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Introduction

In this paper I will discuss an investigation of the qualitative
properties of stochastic di�erential equations by reducing them to
ordinary di�erential equations. Namely the stochastic case will be
reduced to the deterministic case. My talk is dedicated to
investigation of conditions under which such an approach is
possible.
This paper consists of two parts. The �rst one deals with a study of
an asymptotical behavior of solutions of stochastic systems for
t →∞ by studying an asymptotical behavior of solutions of
speci�c deterministic systems. In the second part I will talk about
an existence of stable, invariant deterministic manifolds for
stochastic systems, which allow to transform the original stochastic
system into a deterministic system of ordinary di�erential
equations. That is to investigate a stochastic system by reducing it
to deterministic one.

A. Stanzhytskyi A study of stochastic equations by reducing them to ODE



Statement of the problem

Consider the stochastic Ito system

dy = g(t, y)dt + σ(t, y)dW (t), (1)

where

I g(t, y), σ(t, y) are continuous in t ≥ 0, y ∈ Rn and satisfy the
global Lipschitz condition in y ,

I W (t) is a usual scalar Wiener process de�ned for t ≥ 0 on the
probability space (Ω,F,P),

I {Ft , t ≥ 0} is a family of σ-algebras s.t. W (t) is consistent
with Ft .

The system (1) subject to the initial condition y(t0) = y0,
E|y0|2 <∞ has a unique solution y(t) for t ≥ t0 ≥ 0.
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Statement of the problem

We study the asymptotic behavior of the solutions of (1) for
t →∞. The analysis will be carried out using the well known in
ordinary di�erential equations (ODE) method of asymptotic

equivalence, when the solutions of the original system for t →∞
behave similarly to the solutions of a simpler system.

In our case we will be comparing the solutions of the original
stochastic system with the solutions of a specially constructed
deterministic system.

Along with (1) consider the deterministic system

dx = f (t, x)dt (2)
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Statement of the problem

Def.1.If for every solution y(t) of (1) one can �nd a solution x(t)
of (2) s.t.

lim
t→∞

E|x(t)− y(t)|2 = 0,

then the system (2) is called asymptotically corresponding to the

system (1) in square mean.

Def.2.If for every solution y(t) of (1) one can �nd a solution x(t)
of (2) s.t., with probability one

lim
t→∞

|x(t)− y(t)| = 0,

then the system (2) is called asymptotically corresponding to the

system (1) with probability 1.

Our main question of interest is the following: under which
conditions can one construct an ODE system (2) which is
asymptotically corresponding to the stochastic system (1) in the
sense of the De�nitions 1 and 2?
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Existing results and motivation. Levinson THM

The approach described above is well known in ODE. The classic
results in this direction are due to Wintner, Levinson and
Yakubovich. Levinson Theorem (1948) gives the conditions of the
asymptotic equivalence of linear systems

dy

dt
= (A + B(t))y (3)
dx

dt
= Ax (4)

THM.(Levinson) If all solutions of (4) are bounded for t ≥ 0 and

the condition ∞∫
0

||B(t)||dt <∞, (5)

holds, then the systems (3) and (4) are asymptotically equivalent,

i.e. one can �nd a one-to-one correspondence between their

solutions y(t) and x(t) s.t.

lim
t→∞

|x(t)− y(t)| = 0.
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Wintner THM

A result similar to Levinson Theorem was obtained by Wintner
(1946). He considered the systems

dx

dt
= A1(t)x ,

dy

dt
= A2(t)y .

THM.(Wintner) Let A1(t), A2(t) be continuous for t ≥ 0 and

1. every solution y(t) is bounded for t ≥ 0;

2. lim inft→∞
t∫
0

SpA2(s)ds > −∞;

3.
∞∫
0

||A1(s)− A2(s)||ds <∞.

