Curvature-dimension inequalities for contact manifolds and gradient estimates for associated Markov semigroups

Jing Wang Based on joint works with Fabrice Baudoin

Purdue University

October 2nd, 2012

うして ふゆう ふほう ふほう ふしつ

Curvature-Dimension inequality (Bakry-Émery criterion) on Riemannian manifolds

Curvature-Dimension inequalities on Sasakian manifolds

Curvature-Dimension inequalities on contact manifolds

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Let L be a diffusion operator (i.e. the generator of a continuous strong Markov process) .

Let L be a diffusion operator (i.e. the generator of a continuous strong Markov process) . Associated to L, we may consider the following canonical differential bilinear forms.

Let L be a diffusion operator (i.e. the generator of a continuous strong Markov process). Associated to L, we may consider the following canonical differential bilinear forms.

$$\Gamma(f,g) = \frac{1}{2} \left(L(fg) - fLg - gLf \right)$$

Let L be a diffusion operator (i.e. the generator of a continuous strong Markov process). Associated to L, we may consider the following canonical differential bilinear forms.

$$\Gamma(f,g) = \frac{1}{2} \left(L(fg) - fLg - gLf \right)$$

and

$$\Gamma_2(f,g) = rac{1}{2} \left(L\Gamma(f,g) - \Gamma(f,Lg) - \Gamma(Lf,g)
ight).$$

Let L be a diffusion operator (i.e. the generator of a continuous strong Markov process) . Associated to L, we may consider the following canonical differential bilinear forms.

$$\Gamma(f,g) = \frac{1}{2} \left(L(fg) - fLg - gLf \right)$$

and

$$\Gamma_2(f,g) = rac{1}{2} \left(L\Gamma(f,g) - \Gamma(f,Lg) - \Gamma(Lf,g) \right).$$

For instance, if $L = \Delta$ on \mathbb{R}^n , then

$$\Gamma(f,g) = \langle \nabla f, \nabla g \rangle$$

うして ふゆう ふほう ふほう ふしつ

Let L be a diffusion operator (i.e. the generator of a continuous strong Markov process) . Associated to L, we may consider the following canonical differential bilinear forms.

$$\Gamma(f,g) = \frac{1}{2} \left(L(fg) - fLg - gLf \right)$$

and

$$\Gamma_2(f,g) = rac{1}{2} \left(L\Gamma(f,g) - \Gamma(f,Lg) - \Gamma(Lf,g) \right).$$

For instance, if $L = \Delta$ on \mathbb{R}^n , then

$$\mathsf{\Gamma}(f,g) = \langle \nabla f, \nabla g \rangle$$

and

$$\Gamma_2(f,f) = \|\nabla^2 f\|^2$$

うして ふゆう ふほう ふほう ふしつ

It is said that L satisfies the Bakry-Émery criterion with parameter ρ if

 $\Gamma_2(f) \ge \rho \Gamma(f).$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへぐ

It is said that L satisfies the Bakry-Émery criterion with parameter ρ if

 $\Gamma_2(f) \ge \rho \Gamma(f).$

A stronger version of the Bakry-Émery criterion is given by the curvature-dimension inequality:

$$\Gamma_2(f) \geq rac{1}{d}(Lf)^2 +
ho\Gamma(f)$$

It is said that L satisfies the Bakry-Émery criterion with parameter ρ if

 $\Gamma_2(f) \ge \rho \Gamma(f).$

A stronger version of the Bakry-Émery criterion is given by the curvature-dimension inequality:

$$\Gamma_2(f) \geq rac{1}{d}(Lf)^2 +
ho\Gamma(f)$$

For instance, on \mathbb{R}^n , the diffusion operator

$$Lf = \Delta f - \langle \nabla U, \nabla f \rangle$$

satisfies the Bakry-Émery criterion if and only if, as a quadratic form

$$\nabla^2 U \ge \rho.$$

うして ふゆう ふほう ふほう ふしつ

It is said that L satisfies the Bakry-Émery criterion with parameter ρ if

 $\Gamma_2(f) \geq \rho \Gamma(f).$

A stronger version of the Bakry-Émery criterion is given by the curvature-dimension inequality:

$$\Gamma_2(f) \geq rac{1}{d}(Lf)^2 +
ho\Gamma(f)$$

For instance, on \mathbb{R}^n , the diffusion operator

$$Lf = \Delta f - \langle \nabla U, \nabla f \rangle$$

satisfies the Bakry-Émery criterion if and only if, as a quadratic form

$$\nabla^2 U \ge \rho.$$

The Bakry-Émery criterion is typically used to establish functional inequalities for the invariant measure of *L*:

It is said that L satisfies the Bakry-Émery criterion with parameter ρ if

 $\Gamma_2(f) \geq \rho \Gamma(f).$

A stronger version of the Bakry-Émery criterion is given by the curvature-dimension inequality:

$$\Gamma_2(f) \geq rac{1}{d}(Lf)^2 +
ho\Gamma(f)$$

For instance, on \mathbb{R}^n , the diffusion operator

$$Lf = \Delta f - \langle \nabla U, \nabla f \rangle$$

satisfies the Bakry-Émery criterion if and only if, as a quadratic form

$$\nabla^2 U \ge \rho.$$

The Bakry-Émery criterion is typically used to establish functional inequalities for the invariant measure of *L*: Spectral gap inequality,

