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Let L be a diffusion operator (i.e. the generator of a continuous
strong Markov process) . Associated to L, we may consider the
following canonical differential bilinear forms.

r(f,g) = 5 (L(fg) — flg — glLf)

N

and
ra(f.8) = 5 (LT (F.8) ~ (£, Lg) ~ (Lf.g)).

For instance, if L = A on R”, then
r(f,g) =(Vf,Vg)

and

Fa(f, f) = | V*f|?
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The intrinsic curvature of diffusion operators

It is said that L satisfies the Bakry-Emery criterion with parameter
p if
Ma2(f) > pl(f).

A stronger version of the Bakry-Emery criterion is given by the
curvature-dimension inequality:

1

ra(f) = Z(LF? + pr(f)
For instance, on R", the diffusion operator
Lf = Af —(VU,VT)

satisfies the Bakry-Emery criterion if and only if, as a quadratic
form

V32U > p.
The Bakry-Emery criterion is typically used to establish functional
inequalities for the invariant measure of L: Spectral gap inequality,
Log-Sobolev inequality and hypercontractivity of the corresponding
Markov semigroup.
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Curvature dimension inequality

Typical examples of diffusion operators satisfying a curvature
dimension inequality include the Laplace-Beltrami operators on
Riemannian manifolds. More precisely, from Bochner's formula

Theorem

The Laplace-Beltrami operator on /A on the Riemannian manifold
M satisfies CD(p, d), i.e.,

1

Mo(F) > =(AF)2 + pl(f), fe C®(M)

Q|

if and only if
dmM < d, Ric>p.
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Gradient bounds

There is a Markov semigroup P; = el associated with L. In

probabilistic sense, there is a unique continuous Markov process X;
associated with P; such that

P:f(x) = E(f(X:)| Xo = x).

Theorem
We have that

Ma(f) > pl(f), Ve C®(M)

if and only if F(P:(f)) < e 2PtP,I(f), VFf € C®(M).
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Associated Markov process

Sketch of the proof.

Consider the function ¢(s) = Ps[(P¢—sf), by easy calculation, we
have that
¢'(s) = 2P o(Py_sf),

hence we obtain:

Ma(f) 2 pM(F) = ¢/(t) 2 206(t) = T(Pe(f)) < e 2Pt PI(f).

On the other hand, by taking small-time asymptotic, we have that:
[(P:(f)) < e 2Pt P, (f) =

F(f)+2r(f, L)t <T(f)+ (LT(f) —2pl(f)) t = [2(f) > pl(f)
[
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Associated Markov process

(4 is an invariant measure of this Markov process, i.e., for any
positive function f € L1(u),

| Pefnte) = | #Goutex

» Is u a finite measure (probability measure)?

Questions:

» Does the heat semigroup P:(f) converge to the equilibrium
when t = o0? i.e.,
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Subelliptic diffusion operators

To be satisfied, the Bakry-Emery criterion, that is
2> pl

requires some form of ellipticity of the generator L(invertibility of
the diffusion matrix). Such criterion fails to hold even for simple
subelliptic diffusion operators, like the sub-Laplacian on the
Heisenberg group (Juillet).
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Subelliptic diffusion operators

Let L be a diffusion operator defined on a manifold M. We assume
that L is symmetric with respect to a smooth measure ;1 and
(locally) subelliptic. Elliptic operators are subelliptic .For subelliptic
operators, the corresponding Markov has a smooth density. Another
important subclass is given by sum of squares type operators

d
L=— Z X X;
i=1

that satisfy the Hérmander's bracket generating condition.
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Vertical form

We will assume, additionally, that M is endowed with a first-order
differential bilinear form 7 (f, g).

'™ may be thought as a vertical complement to I'. We can then
define the intrinsic curvature of L with respect to ['T.

rT(f.8) =5 (LT7(F.8) ~T7(F,1g) - T7(LF.g)).
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Example: Contact Riemannian manifolds

Subelliptic diffusion operators naturally arise in the study of contact
manifolds. Let (M, 0, g) be a 2n+ 1 dimensional contact
Riemannian manifold. The sub-Laplacian L is the generator of the
Dirichlet form:

/ V4 f||%0 A (d6)™.
M

In this example, the vertical direction is canonical and given by the
Reeb vector field T:

FT(f) = (TF)>.
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Example: Contact Riemannian manifolds with Sasakian

structure

A important subclass of contact Riemannian manifolds is so called
CR Sasakian manifolds.It is a sub-Riemannian manifold which
possess a certain geometric symmetry.

Theorem (Baudoin-Garofalo)

Let M be a contact CR Sasakian manifold. We have Ricy > p; if
and only if

Fa(f) +2y/T(A) I (F) > 2i(Lf) + il (F) + 517 ().

It is equivalent to the fact that for every v > 0,

Pa(F) + T () > 5 (L) + <p1 - i) () + 2T ().
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Example: 3-dimensional model spaces

For p € R, G(p) is a n-dimensional Lie group whose Lie algebra g
has a basis {X, Y, Z} such that

X,Y]1=2, [Z,X]=-pY, [Y,Z]=pX
We can easily see that for the sub-Laplacian L = X? 4+ Y?,
F(F) = (X2 + (Y2, TT(f)=(Zf)

and

C(F,TT(F)) =TT(f,T(F)).

Moreover,
Ma(f) = HV%_[sz + pl(f) + %FT(f) + 2(Yf(XZf) — Xf(YZf)),

FT(F) = (XZF)*F + (YZF)2.

