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The intrinsic curvature of diffusion operators

Let L be a diffusion operator (i.e. the generator of a continuous
strong Markov process) .

Associated to L, we may consider the
following canonical differential bilinear forms.

Γ(f , g) =
1
2

(L(fg)− fLg − gLf )

and
Γ2(f , g) =

1
2

(LΓ(f , g)− Γ(f , Lg)− Γ(Lf , g)) .

For instance, if L = ∆ on Rn, then

Γ(f , g) = 〈∇f ,∇g〉

and
Γ2(f , f ) = ‖∇2f ‖2
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The intrinsic curvature of diffusion operators

It is said that L satisfies the Bakry-Émery criterion with parameter
ρ if

Γ2(f ) ≥ ρΓ(f ).

A stronger version of the Bakry-Émery criterion is given by the
curvature-dimension inequality:

Γ2(f ) ≥ 1
d

(Lf )2 + ρΓ(f )

For instance, on Rn, the diffusion operator

Lf = ∆f − 〈∇U,∇f 〉
satisfies the Bakry-Émery criterion if and only if, as a quadratic
form

∇2U ≥ ρ.
The Bakry-Émery criterion is typically used to establish functional
inequalities for the invariant measure of L: Spectral gap inequality,
Log-Sobolev inequality and hypercontractivity of the corresponding
Markov semigroup.
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Curvature dimension inequality

Typical examples of diffusion operators satisfying a curvature
dimension inequality include the Laplace-Beltrami operators on
Riemannian manifolds.

More precisely, from Bochner’s formula

Theorem
The Laplace-Beltrami operator on ∆ on the Riemannian manifold
M satisfies CD(ρ, d), i.e.,

Γ2(f ) ≥ 1
d

(∆f )2 + ρΓ(f ), f ∈ C∞(M)

if and only if
dimM ≤ d , Ric ≥ ρ.
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Gradient bounds

There is a Markov semigroup Pt = etL associated with L. In
probabilistic sense, there is a unique continuous Markov process Xt
associated with Pt such that

Pt f (x) = E(f (Xt)|X0 = x).

Theorem
We have that

Γ2(f ) ≥ ρΓ(f ), ∀f ∈ C∞(M)

if and only if Γ(Pt(f )) ≤ e−2ρtPtΓ(f ), ∀f ∈ C∞(M).
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Associated Markov process

Sketch of the proof.

Consider the function φ(s) = PsΓ(Pt−s f ), by easy calculation, we
have that

φ′(s) = 2PsΓ2(Pt−s f ),

hence we obtain:

Γ2(f ) ≥ ρΓ(f )⇒ φ′(t) ≥ 2ρφ(t)⇒ Γ(Pt(f )) ≤ e−2ρtPtΓ(f ).

On the other hand, by taking small-time asymptotic, we have that:

Γ(Pt(f )) ≤ e−2ρtPtΓ(f )⇒

Γ(f ) + 2Γ(f , Lf )t ≤ Γ(f ) + (LΓ(f )− 2ρΓ(f )) t ⇒ Γ2(f ) ≥ ρΓ(f )
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Associated Markov process

µ is an invariant measure of this Markov process, i.e., for any
positive function f ∈ L1(µ),∫

M
Pt f (x)µ(dx) =

∫
M
f (x)µ(dx).

Questions:
I Is µ a finite measure (probability measure)?
I Does the heat semigroup Pt(f ) converge to the equilibrium

when t →∞? i.e.,

Pt f (x)
?−→t→∞

1
µ(M)

∫
M
fdµ.
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Curvature dimension inequality

Theorem
If Γ2 ≥ ρΓ with ρ > 0, then the measure µ is finite and for every
x ∈M, f ∈ L2(M),

Pt f (x) −→t→∞
1

µ(M)

∫
M
fdµ.