Then we can �nd a one-to-one correspondence between the

solutions of these systems such that

|x(t)− y(t)| = O(

∞∫
t

||A1(t)− A2(t)||ds)→ 0, t →∞.
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Yakubovich THM

Both Levinson and Wintner theorems are based on one important
condition: the solutions of unperturbed system are bounded for
t →∞. Yakubovich (1951) generalized the results of Levinson and
Wintner for the case of unbounded solutions of the unperturbed
system. The following systems were considered

dy

dt
= Ay + f (t, y) (6)

dx

dt
= Ax . (7)

with |f (t, y)| ≤ g(t)|y | and satisfying the Lipschitz condition

|f (t, y1)− f (t, y2)| ≤ g(t)|y1 − y2|,

f (t, 0) = 0.
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Yakubovich THM

THM.(Yakubovich) Let f satisfy the conditions above and

∞∫
0

tm+p−2eλtg(t)dt <∞.

Then there is a one-to-one correspondence between the solutions

of (6) and (7) s.t.

|x(t)− y(t)| → 0, t →∞, (8)

Moreover, the rate of convergence in (8) is speci�ed.

Here λ = maxRe(λi ), where {λi} are the eigenvalues of A, m is
the maximal size of the Jordan cell for which Re(λi ) = λ, p is the
maximal size of the Jordan cell for which Re(λi ) = 0 , p = 1 if
there are no such λi .
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Ahmetov THM

Among the recent results we mention the results of Ahmetov
(2007). He studied the case A = A(t). Consider the systems

dy

dt
= (A(t) + B(t))y (9)

and
dx

dt
= A(t)x (10)

Let X (t) be the matriciant of the system (10), X (0) = E .
Set u := X−1(t)y with y solving (9). Then, clearly, u satis�es

u̇ = P(t)u, P(t) = X−1(t)B(t)X (t).
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Ahmetov THM

Consider the following conditions:

C1)
∞∫
0

‖P(t)‖dt <∞.

C2) lim
t→∞

X (t)Φ(t) = 0, where Φ(t) is the solution of

φ̇ = P(t)(φ+ E ) (11)

s.t. Φ(t)→ 0, t →∞ (the existence of such Φ was established).

THM.(Ahmetov) Under the conditions C1 and C2 the systems (9)

and (10) are asymptotically equivalent.
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Motivation

After the pioneering works of Levinson, Wintner and Yakubovich,
the problem of asymptotic equivalence of di�erential systems
including linear, nonlinear and functional equations has been
investigated by many authors.

Our goal is to establish similar results for stochastic systems, i.e. to
compare the solutions of stochastic systems with the solutions of
deterministic systems, and thus, to reduce the analysis of stochastic
systems to the analysis of deterministic systems. This will enable us
to address many issues of the qualitative theory of stochastic
systems, including stability, dissipativity, dichotomy, theory of
Lyapunov exponents etc., since those issues are well-established for
deterministic systems.

In this work we will describe one of the applications of this method
to the oscillation theory.
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Main results. Analog of Levinson Theorem

Consider two systems, one of which is deterministic and the other is
stochastic:

dx = Axdt (12)

dy = (A + B(t))ydt + D(t)y dW (t), (13)

where B(t) and D(t) are measurable matrices for t ≥ 0.
THM. Let the system (12) be stable for t ≥ 0, i.e. all its solutions
are bounded for t ≥ 0. If

∞∫
0

‖B(t)‖dt <∞ and

∞∫
0

‖D(t)‖2dt <∞,

then the system (12) is asymptotically corresponding to the system

(13) both in square mean and with probability 1.

A similar result is also true for weakly nonlinear stochastic systems.
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Main results. More general setting

We now give a more general result. We consider the situation when
the matrix of the linear part is nonconstant, and unperturbed
system (12) may have unbounded solutions. This result is novel
even for deterministic systems.
Consider nonlinear Ito system

dy = (A(t)y + f (t, y))dt + σ(t, y)dW (t) (14)

and unperturbed system of ODEs

dx = A(t)xdt. (15)

The matrix A(t) is continuous and bounded on R1,
a := sup

t∈R1

‖A(t)‖. The functions f (t, y), σ(t, y) are continuous for

t ≥ 0, y ∈ Rn and Lipschitz in y . As we mentioned above, this
guarantees the existence of the unique solution of y(t0) = y0,
E|y0|2 <∞, for t ≥ t0 ≥ 0.
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Main result

