Short-time asymptotics for ATM option prices
under tempered stable processes

José E. Figueroa-Lopez'

"Department of Statistics
Purdue University

Probability Seminar
Purdue University
Oct. 30, 2012

Joint work with Ruoting Gong (Rutgers) and Christian Houdré (Georgia Tech)



|
Outline

© Problem Formulation
Tempered Stable Processes

® The main results
2nd order expansion for ATM option prices

® Numerical illustrations

® Conclusions



.
Lévy Process

@ Lévy process {Xi}i>o0
e Xo=0
¢ Independent Increments:
h<--<th = Xy —Xg»..., X, — Xi,_, are independent
e Stationary Increments
s<t = Xi—Xs 2 Xo_s
e Paths t — X;(w) that are right-continuous with left-limits
P
e Xs— Xy when s—t

® The distribution law of {X;}:>¢ is determined by the distribution of X;:

o If £L(Xi) ~ N(0,1), then X; = W; is the standard Brownian Motion;
o If £(Xi) ~ Poisson()), then X; = N; is a Poisson process with intensity A;



Tempered Stable Processes (Rosinski, 2007)

@ Letae (0,2),beR,and g*,q : (0,00) — [0, 00) completely monotone
functions with g*(c0) = 0 and g*(07) < oc:

dk +
(1) dfk (x)>0, (k=0,1,...).

® A Tempered Stable Process (TaS) is a Lévy process {X;}+>o whose
distribution at t = 1 has the characteristic function:

E (e“*) = exp (ibu+/
R

with

o (™ —1 — iux1(x<1y) s(x)dx) :
0

s(x) = X7 7' (X)1xs0 + X[ 7*7'g7 (= X)1x<0-

® b, a, and s are called the “drift", index, and Lévy density of the TaS
process.



Connection to Stable Processes

@ If g7, g~ are constants, then the resulting Lévy process is a Stable Lévy

Process {Z;}t>0;
® For a suitable ¢ € R, the drifted process Z; := Z; — ct is self-similar:

(W Zubis0 2 {Zihiso (h>0).

If c = 0, we say Z is strictly a-stable

® Distributions are too “fat" for applications:
E(|Z|P) = oo, forany p>a.

@ Being strictly decreasing, the functions g™, g~ “temper" the jump intensity
of the associate stable process:

E(|X{P) < 00 <= I[P~ Tg(x)dx < oc.
Ix|>1



Short and long time behavior

@ In short-time or locally, { X;}+>0 behaves like a stable process:

e 1T <a<2:
(WX} =5 {Z}is0,  (h—0),

for a strictly a-stable process {Z;}+>o;
e 0<ax<t:

{h7% (X = cht)} =5 {Zthezo, (= 0),

for a suitable drift ¢ and strictly a-stable process {Z;}:>0;

® In long-time, {X:}+>0 behaves like a Brownian Motion:
{h"2Xu} 5 {Br}so, (h— o0),

where {B;}:>0 is a suitable Brownian motion.



The problem

© Consider a TaS Process {X;}+>o with finite exponential moment:
E(e¥) <o = /100 e’x *1g(x)dx < .
® The “drift" b of X is such that S; := &% is a P-martingale:
u<v: E(S|Syt<u)=S, <= E(&)=1.
® Consider the functional:
Me=E [(¢¥ = 1)"] =E[(e" - 1) 1x20] -

® By DCT, N; — 0when t — 0.
General Problem:
We want to determine the rate of convergence as t — 0.



Motivation

© In mathematical finance,
M =E[ (e —1)"]

is interpreted as the price of an ATM European call option with expiry t at
time 0 written on a stock whose price process is modeled by S; := e*.
® Our results shed light on the behavior of option prices close to expiration
under an exponential Lévy model.
® The European call option price with expiry t and strike K = e” is

M(K) = |(Si— K)'| =E[ (¥ — &) ].