In other words,

Xt
D−→t→+∞

1
µ(M)

µ

Ric ≥ ρ⇐⇒ Γ2(f ) ≥ ρΓ(f )⇐⇒ Γ(Pt f ) ≤ e−2ρtPtΓ(f )

=⇒ µ(M) <∞ =⇒ Pt f (x) −→t→∞
1
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∫
M
fdµ.



Curvature dimension inequality

Theorem
If Γ2 ≥ ρΓ with ρ > 0, then the measure µ is finite and for every
x ∈M, f ∈ L2(M),

Pt f (x) −→t→∞
1

µ(M)

∫
M
fdµ.

In other words,

Xt
D−→t→+∞

1
µ(M)

µ

Ric ≥ ρ⇐⇒ Γ2(f ) ≥ ρΓ(f )

⇐⇒ Γ(Pt f ) ≤ e−2ρtPtΓ(f )

=⇒ µ(M) <∞ =⇒ Pt f (x) −→t→∞
1

µ(M)

∫
M
fdµ.



Curvature dimension inequality

Theorem
If Γ2 ≥ ρΓ with ρ > 0, then the measure µ is finite and for every
x ∈M, f ∈ L2(M),

Pt f (x) −→t→∞
1

µ(M)

∫
M
fdµ.

In other words,

Xt
D−→t→+∞

1
µ(M)

µ

Ric ≥ ρ⇐⇒ Γ2(f ) ≥ ρΓ(f )⇐⇒ Γ(Pt f ) ≤ e−2ρtPtΓ(f )

=⇒ µ(M) <∞ =⇒ Pt f (x) −→t→∞
1

µ(M)

∫
M
fdµ.



Curvature dimension inequality

Theorem
If Γ2 ≥ ρΓ with ρ > 0, then the measure µ is finite and for every
x ∈M, f ∈ L2(M),

Pt f (x) −→t→∞
1

µ(M)

∫
M
fdµ.

In other words,

Xt
D−→t→+∞

1
µ(M)

µ

Ric ≥ ρ⇐⇒ Γ2(f ) ≥ ρΓ(f )⇐⇒ Γ(Pt f ) ≤ e−2ρtPtΓ(f )

=⇒ µ(M) <∞

=⇒ Pt f (x) −→t→∞
1

µ(M)

∫
M
fdµ.



Curvature dimension inequality

Theorem
If Γ2 ≥ ρΓ with ρ > 0, then the measure µ is finite and for every
x ∈M, f ∈ L2(M),

Pt f (x) −→t→∞
1

µ(M)

∫
M
fdµ.

In other words,

Xt
D−→t→+∞

1
µ(M)

µ

Ric ≥ ρ⇐⇒ Γ2(f ) ≥ ρΓ(f )⇐⇒ Γ(Pt f ) ≤ e−2ρtPtΓ(f )

=⇒ µ(M) <∞ =⇒ Pt f (x) −→t→∞
1

µ(M)

∫
M
fdµ.



Subelliptic diffusion operators

To be satisfied, the Bakry-Émery criterion, that is

Γ2 ≥ ρΓ

requires some form of ellipticity of the generator L(invertibility of
the diffusion matrix).

Such criterion fails to hold even for simple
subelliptic diffusion operators, like the sub-Laplacian on the
Heisenberg group (Juillet).
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Subelliptic diffusion operators

Let L be a diffusion operator defined on a manifold M.

We assume
that L is symmetric with respect to a smooth measure µ and
(locally) subelliptic. Elliptic operators are subelliptic .For subelliptic
operators, the corresponding Markov has a smooth density. Another
important subclass is given by sum of squares type operators

L = −
d∑

i=1

X ∗i Xi

that satisfy the Hörmander’s bracket generating condition.
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Vertical form

We will assume, additionally, that M is endowed with a first-order
differential bilinear form ΓT (f , g).

ΓT may be thought as a vertical complement to Γ. We can then
define the intrinsic curvature of L with respect to ΓT .