It is said that L satisfies the Bakry-Émery criterion with parameter ρ if

 $\Gamma_2(f) \geq \rho \Gamma(f).$

A stronger version of the Bakry-Émery criterion is given by the curvature-dimension inequality:

$$\Gamma_2(f) \geq rac{1}{d}(Lf)^2 +
ho\Gamma(f)$$

For instance, on \mathbb{R}^n , the diffusion operator

$$Lf = \Delta f - \langle \nabla U, \nabla f \rangle$$

satisfies the Bakry-Émery criterion if and only if, as a quadratic form

$$\nabla^2 U \ge \rho.$$

The Bakry-Émery criterion is typically used to establish functional inequalities for the invariant measure of L: Spectral gap inequality, Log-Sobolev inequality

It is said that L satisfies the Bakry-Émery criterion with parameter ρ if

 $\Gamma_2(f) \ge \rho \Gamma(f).$

A stronger version of the Bakry-Émery criterion is given by the curvature-dimension inequality:

$$\Gamma_2(f) \geq rac{1}{d}(Lf)^2 +
ho\Gamma(f)$$

For instance, on \mathbb{R}^n , the diffusion operator

$$Lf = \Delta f - \langle \nabla U, \nabla f \rangle$$

satisfies the Bakry-Émery criterion if and only if, as a quadratic form

$$\nabla^2 U \ge \rho.$$

The Bakry-Émery criterion is typically used to establish functional inequalities for the invariant measure of *L*: Spectral gap inequality, Log-Sobolev inequality and hypercontractivity of the corresponding Markov semigroup.

Typical examples of diffusion operators satisfying a curvature dimension inequality include the Laplace-Beltrami operators on Riemannian manifolds.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

Typical examples of diffusion operators satisfying a curvature dimension inequality include the Laplace-Beltrami operators on Riemannian manifolds. More precisely, from Bochner's formula

Theorem

The Laplace-Beltrami operator on Δ on the Riemannian manifold \mathbb{M} satisfies $CD(\rho, d)$, i.e.,

$$\Gamma_2(f) \geq rac{1}{d} (\Delta f)^2 +
ho \Gamma(f), \quad f \in C^\infty(\mathbb{M})$$

if and only if

 $\dim \mathbb{M} \leq d, \quad \operatorname{Ric} \geq \rho.$

うして ふゆう ふほう ふほう ふしつ

There is a Markov semigroup $P_t = e^{tL}$ associated with *L*. In probabilistic sense, there is a unique continuous Markov process X_t associated with P_t such that

$$P_t f(x) = \mathbb{E}(f(X_t)|X_0 = x).$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ク へ ()

There is a Markov semigroup $P_t = e^{tL}$ associated with *L*. In probabilistic sense, there is a unique continuous Markov process X_t associated with P_t such that

$$P_t f(x) = \mathbb{E}(f(X_t)|X_0 = x).$$

Theorem

We have that

$$\Gamma_2(f) \geq
ho \Gamma(f), \quad orall f \in C^\infty(\mathbb{M})$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへの

if and only if $\Gamma(P_t(f)) \leq e^{-2\rho t} P_t \Gamma(f), \quad \forall f \in C^{\infty}(\mathbb{M}).$

Sketch of the proof.

Consider the function $\phi(s) = P_s \Gamma(P_{t-s}f)$, by easy calculation, we have that

$$\phi'(s)=2P_s\Gamma_2(P_{t-s}f),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sketch of the proof.

Consider the function $\phi(s) = P_s \Gamma(P_{t-s}f)$, by easy calculation, we have that

$$\phi'(s)=2P_s\Gamma_2(P_{t-s}f),$$

hence we obtain:

 $\Gamma_2(f) \ge \rho \Gamma(f) \Rightarrow \phi'(t) \ge 2\rho \phi(t) \Rightarrow \Gamma(P_t(f)) \le e^{-2\rho t} P_t \Gamma(f).$

Sketch of the proof.

Consider the function $\phi(s) = P_s \Gamma(P_{t-s}f)$, by easy calculation, we have that

$$\phi'(s)=2P_s\Gamma_2(P_{t-s}f),$$

hence we obtain:

$$\Gamma_2(f) \ge \rho \Gamma(f) \Rightarrow \phi'(t) \ge 2\rho \phi(t) \Rightarrow \Gamma(P_t(f)) \le e^{-2\rho t} P_t \Gamma(f).$$

On the other hand, by taking small-time asymptotic, we have that:

$$\Gamma(P_t(f)) \leq e^{-2\rho t} P_t \Gamma(f) \Rightarrow$$

 $\Gamma(f) + 2\Gamma(f, Lf)t \leq \Gamma(f) + (L\Gamma(f) - 2\rho\Gamma(f))t$

Sketch of the proof.