® In mathematics, ¢, (S) = (S — K)™ are natural building blocks of convex
functions f : Ry — Ry:

£(S) = £(0) + 1.(0)S + /Oo(s — KY*u(dK).
0



Problem Formulation Tempered Stable Processes

Some relevant literature

Two distinct regimes: Not ATM and ATM.
e Not ATM (x # 0)

@ Tankov (2011): Leading order term for general Lévy process:
Xi K + K+ X r\+
E(e’fe ) =(1-¢% +t/(e —€")" s(x)dx + o(t).
@® F-L & Forde (2012): High-order term for relatively general Lévy process;
X R\ T K+ X o\ + tz 2
E(ef—e) = (1- e +z‘/(e — &) ()oK + () + 0(F),

where dx(x) has an explicit form in terms of s.
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Some relevant literature. Cont...

e ATM (k = 0)
@ Roper (2011), Tankov (2011): Leading order term for bounded variation
process (a < 1):

E (ex, _ 1)+ —t maX{/ (e - 1)+s(x)dx,/ (1- ex)+s(x)dx} + o(t).

@® Tankov (2011), F-L & Forde (2012), Muhle-Karbe & Nutz (2011): Leading
term for Lévy process with stable-like small-time behavior with o > 1:

E(e-1) =" E(Z)+o(t7),  (t-0)

where {Z;}+>0 is a centered a-stable process.
@® |Intuition: In light of the Taylor expansion of exponential,

171/aE (eX, _ 1)+ ~ t71/aE (Xt)+ - E (t71/aXt)+ ﬂ; E (Z1+) )
@ If sis symmetric (g*(x) = g~ (x)), then

di =E(Z) = %ru —1/a) (29*(0)F (~a) [cos (wa/2)])



Assumptions and Notation

The index « is in (1,2) and the function g : R\{0} — [0, 00) in
s(x) := q(x)|x|~*~ " is such that
(i) Cy = )!@0 q(x) < oo, (ii)) C- = )!I;no g(x) < o0

. _ / . H /
(iii) )l(@o q'(x) < oo, (iv) Jlﬂjoq (x) < o0,

(iv) /100 ex " Tg(x)dx < oo, (v) limsup |Ing(x)| < o

[X|— 00 | |
We define the standardized function g:

- X X
q(X) = ?1x>0 + %1X<03

so that g(0) := lim ;0 g(x) = 1 and g(x) < 1.



Main result 1

Under the exponential tempered stable model with « > 1,
N=E(e“—1)" =dts +dt+ot), (t—0),

where



Main result 1

Under the exponential tempered stable model with « > 1,
N=E(e“—1)" =dts +dt+ot), (t—0),

where d; = E(Z;") and d> = 9 + ~+P(Z; > 0)



The main results 2nd order expansion for ATM option prices

Main result 1

Under the exponential tempered stable model with « > 1,

N=E(e“—1)" =dts +dt+ot), (t—0),

where d; = E(Z") and d» = ¥ + +P(Z; > 0) with

9= C+/ (€¥g(x) — g(x) — x) x> Tdx
0

Ci+C_

a—1

~v:=b+

0

o /O Tx (- g))dx + C |- amox

— 00



The main results 2nd order expansion for ATM option prices

Main result 2

Under the exponential TaS-process {X;}+>o with an independent Brownian
component {o W;} >0,

M=E(eX* % 1) —dit: + otz +o(tz"), (t—=0), (2

where



The main results 2nd order expansion for ATM option prices

Main result 2

Under the exponential TaS-process {X;}+>o with an independent Brownian
component {o W;} >0,

M=E(eX* % 1) —dit: + otz +o(tz"), (t—=0), (2

where
dy == oF (W}") = \/%
d2 . C+ + C- 0'1704]E (|W1 |17a)

“ a1
2« ay\ (CL+C )o@
_7r<1_§) +20[(0171) )
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Figure: Comparisons of ATM call option prices computed by two methods (Inverse
Fourier Transform and Monte-Carlo method) with the first- and second-order
approximations.



Conclusions

Conclusions

© Obtained the second-order short-time expansions for ATM European call
option prices under a tempered stable process with a possible nonzero
independent Brownian component.

® Characterized explicitly the effects of the different parameters into the
behavior of ATM option prices near expiration.

® Introduce a new method of proof which can potentially be applied to “any”
Lévy process having the fundamental property of being stable under a
suitable change of probability measure and whose Lévy density can be
“closely" approximated by a stable density near the origin.



For Further Reading |

[@ Figueroa-Lopez, Gong, & Houdré.
High-order short-time expansions for ATM option prices under a tempered
stable Lévy model.
ArXiv, 2012.



	Problem Formulation
	Tempered Stable Processes

	The main results
	2nd order expansion for ATM option prices

	Numerical illustrations
	Conclusions
	Appendix
	Appendix
	