ΓT
2 (f , g) =

1
2

(
LΓT (f , g)− ΓT (f , Lg)− ΓT (Lf , g)

)
.
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Example: Contact Riemannian manifolds

Subelliptic diffusion operators naturally arise in the study of contact
manifolds.

Let (M, θ, g) be a 2n + 1 dimensional contact
Riemannian manifold. The sub-Laplacian L is the generator of the
Dirichlet form: ∫

M
‖∇Hf ‖2θ ∧ (dθ)n.

In this example, the vertical direction is canonical and given by the
Reeb vector field T :

ΓT (f ) = (Tf )2.
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Example: Contact Riemannian manifolds with Sasakian
structure

A important subclass of contact Riemannian manifolds is so called
CR Sasakian manifolds.It is a sub-Riemannian manifold which
possess a certain geometric symmetry.

Theorem (Baudoin-Garofalo)

Let M be a contact CR Sasakian manifold. We have Ric∇ ≥ ρ1 if
and only if

Γ2(f ) + 2
√

Γ(f )ΓT
2 (f ) ≥ 1

2n
(Lf )2 + ρ1Γ(f ) +

n
2

ΓT (f ).

It is equivalent to the fact that for every ν > 0,

Γ2(f ) + νΓT
2 (f ) ≥ 1

2n
(Lf )2 +

(
ρ1 −

1
ν

)
Γ(f ) +

n
2

ΓT (f ).
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Example: 3-dimensional model spaces

For ρ ∈ R, G(ρ) is a n-dimensional Lie group whose Lie algebra g
has a basis {X ,Y ,Z} such that

[X ,Y ] = Z , [Z ,X ] = −ρY , [Y ,Z ] = ρX

We can easily see that for the sub-Laplacian L = X 2 + Y 2,

Γ(f ) = (Xf )2 + (Yf )2, ΓT (f ) = (Zf )2.

and
Γ(f , ΓT (f )) = ΓT (f , Γ(f )).

Moreover,

Γ2(f ) = ||∇2
Hf ||2 + ρΓ(f ) +

1
2

ΓT (f ) + 2(Yf (XZf )− Xf (YZf )),

ΓT
2 (f ) = (XZf )2f + (YZf )2.

where

∇2
H f =

(
X 2f 1

2(XYf + YXf )
1
2(XYf + YXf ) Y 2f

)
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Example: 3-dimensional model spaces

Hence we can obtain the generalized curvature dimension
inequality: for all f ∈ C∞(G(ρ)) and any ν > 0,

Γ2(f ) + νΓT
2 (f ) ≥ 1

2
(Lf )2 +

(
ρ− 1

ν

)
Γ(f ) +

1
2

ΓT (f ).

I ρ = 0: The ”flat" Heisenberg group;
I ρ = 1: The Lie group SU(2);

I ρ = −1:The Lie group S̃L(2).
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Generalized curvature dimension inequality

We come back to the general framework of a locally subelliptic
diffusion operator L.

Definition
We say that L satisfies the generalized-curvature dimension
inequality CD(ρ1, ρ2, κ, d) if for every ν > 0,

Γ2(f , f ) + νΓT
2 (f , f ) ≥ 1

d
(Lf )2 +

(
ρ1 −

κ

ν

)
Γ(f , f ) + ρ2ΓT (f , f ).

We say a contact manifold satisfying the Sasakian condition if the
first-order differential bilinear form ΓT (f , g) satisfies

Γ(f , ΓT (f )) = ΓT (f , Γ(f )).
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Gradient estimates for the associated heat semigroup

Theorem (F. Baudoin, M. Bonnefont)

Let f ∈ L2(M) such that f ∈ C∞(M) and Γ(f , f ),
ΓT (f , f ) ∈ L1(M). For x ∈M, t ≥ 0, when ρ1 ≥ 0 one has