Consider the function $\phi(s) = P_s \Gamma(P_{t-s}f)$, by easy calculation, we have that

$$\phi'(s)=2P_s\Gamma_2(P_{t-s}f),$$

hence we obtain:

$$\Gamma_2(f) \ge \rho \Gamma(f) \Rightarrow \phi'(t) \ge 2\rho \phi(t) \Rightarrow \Gamma(P_t(f)) \le e^{-2\rho t} P_t \Gamma(f).$$

On the other hand, by taking small-time asymptotic, we have that:

$$\Gamma(P_t(f)) \leq e^{-2
ho t} P_t \Gamma(f) \Rightarrow$$

 $\Gamma(f) + 2\Gamma(f, Lf)t \leq \Gamma(f) + (L\Gamma(f) - 2\rho\Gamma(f))t \Rightarrow \Gamma_2(f) \geq \rho\Gamma(f)$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 二目 - のへで

 μ is an invariant measure of this Markov process, i.e., for any positive function $f\in L^1(\mu),$

$$\int_{\mathbb{M}} P_t f(x) \mu(dx) = \int_{\mathbb{M}} f(x) \mu(dx).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 μ is an invariant measure of this Markov process, i.e., for any positive function $f\in L^1(\mu),$

$$\int_{\mathbb{M}} P_t f(x) \mu(dx) = \int_{\mathbb{M}} f(x) \mu(dx).$$

▲ロト ▲園ト ▲ヨト ▲ヨト - ヨー ろくで

Questions:

• Is μ a finite measure (probability measure)?

 μ is an invariant measure of this Markov process, i.e., for any positive function $f\in L^1(\mu),$

$$\int_{\mathbb{M}} P_t f(x) \mu(dx) = \int_{\mathbb{M}} f(x) \mu(dx).$$

Questions:

- Is μ a finite measure (probability measure)?
- ▶ Does the heat semigroup $P_t(f)$ converge to the equilibrium when $t \to \infty$? i.e.,

$$P_t f(x) \xrightarrow{?}{}_{t\to\infty} \frac{1}{\mu(\mathbb{M})} \int_{\mathbb{M}} f d\mu.$$

ション ふゆ アメリア メリア しょうくしゃ

Theorem

If $\Gamma_2 \ge \rho \Gamma$ with $\rho > 0$, then the measure μ is finite and for every $x \in \mathbb{M}$, $f \in L^2(\mathbb{M})$,

$$P_t f(x) \longrightarrow_{t \to \infty} \frac{1}{\mu(\mathbb{M})} \int_{\mathbb{M}} f d\mu.$$

In other words,

$$X_t \stackrel{\mathcal{D}}{\longrightarrow}_{t \to +\infty} rac{1}{\mu(\mathbb{M})} \mu$$

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

Theorem

If $\Gamma_2 \ge \rho \Gamma$ with $\rho > 0$, then the measure μ is finite and for every $x \in \mathbb{M}$, $f \in L^2(\mathbb{M})$,

$$P_t f(x) \longrightarrow_{t \to \infty} \frac{1}{\mu(\mathbb{M})} \int_{\mathbb{M}} f d\mu.$$

In other words,

$$X_t \stackrel{\mathcal{D}}{\longrightarrow}_{t \to +\infty} rac{1}{\mu(\mathbb{M})} \mu$$

▲ロト ▲園ト ▲ヨト ▲ヨト - ヨー ろくで

 $\operatorname{\mathsf{Ric}} \ge
ho \Longleftrightarrow \Gamma_2(f) \ge
ho \Gamma(f)$

Theorem

If $\Gamma_2 \ge \rho \Gamma$ with $\rho > 0$, then the measure μ is finite and for every $x \in \mathbb{M}$, $f \in L^2(\mathbb{M})$,

$$P_t f(x) \longrightarrow_{t \to \infty} \frac{1}{\mu(\mathbb{M})} \int_{\mathbb{M}} f d\mu.$$

In other words,

$$X_t \stackrel{\mathcal{D}}{\longrightarrow}_{t \to +\infty} rac{1}{\mu(\mathbb{M})} \mu$$

 $\operatorname{Ric} \geq \rho \Longleftrightarrow \Gamma_2(f) \geq \rho \Gamma(f) \Longleftrightarrow \Gamma(P_t f) \leq e^{-2\rho t} P_t \Gamma(f)$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

Theorem

If $\Gamma_2 \ge \rho \Gamma$ with $\rho > 0$, then the measure μ is finite and for every $x \in \mathbb{M}$, $f \in L^2(\mathbb{M})$,

$$P_t f(x) \longrightarrow_{t \to \infty} \frac{1}{\mu(\mathbb{M})} \int_{\mathbb{M}} f d\mu.$$

