns not allowed
- Turn direction forced by parity of length of straight segments

## Improving things - taxi walks



## Improving things - taxi walks



- Contours are closed taxi walks!
- $\lambda_{\rm crit} < \mu_t^4 1 + \varepsilon$ , where  $\mu_t$  is taxi walk connective constant

# Estimating $\mu_t$

#### An easy bound

- Taxi walk encoded by  $\{s, t\}$ -string, no tt, so  $TW(n) = O(1.618^n)$
- $\lambda_{
  m crit} < 5.86$

#### Alm's method for fixed m < n

- $\gamma_i$ ,  $\gamma_j$  the *i*th and *j*th walks of length *m*
- $a_{ij}$  is number of length *n* walks starting  $\gamma_i$ , ending  $\gamma_j$
- *A* = (*a*<sub>*ij*</sub>)
- $\mu_t \leq \lambda_1(A)^{\frac{1}{n-m}}$

Taking m = 20, n = 60 (10057 by 10057 matrix), get

 $\mu_t < 1.59, \ \lambda_{
m crit} < 5.3646$ 

# Summary

#### New ideas

- Hard-core contours are more than just simple polygons
- Distinguishing events with long contours are worth hunting for!

#### Future work

- Improve upper bounds on  $\mu_t$
- Get *lower* bounds on  $\mu_t$  (current limit for  $\lambda_{
  m crit}$  is pprox 4.22)
- Add new idea to explain 3.796
- Prove monotonicity the *existence* of  $\lambda_{
  m crit}$

#### Future work?



## THANK YOU!