2 — X2f (XYF + YXF)
HE 7 3 (XYTF + YXT) Y2f

where

N[
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Example: 3-dimensional model spaces

Hence we can obtain the generalized curvature dimension
inequality: for all f € C*(G(p)) and any v > 0,

P(F) +ur T () = S(LP + <p—1>r(f)+;FT(f).

1

» p =0: The "flat" Heisenberg group;
» p=1: The Lie group SU(2);

e~

» p = —1:The Lie group SL(2).
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Generalized curvature dimension inequality

We come back to the general framework of a locally subelliptic
diffusion operator L.

Definition

We say that L satisfies the generalized-curvature dimension
inequality CD(p1, p2, k, d) if for every v > 0,

> 1

Fa(f, ) + 0T (F,£) 2 S(LO? + (pr = =) T(F, ) + pal T (. ).

We say a contact manifold satisfying the Sasakian condition if the
first-order differential bilinear form ['7(f, g) satisfies

C(F,TT(f)) =TT(f,T(f)).



Gradient estimates for the associated heat semigroup

Theorem (F. Baudoin, M. Bonnefont)

Let f € L>(M) such that f € C>°(M) and I'(f, f),
FT(f,f) € LY(M). Forx € M, t >0, when p; > 0 one has

—2
“;”rT(Ptf) o o (pt( () + ez
1

F(Ptf)_|_ -

PATT(7))



Gradient estimates for the associated heat semigroup

Theorem (F. Baudoin, M. Bonnefont)

Let f € L>(M) such that f € C>°(M) and I'(f, f),
FT(f,f) € LY(M). Forx € M, t >0, when p; > 0 one has

K+ P2 T —2p1p2

[T(Pf) < e b ' (Pt(r(f» Tpas
P1

1

F(Pef)+ P.(r'"(f))

|\_/

Corollary

The measure p is finite, i.e., p(M) < 400 and for every x € M,
f e L2(M),

Ptf( _>t—>oo / f-d,l,L
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CD(p1, p2, k) with p1 >0, po > 0 and k > 0. The measure y is
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Spectral gap inequality

Theorem

Assume that L satisfies the generalized curvature inequality
CD(p1, p2, k) with p1 >0, po > 0 and k > 0. The measure y is
finite and the following Poincaré inequality holds:

2
/f%m—(/ fdu> g””/ [(f)dy, feD(L).
M M pP1P2  JM

We may rewrite the inequality in the form

K+ p2

2(f) <
s pP1p2

E(f,f),

where o2(f) denotes the variance of the function f with respect to
w, and E(f,f) = [T(f)du stands for the energy of f.
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Subelliptic Myers theorem

Theorem (Baudoin-Garofalo)

If the inequality CD(p1, p2, k, n) holds for some constants
p1>0,p2 >0,k > 0, then the metric space (M, d) is compact and

we have
3
diam M < 2/3m it '02 1+ fi) n.
p1p2 2p2

When applied to the Sasakian case, we obtain

Theorem

If M js a Sasakian manifold such that Ricy > p1, with p1 > 0,
then the metric space (M, d) is compact and we have

(n+1)(n+3)
np1 '

diam M < 2v/6r
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Generalized CD inequality on contact manifolds

On a general contact Riemannian manifold the intertwining
F(f,T4(f)) = T%(f,T(f))

is not satisfied and the natural curvature dimension inequality takes
a different form.

Theorem (Baudoin-J. Wang)

Under suitable geometric conditions,

K

Fo(f) + VTE(F) 2 (p1 = =2 T(F) + (p2 = wa?) T (F)



Generalized CD inequality on contact manifolds

Theorem

M is a compact Riemannian manifold with contact structure. Let
f € L2(M) such that f € C*°(M) and I'(f,f), TT(f,f) e L1(M).

Forx e M, t > 0, Whenpl—'i—\/\/p%?zo we have

F(Pef)+Cos panunal T (Pef) < €7 (PeT(F)) + Conypaia Pe(TT(F)))
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where Cpl7p2,l€7fi2 = 4 and o = W



Generalized CD inequality on contact manifolds

Theorem

M is a compact Riemannian manifold with contact structure. Let
f € L2(M) such that f € C*°(M) and I'(f,f), TT(f,f) e L1(M).
Forx e M, t > 0, Whenpl—'i—\/\/pﬁj3 > 0 we have

F(Pef)+Cos panunal T (Pef) < €7 (PeT(F)) + Conypaia Pe(TT(F)))

a++/a2+16p2k 2 —2K 3
V - p2K2 o f o — 2P1P2 VP2r2

where Cy, pyrrn = —

Corollary

For every x e M, f € LZ(M),

1
Ptf(X) — t—00 /M/R/H fd/,b



Spectral gap inequality on contact manifolds

In probability language,

1

X, 2 7
t t TR
T (M)



Spectral gap inequality on contact manifolds

In probability language,

1
()"

Corollary

For every f in the domain of L,

2 2 2
/fsz— </ fdu) - =l o U /
M M (p2 + K)

D
Xt —t—+4o0




Spectral gap inequality on contact manifolds

In probability language,

1
()"

Corollary

For every f in the domain of L,

2 2 2
/fsz— </ fdu) - =l o U /
M M (p2 + K)

In other words,

D
Xt —t—+4o0

—2p1p2 + 2K/p2k2
(p2 + K)

02(7[) < 8(f7 f)v
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Open Questions

» Remove the compact assumption?
» Does Li-Yau inequality hold for contact manifolds?

» M satisfying CD inequality = compactness of M?
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