In other words,

$$X_t \xrightarrow{\mathcal{D}}_{t \to +\infty} \frac{1}{\mu(\mathbb{M})} \mu$$

 $\operatorname{Ric} \geq \rho \Longleftrightarrow \Gamma_2(f) \geq \rho \Gamma(f) \Longleftrightarrow \Gamma(P_t f) \leq e^{-2\rho t} P_t \Gamma(f)$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

 $\implies \mu(\mathbb{M}) < \infty$

Theorem

If $\Gamma_2 \ge \rho \Gamma$ with $\rho > 0$, then the measure μ is finite and for every $x \in \mathbb{M}$, $f \in L^2(\mathbb{M})$,

$$P_t f(x) \longrightarrow_{t \to \infty} \frac{1}{\mu(\mathbb{M})} \int_{\mathbb{M}} f d\mu.$$

In other words,

$$X_t \xrightarrow{\mathcal{D}}_{t \to +\infty} \frac{1}{\mu(\mathbb{M})} \mu$$

 $\operatorname{Ric} \geq \rho \Longleftrightarrow \Gamma_2(f) \geq \rho \Gamma(f) \Longleftrightarrow \Gamma(P_t f) \leq e^{-2\rho t} P_t \Gamma(f)$

$$\implies \mu(\mathbb{M}) < \infty \implies P_t f(x) \longrightarrow_{t \to \infty} \frac{1}{\mu(\mathbb{M})} \int_{\mathbb{M}} f d\mu.$$

To be satisfied, the Bakry-Émery criterion, that is

 $\Gamma_2 \geq \rho \Gamma$

requires some form of ellipticity of the generator L(invertibility of the diffusion matrix).

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ク へ ()

To be satisfied, the Bakry-Émery criterion, that is

$\Gamma_2 \ge \rho \Gamma$

requires some form of ellipticity of the generator L(invertibility of the diffusion matrix). Such criterion fails to hold even for simple subelliptic diffusion operators, like the sub-Laplacian on the Heisenberg group (Juillet).

うして ふゆう ふほう ふほう ふしつ

Let L be a diffusion operator defined on a manifold \mathbb{M} .

(ロ)、

Let *L* be a diffusion operator defined on a manifold \mathbb{M} . We assume that *L* is symmetric with respect to a smooth measure μ and (locally) subelliptic. Elliptic operators are subelliptic .

Let *L* be a diffusion operator defined on a manifold \mathbb{M} . We assume that *L* is symmetric with respect to a smooth measure μ and (locally) subelliptic. Elliptic operators are subelliptic .For subelliptic operators, the corresponding Markov has a smooth density.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ
Let *L* be a diffusion operator defined on a manifold \mathbb{M} . We assume that *L* is symmetric with respect to a smooth measure μ and (locally) subelliptic. Elliptic operators are subelliptic .For subelliptic operators, the corresponding Markov has a smooth density. Another important subclass is given by sum of squares type operators

$$L = -\sum_{i=1}^{d} X_i^* X_i$$

that satisfy the Hörmander's bracket generating condition.

We will assume, additionally, that \mathbb{M} is endowed with a first-order differential bilinear form $\Gamma^{T}(f,g)$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��?

We will assume, additionally, that \mathbb{M} is endowed with a first-order differential bilinear form $\Gamma^{T}(f,g)$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

 Γ^{T} may be thought as a vertical complement to Γ .

We will assume, additionally, that \mathbb{M} is endowed with a first-order differential bilinear form $\Gamma^{T}(f,g)$.

 Γ^{T} may be thought as a vertical complement to Γ . We can then define the *intrinsic* curvature of *L* with respect to Γ^{T} .

$$\Gamma_2^T(f,g) = \frac{1}{2} \left(L \Gamma^T(f,g) - \Gamma^T(f,Lg) - \Gamma^T(Lf,g) \right).$$

ション ふゆ アメリア メリア しょうくしゃ

Subelliptic diffusion operators naturally arise in the study of contact manifolds.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��?

Subelliptic diffusion operators naturally arise in the study of contact manifolds. Let (\mathbb{M}, θ, g) be a 2n + 1 dimensional contact Riemannian manifold.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ク へ ()

Subelliptic diffusion operators naturally arise in the study of contact manifolds. Let (\mathbb{M}, θ, g) be a 2n + 1 dimensional contact Riemannian manifold. The sub-Laplacian *L* is the generator of the Dirichlet form:

$$\int_{\mathbb{M}} \|\nabla_{\mathcal{H}} f\|^2 \theta \wedge (d\theta)^n.$$

ション ふゆ アメリア メリア しょうくしゃ

Subelliptic diffusion operators naturally arise in the study of contact manifolds. Let (\mathbb{M}, θ, g) be a 2n + 1 dimensional contact Riemannian manifold. The sub-Laplacian *L* is the generator of the Dirichlet form:

$$\int_{\mathbb{M}} \|\nabla_{\mathcal{H}} f\|^2 \theta \wedge (d\theta)^n.$$

In this example, the vertical direction is canonical and given by the Reeb vector field T:

$$\Gamma^T(f) = (Tf)^2.$$

ション ふゆ アメリア メリア しょうくしゃ

A important subclass of contact Riemannian manifolds is so called CR Sasakian manifolds.It is a sub-Riemannian manifold which possess a certain geometric symmetry.