Additionally, f and σ are small in the following sense: there exist
nonnegative functions ν, ρ s.t. for t ≥ 0 and x ∈ Rn,
|f (t, x)| ≤ ν(t)|x |, |σ(t, x)| ≤ ρ(t)|x |.
Let X (t) be the fundamental matrix of (15), X (0) = E .
Main condition on unperturbed system: (15) is exponentially
dichotomic on R, i.e. there exist positive constants N1,N2, ν1, ν2
and complementing projectors P1, P2 s.t.

‖X (t)P1X
−1(s)‖ ≤ N1e

−ν1(t−s), t ≥ s

‖X (t)P2X
−1(s)‖ ≤ N2e

−ν2(t−s), s ≥ t.

THM. If
∞∫
0

eatν(t)dt <∞ and
∞∫
0

e2atρ2(t)dt <∞, then (15) is

asymptotically corresponding to (14) in square mean. If the second

condition is replaced with
∞∫
0

te2atρ2(t)dt <∞, then (15) is

asymptotically corresponding to (14) with probability 1.
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Linear case

Consider the case when (14) is linear:

dy = (A(t) + B(t))ydt + D(t)ydW (t), (16)

where B(t),D(t) are continuous deterministic matrices.

In this case we obtain a stronger result, namely, we can show that
there exists a correspondence between the systems (16) and (15)
s.t. each nontrivial solution of the system (16) corresponds to a
nontrivial solution of (15). Here, nontrivial solution is the solution
that becomes identically zero with zero probability.
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Main result in linear case

THM. Let the system (15) be exponentially dichotomic on R.
Assume the following conditions hold:

1)
∞∫
0

e2at‖B(t)‖2dt <∞;

2)
∞∫
0

te2at‖D(t)‖2dt <∞.

Then the system (15) is asymptotically corresponding to the system
(16) both in square mean and with probability one. Moreover, we
can construct the correspondence between their solutions in such
way that every nontrivial solution of the system (16) corresponds to
a nontrivial solution of (15).
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Corollary about stability in linear case

In the course of the proof of this Theorem, we obtain an important
corollary about the behavior of solutions of (16).
Corollary.

I If the system (15) is exponentially stable, that is in the
de�nition of dichotomy the projector P2 is zero, all the
solutions of (16) converge to zero for t →∞ both in square
mean and with probability one.

I If (15) is exponentially unstable, that is in the de�nition of
dichotomy the projector P1 is zero, all nontrivial solutions of
(16) go to in�nity for t →∞ both in square mean and with
probability one.
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Exponential dichotomy

Next we will talk about speci�c applications of these results. Earlier we
have de�ned an exponential dichotomy for linear system of ordinary
di�erential equations

dx = A(t)xdx . (17)

Def.3.We say that the system (17) is exponential dichotomous on the

axis if the space Rn could be presented as the direct sum of two

subspaces R−,R+: Rn = R− ⊕ R+ s.t. any solution x(t, x0) of the

system (17) with x(0, x0) = x0 ∈ R− satis�es the inequality

|x(t, x0)| ≤ K exp−j(t − τ)|x(τ, x0)|

for t ≥ τ , and any solution x(t, x0) of the system (17) with

x(0, x0) = x0 ∈ R+ satis�es the inequality

|x(t, x0)| ≥ K1 exp j1(t − τ)|x(τ, x0)|

for t ≥ τ , where τ ∈ R, some constants K ,K1, j , j1 are undependable of

τ and x0. That is the solution which has a start from subspace R− (

R+) /stable (unstable) subspace/ decrease (increase) exponentially.
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Exponential dichotomy

