Large Deviations and Slowdown Asymptotics of Excited Random Walks

Jonathon Peterson

Department of Mathematics
Purdue University
September 4, 2012

Excited (Cookie) Random Walks

(M, p) Cookie Random Walk

Initially M cookies at each site.

Excited (Cookie) Random Walks

(M, p) Cookie Random Walk
Initially M cookies at each site.

- Cookie available: Eat cookie. Move right with probability $p \in(0,1)$

Excited (Cookie) Random Walks

(M, p) Cookie Random Walk
Initially M cookies at each site.

- Cookie available: Eat cookie. Move right with probability $p \in(0,1)$

Excited (Cookie) Random Walks

(M, p) Cookie Random Walk
Initially M cookies at each site.

- Cookie available: Eat cookie. Move right with probability $p \in(0,1)$

Excited (Cookie) Random Walks

(M, p) Cookie Random Walk Initially M cookies at each site.

- Cookie available: Eat cookie. Move right with probability $p \in(0,1)$
- No cookies: Move right/left with probability $\frac{1}{2}$.

Excited (Cookie) Random Walks

(M, p) Cookie Random Walk Initially M cookies at each site.

- Cookie available: Eat cookie. Move right with probability $p \in(0,1)$
- No cookies: Move right/left with probability $\frac{1}{2}$.

Excited (Cookie) Random Walks

Unequal cookies

- M cookies at each site.
- Cookie strengths $p_{1}, p_{2}, \ldots, p_{M} \in(0,1)$.

Excited (Cookie) Random Walks

Unequal cookies

- M cookies at each site.
- Cookie strengths $p_{1}, p_{2}, \ldots, p_{M} \in(0,1)$.

Excited (Cookie) Random Walks

Unequal cookies

- M cookies at each site.
- Cookie strengths $p_{1}, p_{2}, \ldots, p_{M} \in(0,1)$.

Excited (Cookie) Random Walks

Unequal cookies

- M cookies at each site.
- Cookie strengths $p_{1}, p_{2}, \ldots, p_{M} \in(0,1)$.

Excited (Cookie) Random Walks

Unequal cookies

- M cookies at each site.
- Cookie strengths $p_{1}, p_{2}, \ldots, p_{M} \in(0,1)$.

Excited (Cookie) Random Walks

Unequal cookies

- M cookies at each site.
- Cookie strengths $p_{1}, p_{2}, \ldots, p_{M} \in(0,1)$.

Excited (Cookie) Random Walks

Random i.i.d. cookie environments

- M cookies per site.
- $\omega_{x}(j)$ - strength of j-th cookie at site x.
- Cookie environment $\omega=\left\{\omega_{x}\right\}$ is i.i.d. Cookies within a stack may be dependent.

Recurrence/Transience and LLN

Average drift per site

$$
\delta=E\left[\sum_{j=1}^{M}\left(2 \omega_{0}(j)-1\right)\right]
$$

Theorem (Zerner '05, Zerner \& Kosygina '08)

The cookie $R W$ is recurrent if and only if $\delta \in[-1,1]$.

Recurrence/Transience and LLN

Average drift per site

$$
\delta=E\left[\sum_{j=1}^{M}\left(2 \omega_{0}(j)-1\right)\right]
$$

Theorem (Zerner '05, Zerner \& Kosygina '08)

The cookie RW is recurrent if and only if $\delta \in[-1,1]$.

Theorem (Basdevant \& Singh '07, Zerner \& Kosygina '08)

$\lim _{n \rightarrow \infty} X_{n} / n=v_{0}$, and $v_{0}>0 \Longleftrightarrow \delta>2$.
No explicit formula is known for v_{0}.

Limiting Distributions for Excited Random Walks

Theorem (Basdevant \& Singh '08, Kosygina \& Zerner '08, Dolgopyat '11)

Excited random walks have the following limiting distributions.

$$
\begin{array}{ccc}
\text { Regime } & \text { Re-scaling } & \text { Limiting Distribution } \\
\delta \in(1,2) & \frac{X_{n}}{n^{\delta / 2}} & \left(\frac{\delta}{2} \text {-stable }\right)^{-\delta / 2} \\
\delta \in(2,4) & \frac{X_{n}-n v_{0}}{n^{2 / \delta}} & \text { Totally asymmetric } \frac{\delta}{2} \text {-stable } \\
\delta>4 & \frac{X_{n}-n v_{0}}{A \sqrt{n}} & \text { Gaussian }
\end{array}
$$

Results are also known for other values of δ.
Note: $\delta>1$ results similar to transient RWRE.

Limiting Distributions for Excited Random Walks

Theorem (Basdevant \& Singh '08, Kosygina \& Zerner '08, Dolgopyat '11)

Hitting times $T_{n}=\min \left\{k \geq 0: X_{k}=n\right\}$ of excited random walks have the following limiting distributions.

$$
\begin{array}{ccc}
\text { Regime } & \text { Re-scaling } & \text { Limiting Distribution } \\
\delta \in(1,2) & \frac{T_{n}}{n^{2 / \delta}} & \text { Totally asymmetric } \frac{\delta}{2} \text {-stable } \\
\delta \in(2,4) & \frac{T_{n}-n / v_{0}}{n^{2 / \delta}} & \text { Totally asymmetric } \frac{\delta}{2} \text {-stable } \\
\delta>4 & \frac{T_{n}-n / v_{0}}{A \sqrt{n}} & \text { Gaussian }
\end{array}
$$

Results are also known for other values of δ.
Note: $\delta>1$ results similar to transient RWRE.