A important subclass of contact Riemannian manifolds is so called CR Sasakian manifolds.It is a sub-Riemannian manifold which possess a certain geometric symmetry.

Theorem (Baudoin-Garofalo)

Let \mathbb{M} be a contact CR Sasakian manifold.

A important subclass of contact Riemannian manifolds is so called CR Sasakian manifolds.It is a sub-Riemannian manifold which possess a certain geometric symmetry.

Theorem (Baudoin-Garofalo)

Let $\mathbb M$ be a contact CR Sasakian manifold. We have ${\rm Ric}_\nabla\geq\rho_1$ if and only if

$$\Gamma_2(f) + 2\sqrt{\Gamma(f)\Gamma_2^{\mathcal{T}}(f)} \geq \frac{1}{2n}(Lf)^2 + \rho_1\Gamma(f) + \frac{n}{2}\Gamma^{\mathcal{T}}(f).$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

A important subclass of contact Riemannian manifolds is so called CR Sasakian manifolds.It is a sub-Riemannian manifold which possess a certain geometric symmetry.

Theorem (Baudoin-Garofalo)

Let $\mathbb M$ be a contact CR Sasakian manifold. We have $\text{\rm Ric}_\nabla\geq\rho_1$ if and only if

$$\Gamma_2(f) + 2\sqrt{\Gamma(f)\Gamma_2^{\mathsf{T}}(f)} \geq \frac{1}{2n}(Lf)^2 + \rho_1\Gamma(f) + \frac{n}{2}\Gamma^{\mathsf{T}}(f).$$

It is equivalent to the fact that for every $\nu > 0$,

$$\Gamma_2(f) + \nu \Gamma_2^{\mathcal{T}}(f) \geq \frac{1}{2n} (Lf)^2 + \left(\rho_1 - \frac{1}{\nu}\right) \Gamma(f) + \frac{n}{2} \Gamma^{\mathcal{T}}(f).$$

うして ふゆう ふほう ふほう ふしつ

For $\rho \in \mathbb{R}$, $\mathbb{G}(\rho)$ is a n-dimensional Lie group whose Lie algebra \mathfrak{g} has a basis $\{X, Y, Z\}$ such that

$$[X, Y] = Z, \quad [Z, X] = -\rho Y, \quad [Y, Z] = \rho X$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For $\rho \in \mathbb{R}$, $\mathbb{G}(\rho)$ is a n-dimensional Lie group whose Lie algebra \mathfrak{g} has a basis $\{X, Y, Z\}$ such that

$$[X, Y] = Z, \quad [Z, X] = -\rho Y, \quad [Y, Z] = \rho X$$

イロト 不得 トイヨ トイヨ うらくの

We can easily see that for the sub-Laplacian $L = X^2 + Y^2$,

For $\rho \in \mathbb{R}$, $\mathbb{G}(\rho)$ is a n-dimensional Lie group whose Lie algebra \mathfrak{g} has a basis $\{X, Y, Z\}$ such that

$$[X, Y] = Z, \quad [Z, X] = -\rho Y, \quad [Y, Z] = \rho X$$

We can easily see that for the sub-Laplacian $L = X^2 + Y^2$,

$$\Gamma(f) = (Xf)^2 + (Yf)^2, \quad \Gamma^T(f) = (Zf)^2.$$

イロト 不得 トイヨ トイヨ うらくの

For $\rho \in \mathbb{R}$, $\mathbb{G}(\rho)$ is a n-dimensional Lie group whose Lie algebra \mathfrak{g} has a basis $\{X, Y, Z\}$ such that

$$[X, Y] = Z, \quad [Z, X] = -\rho Y, \quad [Y, Z] = \rho X$$

We can easily see that for the sub-Laplacian $L = X^2 + Y^2$,

$$\Gamma(f) = (Xf)^2 + (Yf)^2, \quad \Gamma^T(f) = (Zf)^2.$$

and

$$\Gamma(f,\Gamma^{T}(f))=\Gamma^{T}(f,\Gamma(f)).$$

ション ふゆ アメリア メリア しょうくしゃ

For $\rho \in \mathbb{R}$, $\mathbb{G}(\rho)$ is a n-dimensional Lie group whose Lie algebra \mathfrak{g} has a basis $\{X, Y, Z\}$ such that

$$[X, Y] = Z, \quad [Z, X] = -\rho Y, \quad [Y, Z] = \rho X$$

We can easily see that for the sub-Laplacian $L = X^2 + Y^2$,

$$\Gamma(f) = (Xf)^2 + (Yf)^2, \quad \Gamma^T(f) = (Zf)^2.$$

and

$$\Gamma(f,\Gamma^{T}(f))=\Gamma^{T}(f,\Gamma(f)).$$

Moreover,

$$\Gamma_{2}(f) = ||\nabla_{\mathcal{H}}^{2}f||^{2} + \rho\Gamma(f) + \frac{1}{2}\Gamma^{T}(f) + 2(Yf(XZf) - Xf(YZf)),$$