Similar problems for stochastic systems

dy = A(t)ydy + B(t)ydW (t) (18)

were studied in collaboration with A.M.Samojlenko.
Def.4.We say that the system (18) is exponential dichotomous in square

mean for t ≥ 0 if the space Rn could be presented as the direct sum of

two subspaces R−,R+ s.t. any solution x(t, x0) of the system (18) with

x(0, x0) = x0 ∈ R− satis�es the inequality

E|x(t, x0)|2 ≤ K exp−j(t − τ)E|x(τ, x0)|2 (19)

for t ≥ τ ≥ 0, and any solution x(t, x0) of the system (18) with

x(0, x0) = x0 ∈ R+ satis�es the inequality

E|x(t, x0)|2 ≥ K1 exp j1(t − τ)E|x(τ, x0)|2 (20)

for t ≥ τ ≥ 0, where τ ∈ R, some constants K ,K1, j , j1 are undependable

of τ and x0. That is the second mathematical moments of solutions

decrease or increase exponentially, which depends on a subspace where

the solutions have a start.
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Exponential dichotomy

Next we are interested with the behavior of trajectories with
probability 1. Obtained above results about asymptotical
equivalence give us an opportunity to study this issue.
THM. Let the matrices B(t) and D(t) from the system (16) tend
to zero as t →∞ and conditions of the previous theorem are

satis�ed. Then ∃t0 > 0 s.t. for t ≥ t0 the system (16) is
exponentially dichotomous. Moreover solutions which have a start

from R− (from Def.4) tend to zero with probability 1 as t →∞,

and solutions which do not have a start from R− tend over norm to

in�nity with probability 1 as t →∞.
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Application to a study of the Oscillation Theory for

stochastic linear second order equations

We now illustrate the application of the theory above to the
practical example. Based on the theorem on asymptotic
correspondence we built the analog of Sturm oscillation theory for
linear stochastic second order equations of the type

ẍ + (p(t) + q(t)Ẇ (t))x = 0, (21)

where x ∈ R, t ≥ 0; p(t), q(t) are continuous functions and ˙W (t)
is the generalized derivative of the standard Wiener process.
The equation (21) is a mathematical model of various real-life
processes in mechanics, which are in�uenced by random factors.
The corresponding unperturbed ODE

ẍ + p(t)x = 0 (22)

describes the motion of a mechanical system, which is in�uenced
by the elastic force with elasticity coe�cient p(t).
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Application to the Oscillations Theory

However, the coe�cient p(t) is only the average value of the true
elasticity coe�cient. Its true value is a random process with a small
correlation interval. Therefore the model (21) is more accurate.

We now set aside the mechanical aspect and focus on the
mathematical model. The equation (21) is not rigorous as is
because the derivative of Wiener process does not exist. Therefore
we will understand (21) as a system of stochastic Ito equations{

dx1 = x2dt

dx2 = −p(t)x1dt − q(t)x1dW (t).
(23)

which is absolutely rigorous now. In this notation, x(t) = x1(t).
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Concept of oscillation for random processes

We now introduce the notion of the �rst zero of the solution of
(23), then introduce the concepts of oscillating / non-oscillating
solutions on semi-axis.

Since the solutions of (23) are random processes with certain
properties, introducing the concept of zero requires a subtle
construction, unlike in the deterministic case.

Clearly the zeros of the solution are the random variables.
Therefore, we need to introduce a zero in such a way that it is a
Markov's moment relatively to the family of σ- algebras in the
de�nition of the solution.
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Zeros of the solution

De�ne the random variable τ1 as

τ1 := inf{t > t0|x1(t) = 0},
if the set over which in�mum is taken in non-empty and τ1 = +∞
otherwise.
Def. The random variable τ1 is called the �rst zero of x(t) on the

interval t > t0 if τ1 < +∞ with probability 1.

Since (23) is linear and x1(t) is smooth, it is not di�cult to show
that in some neighborhood of the �rst zero τ1 the component x1(t)
is di�erent from zero. Thus we can de�ne the random variable τ2 as

τ2 := inf{t > τ1 : x1(t) = 0},
if the set over which in�mum is taken in non-empty and τ2 = +∞
otherwise. If τ2 < +∞ with probability 1, it is called the second

zero of x(t) on the interval t > t0.
By induction we can de�ne a sequence of zeros {τn} of the solution
x(t) on the interval t > t0. If t0 = 0, then we have zeros on the
semi-axis t ≥ 0.
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Oscillating solutions

This sequence of zeros is a sequence of Markov's moments, which
often enables us to work with them as with deterministic (for
example, we can perform stochastic di�erentiation on the interval
(τn−1, τn).)