Γ(Pt f )+
κ+ ρ2

ρ1
ΓT (Pt f ) ≤ e

−2ρ1ρ2
κ+ρ2

t
(
Pt(Γ(f )) +

κ+ ρ2

ρ1
Pt(ΓT (f ))

)

Corollary

The measure µ is finite, i.e., µ(M) < +∞ and for every x ∈M,
f ∈ L2(M),

Pt f (x)→t→∞
1

µ(M)

∫
M
fdµ.
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Spectral gap inequality

Theorem
Assume that L satisfies the generalized curvature inequality
CD(ρ1, ρ2, κ) with ρ1 > 0, ρ2 > 0 and κ ≥ 0. The measure µ is
finite and the following Poincaré inequality holds:∫

M
f 2dµ−

(∫
M
fdµ
)2

≤ κ+ ρ2

ρ1ρ2

∫
M

Γ(f )dµ, f ∈ D(L).

We may rewrite the inequality in the form

σ2(f ) ≤ κ+ ρ2

ρ1ρ2
E(f , f ),

where σ2(f ) denotes the variance of the function f with respect to
µ, and E(f , f ) =

∫
Γ(f )dµ stands for the energy of f .
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Subelliptic Myers theorem

Theorem (Baudoin-Garofalo)

If the inequality CD(ρ1, ρ2, κ, n) holds for some constants
ρ1 > 0, ρ2 > 0, κ > 0, then the metric space (M, d) is compact

and
we have

diam M ≤ 2
√
3π

√
κ+ ρ2

ρ1ρ2

(
1 +

3κ
2ρ2

)
n.

When applied to the Sasakian case, we obtain

Theorem
If M is a Sasakian manifold such that Ric∇ ≥ ρ1, with ρ1 > 0,
then the metric space (M, d) is compact and we have

diam M ≤ 2
√
6π

√
(n + 1)(n + 3)

nρ1
.
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Generalized CD inequality on contact manifolds

On a general contact Riemannian manifold the intertwining

Γ(f , ΓZ (f )) = ΓZ (f , Γ(f ))

is not satisfied and the natural curvature dimension inequality takes
a different form.

Theorem (Baudoin-J. Wang)

Under suitable geometric conditions,

Γ2(f ) + νΓZ
2 (f ) ≥

(
ρ1 −

κ1

ν

)
Γ(f ) +

(
ρ2 − κ2ν

2) ΓZ (f )
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Generalized CD inequality on contact manifolds

Theorem
M is a compact Riemannian manifold with contact structure. Let
f ∈ L2(M) such that f ∈ C∞(M) and Γ(f , f ), ΓT (f , f ) ∈ L1(M).
For x ∈M, t > 0, when ρ1 −

κ
√
ρ3√
ρ2
≥ 0 we have

Γ(Pt f )+Cρ1,ρ2,κ,κ2ΓT (Pt f ) ≤ e−αt
(
Pt(Γ(f )) + Cρ1,ρ2,κ,κ2Pt(ΓT (f ))

)
where Cρ1,ρ2,κ,κ2 =

α+
√
α2+16ρ2κ2
4ρ2

and α =
2ρ1ρ2−2κ

√
ρ2κ2

(ρ2+κ)
.

Corollary

For every x ∈M, f ∈ L2(M),

Pt f (x)→t→∞
1

µ(M)

∫
M
fdµ.
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Spectral gap inequality on contact manifolds

In probability language,

Xt
D−→t→+∞

1
µ(M)

µ

Corollary

For every f in the domain of L,∫
M
f 2dµ−

(∫
M
fdµ
)2

≤
−2ρ1ρ2 + 2κ

√
ρ2κ2

(ρ2 + κ)

∫
M

Γ(f )dµ.

In other words,

σ2(f ) ≤
−2ρ1ρ2 + 2κ
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Open Questions

I Remove the compact assumption?

I Does Li-Yau inequality hold for contact manifolds?
I M satisfying CD inequality ⇒ compactness of M?
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