$$\Gamma_{2}^{T}(f) = (XZf)^{2}f + (YZf)^{2}.$$

where

$$\nabla_{H}^{2}f = \begin{pmatrix} X^{2}f & \frac{1}{2}(XYf + YXf) \\ \frac{1}{2}(XYf + YXf) & Y^{2}f \end{pmatrix}$$

$$\Gamma^{2}(f) + \nu \Gamma_{2}^{T}(f) \geq \frac{1}{2} (Lf)^{2} + \left(\rho - \frac{1}{\nu}\right) \Gamma(f) + \frac{1}{2} \Gamma^{T}(f).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\Gamma^{2}(f) + \nu \Gamma_{2}^{T}(f) \geq \frac{1}{2} (Lf)^{2} + \left(\rho - \frac{1}{\nu}\right) \Gamma(f) + \frac{1}{2} \Gamma^{T}(f).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\rho = 0$: The "flat" Heisenberg group;

$$\Gamma^2(f) + \nu \Gamma_2^{\mathcal{T}}(f) \geq \frac{1}{2} (Lf)^2 + \left(\rho - \frac{1}{\nu}\right) \Gamma(f) + \frac{1}{2} \Gamma^{\mathcal{T}}(f).$$

ション ふゆ アメリア メリア しょうくしゃ

- $\rho = 0$: The "flat" Heisenberg group;
- $\rho = 1$: The Lie group SU(2);

$$\Gamma^2(f) + \nu \Gamma_2^{\mathcal{T}}(f) \geq \frac{1}{2} (Lf)^2 + \left(\rho - \frac{1}{\nu}\right) \Gamma(f) + \frac{1}{2} \Gamma^{\mathcal{T}}(f).$$

うして ふゆう ふほう ふほう ふしつ

- $\rho = 0$: The "flat" Heisenberg group;
- *ρ* = 1: The Lie group *SU*(2);
 ρ = −1:The Lie group *SU*(2).

We come back to the general framework of a locally subelliptic diffusion operator L.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We come back to the general framework of a locally subelliptic diffusion operator L.

Definition

We say that L satisfies the generalized-curvature dimension inequality $CD(\rho_1, \rho_2, \kappa, d)$ if for every $\nu > 0$,

$$\Gamma_2(f,f) + \nu \Gamma_2^{\mathsf{T}}(f,f) \geq \frac{1}{d} (\mathcal{L}f)^2 + \left(\rho_1 - \frac{\kappa}{\nu}\right) \Gamma(f,f) + \rho_2 \Gamma^{\mathsf{T}}(f,f).$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへの

We come back to the general framework of a locally subelliptic diffusion operator L.

Definition

We say that L satisfies the generalized-curvature dimension inequality $CD(\rho_1, \rho_2, \kappa, d)$ if for every $\nu > 0$,

$$\Gamma_2(f,f) + \nu \Gamma_2^{\mathsf{T}}(f,f) \geq \frac{1}{d} (\mathcal{L}f)^2 + \left(\rho_1 - \frac{\kappa}{\nu}\right) \Gamma(f,f) + \rho_2 \Gamma^{\mathsf{T}}(f,f).$$

We say a contact manifold satisfying the Sasakian condition if the first-order differential bilinear form $\Gamma^T(f,g)$ satisfies

$$\Gamma(f,\Gamma^{T}(f))=\Gamma^{T}(f,\Gamma(f)).$$

うして ふゆう ふほう ふほう ふしつ

Theorem (F. Baudoin, M. Bonnefont)

Let $f \in L^2(\mathbb{M})$ such that $f \in C^{\infty}(\mathbb{M})$ and $\Gamma(f, f)$, $\Gamma^{T}(f, f) \in L^1(\mathbb{M})$. For $x \in \mathbb{M}$, $t \ge 0$, when $\rho_1 \ge 0$ one has

$$\Gamma(P_t f) + \frac{\kappa + \rho_2}{\rho_1} \Gamma^{\mathsf{T}}(P_t f) \leq e^{\frac{-2\rho_1 \rho_2}{\kappa + \rho_2} t} \left(P_t(\Gamma(f)) + \frac{\kappa + \rho_2}{\rho_1} P_t(\Gamma^{\mathsf{T}}(f)) \right)$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへの

Theorem (F. Baudoin, M. Bonnefont)

Let $f \in L^2(\mathbb{M})$ such that $f \in C^{\infty}(\mathbb{M})$ and $\Gamma(f, f)$, $\Gamma^T(f, f) \in L^1(\mathbb{M})$. For $x \in \mathbb{M}$, $t \ge 0$, when $\rho_1 \ge 0$ one has

$$\Gamma(P_t f) + \frac{\kappa + \rho_2}{\rho_1} \Gamma^{\mathcal{T}}(P_t f) \le e^{\frac{-2\rho_1 \rho_2}{\kappa + \rho_2} t} \left(P_t(\Gamma(f)) + \frac{\kappa + \rho_2}{\rho_1} P_t(\Gamma^{\mathcal{T}}(f)) \right)$$