Def. A nontrivial solution x(t) of (21) is called oscillating on the

semi-axis t > 0 if it has in�nitely many zeros on this interval.

Let I = (t0, t1) be a bounded interval, x(t) be a nontrivial solution
of (21) for t ≥ t0, τ1 is the �rst zero on the interval t > t0
(assuming that it exists).

Def. We say that the solution x(t) has the �rst zero on the interval

I if t0 < τ1 < t1 with probability 1.

Def.The solution x(t) is called oscillating on I if it has at least two

zeros τ1, τ2 on the interval t > t0 and with probability 1, τ1 ∈ I and

τ2 ∈ I .
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Sturm Oscillation Theory for SDE

The following analog of the theorem from the classic Sturm
oscillation theory holds:
Lemma. With probability 1 any nontrivial solution of (21) has at

most �nite number of zeros on a �nite interval.

We now give the analog of the Comparison Theorem. Along with
(21) consider a similar equation

ÿ + (p̃(t) + q(t)Ẇ (t))y = 0. (24)

From now on, I = (t0, t1) is a bounded interval.
THM.(Comparison) Assume p̃(t) ≥ p(t) on I . Then, if τ1, τ2 are

two consecutive zeros of a solution of (21) on I , then any solution

y(t) of the equation (23) has at least one zero τ on the interval I
and, with probability 1, τ1 ≤ τ ≤ τ2.
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Sturm Oscillation Theory for SDE

As a corollary of the Comparison Theorem, we get
THM. Let τ1, τ2 be two consecutive zeros of a solution x(t) of

(21) on I . Then any other solution x̃(t) of (21), which is linearly

independent with x(t), has exactly one zero on the open stochastic

interval (τ1, τ2).

THM.(Non-oscillation) If p(t) ≤ 0 for t ≥ t0 and
∞∫
t0

q2(t)dt <∞,

then all nontrivial solutions of (21) are not oscillating on the

semi-axis.
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Auxiliary equation

Consider the equation

ẍ + (a2 + q(t)Ẇ (t))x = 0, (25)

which plays the role of a standard equation

ẍ + a2x = 0

in the deterministic oscillation theory. Since we can solve the last
equation, we know everything about its solutions, e.g. we know
that the exact distance between two consecutive zeros is π

a .
Unfortunately, its stochastic analog (25) cannot be solved explicitly.
However, we can obtain some asymptotic results for it.

THM. Let
∞∫
0

q2(t)dt <∞. Then all the solutions x(t) of the

equation (24) are oscillating on the semi-axis and with probability 1

ξn = τn+1 − τn →
π

a
, n→∞,

where τn and τn+1 are two consecutive zeros.
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Oscillation and asymptotics of the zeros for t →∞.

Denote
m = inf

t≥0
p(t) and M = sup

t≥0
p(t).

THM. Let p(t) be a continuous function and such that on any

subinterval of the positive semiaxis the condition

0 < m < p(t) < M <∞ holds. If, additionally,
∞∫
0

q2(t)dt <∞,

then all the solutions of (21) are oscillating on the semiaxis [0,∞).
Moreover, for any ε > 0 s.t. ε < 2√

M
there exists a random variable

T (ω) > 0, so that for any nontrivial solution x(t) of the equation

(21) for τn ≥ T (ω) we can estimate the distance between two

consecutive zeros with probability 1:
π√
M
− ε ≤ τn+1 − τn ≤

π√
m

+ ε. (26)
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Examples

Example 1. Bessel equation perturbed with white noise:

ẍ(t) + (1−
ν2 − 1

4

t2
+ q(t)ẇ(t))x(t) = 0, (27)

where
∞∫
0

q2(t)dt <∞. The previous theorem implies that with

probability 1 we can estimate the distance between two consecutive
zeros of (27): lim

n→∞
(τn+1 − τn) = π. This result is the same as for

the ordinary equations.
Example 2. Airy equation perturbed with white noise:

ẍ(t) + (t + q(t)ẇ(t))x(t) = 0 (28)

where, as before,
∞∫
0

q2(t)dt <∞. From the previous theorem,

lim
n→∞

(τn+1 − τn) = 0.
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Invariant sets of stochastic systems

We consider the stochastic system

dx = a(t, x)dt +
k∑

r=1

br (t, x)dWr (t), (29)

where t ≥ 0, x ∈ Rn, a, br , r = 1, k are vectors in Rn, W1, ...,Wr

are undependable, scalar standard Wiener processes.
We assume that a, br are non random and s.t. the equation (29)
has unique strong solution with initial values x(t0) = x0 ∈ Rn for
t ≥ t0.
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Invariant sets of stochastic systems

We denote S is some Borrel set in {t ≥ 0} × Rn. Also let St be a
set in Rn s.t. St = {x ∈ Rn : (t, x) ∈ S} and let St 6= ∅ for all
t ≥ 0.
Def.5.We say that a set S is positively invariant for the

system (29) if

P{(t, x(t, t0, x0)) ∈ S , ∀t ≥ t0} = 1 (30)

for (t0, xo(ω)) ∈ S with probability 1, where x(t, t0, x0) is a

solution of the system (29) s.t. x(t0, t0, x0) = x0 for t0 ≥ 0
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Invariant sets of stochastic systems

Let us consider the case when over an invariant set the original
stochastic system could be transformed in deterministic one. Then
an investigation of stochastic system stability could be reduced to
an investigation of deterministic system stability.
We consider for x ∈ Rn, y ∈ Rm, t ≥ 0 the Ito type stochastic
system: {

dx = X (x , y)dt
dy = A(t)ydy + σ(t, x , y)dW (t)

(31)

where σ(t, x , y) is m × r -dimensional matrix, W (t) is
r -dimensional Wiener process with undependable components.
We believe X (x , y), σ(t, x , y) are Lipshitz over x , y for t ≥ 0,
x ∈ Rn, y ∈ Rm with constants L1 and L2 correspondingly.
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Invariant sets of stochastic systems

Let the matriciant Φ(t, τ) of the linear system

dy

dx
= A(t)y

permits an estimation

‖Φ(t, τ)‖ ≤ Re−ρ(t−τ), (32)

where R, ρ are positive constants, undependable of t and τ .
Also we suppose that

σ(t, x , 0) ≡ 0 (33)

The last equivalence means that the system (31) has the invariant
set {y = 0}, over which this systemm could be transformed into
deterministic one

dx

dt
= X (x , 0) (34)

As well let X (0, 0) = 0.
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Invariant sets of stochastic systems

Hence the stochastic system (31) has zero solution x = 0, y = 0, so
we will investigate the stability of this solution.
For convenience we de�ne z = (x , y), z0 = (x0, y0). The stability
we understand in the sense of square mean, that is in the sense of
the next de�nition.
Def.6.We say that zero solution of the system (31) is square mean

stable if for all ε > 0 exists δ s.t.

E|z(t, t0, z0)|2 < ε,

for t ≥ 0 and E|z0|2 < δ.
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Invariant sets of stochastic systems

THM. Let the zero solution of the system (34) be uniformly

asymptotically stable and

L2 <

√
2ρ

R
.

Then the zero solution of the system (31) is square mean stable

uniformly on t0 ≥ 0.
I would like to emphasize that this paper introduced only one of the
results of such type, when an investigation of stochastic system
stability was reduced to an investigation of deterministic system
stability.
Analogous results could be obtained for other type systems. Similar
methods could be used to study the stability of more complex
invariant sets than point ones. In this case there is need to use
Lyapunov functions.
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Thank you for your attention!!!

Announcement: conference in di�erential and stochastic di�erential
equations, in honor of 75th anniversary of A.M. Samoilenko

June 23-30, 2012, Sevastopol, Ukraine

More information: www.imath.org.ua
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