Large Deviations for Excited Random Walks

Theorem (P. '12)

X_{n} / n has a large deviation principle with rate function $I_{X}(x)$. That is, for any open $G \subset[-1,1]$

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log P\left(X_{n} / n \in G\right) \geq-\inf _{x \in G} I_{X}(x)
$$

and for any closed $F \subset[-1,1]$

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P\left(X_{n} / n \in F\right) \leq-\inf _{x \in F} I_{X}(x)
$$

Informally, $P\left(X_{n} \approx x n\right) \approx e^{-n I_{x}(x)}$.

Large Deviations for Hitting Times of Excited Random Walks

$$
T_{x}=\inf \left\{n \geq 0: X_{n}=x\right\}, \quad x \in \mathbb{Z} .
$$

Theorem (P. '12)
T_{n} / n has a large deviation principle with rate function $I_{T}(t)$.

Large Deviations for Hitting Times of Excited Random Walks

$$
T_{x}=\inf \left\{n \geq 0: X_{n}=x\right\}, \quad x \in \mathbb{Z} .
$$

Theorem (P. '12)

T_{n} / n has a large deviation principle with rate function $I_{T}(t)$. T_{-n} / n has a large deviation principle with rate function $\bar{I}_{T}(t)$.

Large Deviations for Hitting Times of Excited Random Walks

$$
T_{x}=\inf \left\{n \geq 0: X_{n}=x\right\}, \quad x \in \mathbb{Z} .
$$

Theorem (P. '12)

T_{n} / n has a large deviation principle with rate function $I_{T}(t)$.
T_{-n} / n has a large deviation principle with rate function $\bar{I}_{T}(t)$.
Implies LDP for X_{n} / n.

$$
\begin{gathered}
P\left(X_{n}>x n\right) \approx P\left(T_{x n}<n\right) \\
I_{X}(x)= \begin{cases}x I_{T}(1 / x) & x \in(0,1] \\
0 & x=0 \\
|x| \bar{I}_{T}(1 /|x|) & x \in[-1,0)\end{cases}
\end{gathered}
$$

Properties of the rate function $I_{X}(x)$

(1) $I_{X}(x)$ is a convex function.

Properties of the rate function $I_{X}(x)$

(1) $I_{X}(x)$ is a convex function.
(2) Zero Set

- $\delta \in[-2,2]: \quad I_{X}(x)=0 \Longleftrightarrow x=0$.
- $\delta>2$: $\quad I_{X}(x)=0 \Longleftrightarrow x \in\left[0, v_{0}\right]$.

Properties of the rate function $I_{X}(x)$

(1) $I_{X}(x)$ is a convex function.
(2) Zero Set

- $\delta \in[-2,2]: \quad I_{X}(x)=0 \Longleftrightarrow x=0$.
- $\delta>2$: $\quad I_{x}(x)=0 \Longleftrightarrow x \in\left[0, v_{0}\right]$.
(3) Derivatives
- $I_{x}^{\prime}(0)=\lim _{x \rightarrow 0} I_{x}(x) / x=0$.

Properties of the rate function $I_{T}(t)$

($I_{T}(t)$ is a convex function.

Properties of the rate function $I_{T}(t)$

(1) $I_{T}(t)$ is a convex function.
(2) Zero Set

- $\delta \in[-2,2]: \quad I_{T}(t)>0$ but $\lim _{t \rightarrow \infty} I_{T}(t)=0$.
- $\delta>2$:
$I_{T}(t)=0 \Longleftrightarrow t \geq 1 / v_{0}$.

Slowdown probability asymptotics

$I_{x}(x)=0 \Longleftrightarrow x \in\left[0, v_{0}\right]$.
$P\left(X_{n}<x n\right)$ decays sub-exponentially for $x \in\left[0, v_{0}\right]$.

Slowdown probability asymptotics

$I_{x}(x)=0 \Longleftrightarrow x \in\left[0, v_{0}\right]$.
$P\left(X_{n}<x n\right)$ decays sub-exponentially for $x \in\left[0, v_{0}\right]$.

Theorem (P. '12)

If $\delta>2$, then

$$
\lim _{n \rightarrow \infty} \frac{\log P\left(X_{n}<x n\right)}{\log n}=1-\frac{\delta}{2}, \quad \forall x \in\left(0, v_{0}\right)
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\log P\left(T_{n}>t n\right)}{\log n}=1-\frac{\delta}{2}, \quad \forall t>1 / v_{0} .
$$

Similar to slowdown asymptotics for RWRE.

Associated branching process with migration

Associated branching process with migration

$$
\begin{aligned}
& T_{n}=n+2 \sum_{i<n} D_{i}^{(n)} \\
& \quad D_{i}^{(n)}=\# \text { steps } \leftarrow \text { from } i \text { before } T_{n}
\end{aligned}
$$

Associated branching process with migration

$$
D_{i}^{(n)}=\# \text { steps } \leftarrow \text { from } i \text { before } T_{n}
$$