Corollary

The measure μ is finite, i.e., $\mu(\mathbb{M}) < +\infty$ and for every $x \in \mathbb{M}$, $f \in L^2(\mathbb{M})$,

$$P_t f(x) \to_{t \to \infty} \frac{1}{\mu(\mathbb{M})} \int_{\mathbb{M}} f d\mu.$$

イロト (理) (ヨ) (ヨ) (ヨ) (000

Spectral gap inequality

Theorem

Assume that L satisfies the generalized curvature inequality $CD(\rho_1, \rho_2, \kappa)$ with $\rho_1 > 0$, $\rho_2 > 0$ and $\kappa \ge 0$. The measure μ is finite and the following Poincaré inequality holds:

$$\int_{\mathbb{M}} f^2 d\mu - \left(\int_{\mathbb{M}} f d\mu\right)^2 \leq \frac{\kappa + \rho_2}{\rho_1 \rho_2} \int_{\mathbb{M}} \Gamma(f) d\mu, \quad f \in \mathcal{D}(L)$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへの

Theorem

Assume that L satisfies the generalized curvature inequality $CD(\rho_1, \rho_2, \kappa)$ with $\rho_1 > 0$, $\rho_2 > 0$ and $\kappa \ge 0$. The measure μ is finite and the following Poincaré inequality holds:

$$\int_{\mathbb{M}} f^2 d\mu - \left(\int_{\mathbb{M}} f d\mu\right)^2 \leq \frac{\kappa + \rho_2}{\rho_1 \rho_2} \int_{\mathbb{M}} \Gamma(f) d\mu, \quad f \in \mathcal{D}(L)$$

We may rewrite the inequality in the form

$$\sigma^{2}(f) \leq \frac{\kappa + \rho_{2}}{\rho_{1}\rho_{2}} \mathcal{E}(f, f),$$

where $\sigma^2(f)$ denotes the variance of the function f with respect to μ , and $\mathcal{E}(f, f) = \int \Gamma(f) d\mu$ stands for the energy of f.

If the inequality $CD(\rho_1, \rho_2, \kappa, n)$ holds for some constants $\rho_1 > 0, \rho_2 > 0, \kappa > 0$, then the metric space (\mathbb{M}, d) is compact

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

If the inequality $CD(\rho_1, \rho_2, \kappa, n)$ holds for some constants $\rho_1 > 0, \rho_2 > 0, \kappa > 0$, then the metric space (\mathbb{M}, d) is compact and we have

diam
$$\mathbb{M} \leq 2\sqrt{3}\pi \sqrt{rac{\kappa+
ho_2}{
ho_1
ho_2}}\left(1+rac{3\kappa}{2
ho_2}
ight)$$
n.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへの

If the inequality $CD(\rho_1, \rho_2, \kappa, n)$ holds for some constants $\rho_1 > 0, \rho_2 > 0, \kappa > 0$, then the metric space (\mathbb{M}, d) is compact and we have

diam
$$\mathbb{M} \leq 2\sqrt{3}\pi \sqrt{\frac{\kappa + \rho_2}{\rho_1 \rho_2}} \left(1 + \frac{3\kappa}{2\rho_2}\right) n.$$

うして ふゆう ふほう ふほう ふしつ

When applied to the Sasakian case, we obtain

If the inequality $CD(\rho_1, \rho_2, \kappa, n)$ holds for some constants $\rho_1 > 0, \rho_2 > 0, \kappa > 0$, then the metric space (\mathbb{M}, d) is compact and we have

diam
$$\mathbb{M} \leq 2\sqrt{3}\pi \sqrt{rac{\kappa+
ho_2}{
ho_1
ho_2}}\left(1+rac{3\kappa}{2
ho_2}
ight)$$
n.

When applied to the Sasakian case, we obtain

Theorem

If \mathbb{M} is a Sasakian manifold such that $\operatorname{Ric}_{\nabla} \geq \rho_1$, with $\rho_1 > 0$, then the metric space (\mathbb{M}, d) is compact and we have

diam
$$\mathbb{M} \leq 2\sqrt{6}\pi\sqrt{rac{(n+1)(n+3)}{n
ho_1}}.$$

On a general contact Riemannian manifold the intertwining

$$\Gamma(f,\Gamma^Z(f))=\Gamma^Z(f,\Gamma(f))$$

is not satisfied and the natural curvature dimension inequality takes a different form.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

On a general contact Riemannian manifold the intertwining

$$\Gamma(f,\Gamma^Z(f))=\Gamma^Z(f,\Gamma(f))$$

is not satisfied and the natural curvature dimension inequality takes a different form.

Theorem (Baudoin-J. Wang)

Under suitable geometric conditions,

$$\Gamma_2(f) + \nu \Gamma_2^Z(f) \ge \left(\rho_1 - \frac{\kappa_1}{\nu}\right) \Gamma(f) + \left(\rho_2 - \kappa_2 \nu^2\right) \Gamma^Z(f)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Generalized CD inequality on contact manifolds

Theorem

 \mathbb{M} is a compact Riemannian manifold with contact structure. Let $f \in L^2(\mathbb{M})$ such that $f \in C^{\infty}(\mathbb{M})$ and $\Gamma(f, f)$, $\Gamma^{\mathsf{T}}(f, f) \in L^1(\mathbb{M})$. For $x \in \mathbb{M}$, t > 0, when $\rho_1 - \frac{\kappa \sqrt{\rho_3}}{\sqrt{\rho_2}} \ge 0$ we have

$$\Gamma(P_t f) + C_{\rho_1, \rho_2, \kappa, \kappa_2} \Gamma^{\mathsf{T}}(P_t f) \leq e^{-\alpha t} \left(P_t(\Gamma(f)) + C_{\rho_1, \rho_2, \kappa, \kappa_2} P_t(\Gamma^{\mathsf{T}}(f)) \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへの

where
$$C_{\rho_1,\rho_2,\kappa,\kappa_2} = \frac{\alpha + \sqrt{\alpha^2 + 16\rho_2\kappa_2}}{4\rho_2}$$
 and $\alpha = \frac{2\rho_1\rho_2 - 2\kappa\sqrt{\rho_2\kappa_2}}{(\rho_2 + \kappa)}$

Generalized CD inequality on contact manifolds

Theorem

 \mathbb{M} is a compact Riemannian manifold with contact structure. Let $f \in L^2(\mathbb{M})$ such that $f \in C^{\infty}(\mathbb{M})$ and $\Gamma(f, f)$, $\Gamma^{\mathsf{T}}(f, f) \in L^1(\mathbb{M})$. For $x \in \mathbb{M}$, t > 0, when $\rho_1 - \frac{\kappa \sqrt{\rho_3}}{\sqrt{\rho_2}} \ge 0$ we have

$$\Gamma(P_t f) + C_{\rho_1, \rho_2, \kappa, \kappa_2} \Gamma^{\mathsf{T}}(P_t f) \le e^{-\alpha t} \left(P_t(\Gamma(f)) + C_{\rho_1, \rho_2, \kappa, \kappa_2} P_t(\Gamma^{\mathsf{T}}(f)) \right)$$

where
$$C_{\rho_1,\rho_2,\kappa,\kappa_2} = \frac{\alpha + \sqrt{\alpha^2 + 16\rho_2\kappa_2}}{4\rho_2}$$
 and $\alpha = \frac{2\rho_1\rho_2 - 2\kappa\sqrt{\rho_2\kappa_2}}{(\rho_2 + \kappa)}$

Corollary

For every $x \in \mathbb{M}$, $f \in L^2(\mathbb{M})$,

$$P_t f(x) \to_{t\to\infty} rac{1}{\mu(\mathbb{M})} \int_{\mathbb{M}} f d\mu.$$

・ロト ・聞 ト ・ヨト ・ヨト ・ りへぐ
Spectral gap inequality on contact manifolds

In probability language,

$$X_t \stackrel{\mathcal{D}}{\longrightarrow}_{t \to +\infty} rac{1}{\mu(\mathbb{M})} \mu$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��?

Spectral gap inequality on contact manifolds

In probability language,

$$X_t \stackrel{\mathcal{D}}{\longrightarrow}_{t \to +\infty} rac{1}{\mu(\mathbb{M})} \mu$$

Corollary

For every f in the domain of L,

$$\int_{\mathbb{M}} f^2 d\mu - \left(\int_{\mathbb{M}} f d\mu\right)^2 \leq \frac{-2\rho_1\rho_2 + 2\kappa\sqrt{\rho_2\kappa_2}}{(\rho_2 + \kappa)} \int_{\mathbb{M}} \Gamma(f) d\mu.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ⊙へ⊙

Spectral gap inequality on contact manifolds

In probability language,

$$X_t \xrightarrow{\mathcal{D}}_{t \to +\infty} \frac{1}{\mu(\mathbb{M})} \mu$$

Corollary

For every f in the domain of L,

$$\int_{\mathbb{M}} f^2 d\mu - \left(\int_{\mathbb{M}} f d\mu\right)^2 \leq \frac{-2\rho_1\rho_2 + 2\kappa\sqrt{\rho_2\kappa_2}}{(\rho_2 + \kappa)} \int_{\mathbb{M}} \Gamma(f) d\mu.$$

In other words,

$$\sigma^2(f) \leq rac{-2
ho_1
ho_2+2\kappa\sqrt{
ho_2\kappa_2}}{(
ho_2+\kappa)}\mathcal{E}(f,f),$$

うして ふゆう ふほう ふほう ふしつ

Remove the compact assumption?

- Remove the compact assumption?
- Does Li-Yau inequality hold for contact manifolds?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��?

- Remove the compact assumption?
- Does Li-Yau inequality hold for contact manifolds?
- \mathbb{M} satisfying CD inequality \Rightarrow compactness of \mathbb{M} ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●