Self-interacting Random Walks

Jonathon Peterson

Purdue University Department of Mathematics

September 16, 2013

Simple Random Walk

Simple random walk on $\ensuremath{\mathbb{Z}}$

Simple Random Walk

Simple random walk on $\ensuremath{\mathbb{Z}}$

Simple (symmetric) random walk on \mathbb{Z}^d

Recurrent: RW returns to starting location infinitely many times. **Transient:** RW returns only finitely many times.

Recurrent: RW returns to starting location infinitely many times. **Transient:** RW returns only finitely many times.

Theorem

Simple RW on \mathbb{Z} is recurrent $\iff p = 1/2$.

Recurrent: RW returns to starting location infinitely many times. **Transient:** RW returns only finitely many times.

Theorem

Simple RW on \mathbb{Z} is recurrent $\iff p = 1/2$.

Theorem

Simple symmetric RW on \mathbb{Z}^d is

- recurrent if d = 1, 2.
- ▶ transient if d ≥ 3.

Recurrent: RW returns to starting location infinitely many times. **Transient:** RW returns only finitely many times.

Theorem

Simple RW on \mathbb{Z} is recurrent $\iff p = 1/2$.

Theorem

Simple symmetric RW on \mathbb{Z}^d is

- recurrent if d = 1, 2.
- transient if d ≥ 3.

Random walks and electric networks by Doyle and Snell. http://arxiv.org/abs/math/0001057

Simple Random Walk

Theorem (Law of Large Numbers)

$$\lim_{n\to\infty}\frac{S_n}{n}=2p-1,\quad P-a.s.$$

Proof:

$$S_n = \sum_{i=1}^n \xi_i$$

Simple Random Walk

Theorem (Law of Large Numbers)

$$\lim_{n\to\infty}\frac{S_n}{n}=2p-1,\quad P-a.s.$$

Proof:

$$S_n = \sum_{i=1}^n \xi_i$$

Theorem (Central Limit Theorem)

Let v = 2p - 1 and $\sigma = 2\sqrt{p(1-p)}$. Then,

$$\lim_{n\to\infty} P\left(\frac{S_n-nv}{\sigma\sqrt{n}}\leq x\right)=\int_{-\infty}^x \frac{1}{\sqrt{2\pi}}e^{-t^2/2}dt.$$

Brownian Motion

$$t\mapsto \frac{S_{\lfloor nt\rfloor}-ntv}{\sigma\sqrt{n}}$$

Brownian Motion (higher dimensions)

Classical random walks

$$S_n = \sum_{i=1}^n \xi_i$$

with $\{\xi_i\}_{i\geq 1}$ independent and identically distributed.

Classical random walks

$$S_n = \sum_{i=1}^n \xi_i$$

with $\{\xi_i\}_{i\geq 1}$ independent and identically distributed.

Drawbacks of the classical model

- Spatial homogeneity
- Temporal homogeneity
- Independent increments

Self-avoiding random walk

${X_k}_{k \le n}$ - uniform from all self-avoiding paths of length *n*.

Simulation from Tom Kennedy

Self-avoiding random walk

${X_k}_{k \le n}$ - uniform from all self-avoiding paths of length *n*.

Simulation from Tom Kennedy

Conjecture

The paths $\{X_k/n^{2/3}\}_{k \le n}$ converge in distribution to an SLE_{8/3} process.

- Initial edge weights $\equiv 1$
- Edge weights increase by c when crossed
- Steps taken proportional to edge weights

• Initial edge weights $\equiv 1$

- Edge weights increase by c when crossed
- Steps taken proportional to edge weights

- Initial edge weights $\equiv 1$
- Edge weights increase by c when crossed
- Steps taken proportional to edge weights

- Initial edge weights $\equiv 1$
- Edge weights increase by c when crossed
- Steps taken proportional to edge weights

• Initial edge weights $\equiv 1$

- Edge weights increase by c when crossed
- Steps taken proportional to edge weights

- Initial edge weights $\equiv 1$
- Edge weights increase by c when crossed
- Steps taken proportional to edge weights

- Initial edge weights $\equiv 1$
- Edge weights increase by c when crossed
- Steps taken proportional to edge weights

- Initial edge weights $\equiv 1$
- Edge weights increase by c when crossed
- Steps taken proportional to edge weights

Conjecture

The ERRW is recurrent in \mathbb{Z}^2 for any reinforcement c > 0.

(M, p) Cookie Random Walk Initially *M* cookies at each site.

(M, p) Cookie Random Walk Initially *M* cookies at each site.

• Cookie available: Eat cookie. Move right with probability $p \in (0, 1)$

(M, p) Cookie Random Walk Initially *M* cookies at each site.

▶ Cookie available: Eat cookie. Move right with probability $p \in (0, 1)$

(M, p) Cookie Random Walk Initially *M* cookies at each site.

• Cookie available: Eat cookie. Move right with probability $p \in (0, 1)$

(M, p) Cookie Random Walk Initially *M* cookies at each site.

- **Cookie available:** Eat cookie. Move right with probability $p \in (0, 1)$
- No cookies: Move right/left with probability ¹/₂.

(M, p) Cookie Random Walk Initially *M* cookies at each site.

- **Cookie available:** Eat cookie. Move right with probability $p \in (0, 1)$
- No cookies: Move right/left with probability ¹/₂.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

Question: Is the cookie random walk recurrent or transient? Simple case: 1 cookie per site, strength p > 1/2.

When reaching *n*, what is the probability of reaching n + 1 before returning to 0?

P(never return to 0 after hitting
$$n$$
) = $\prod_{k=n}^{\infty} \left(1 - \frac{2(1-p)}{k}\right) = 0.$

Question: Is the cookie random walk recurrent or transient? Simple case: 1 cookie per site, strength p > 1/2.

When reaching *n*, what is the probability of reaching n + 1 before returning to 0?

P(never return to 0 after hitting
$$n$$
) = $\prod_{k=n}^{\infty} \left(1 - \frac{2(1-p)}{k}\right) = 0.$

Question: Is the cookie random walk recurrent or transient? Simple case: 1 cookie per site, strength p > 1/2.

When reaching *n*, what is the probability of reaching n + 1 before returning to 0?

P(never return to 0 after hitting
$$n$$
) = $\prod_{k=n}^{\infty} \left(1 - \frac{2(1-p)}{k}\right) = 0.$

Question: Is the cookie random walk recurrent or transient? Simple case: 1 cookie per site, strength p > 1/2.

When reaching *n*, what is the probability of reaching n + 1 before returning to 0?

р

P(never return to 0 after hitting
$$n$$
) = $\prod_{k=n}^{\infty} \left(1 - \frac{2(1-p)}{k}\right) = 0.$

Question: Is the cookie random walk recurrent or transient? Simple case: 1 cookie per site, strength p > 1/2.

When reaching *n*, what is the probability of reaching n + 1 before returning to 0?

$$p + (1 - p)P_{SSRW}(reach n + 1 before 0 | S_0 = n - 1)$$

P(never return to 0 after hitting
$$n$$
) = $\prod_{k=n}^{\infty} \left(1 - \frac{2(1-p)}{k}\right) = 0.$

I

Question: Is the cookie random walk recurrent or transient? Simple case: 1 cookie per site, strength p > 1/2.

When reaching *n*, what is the probability of reaching n + 1 before returning to 0?

$$p + (1 - p)P_{\text{SSRW}}(\text{reach } n + 1 \text{ before } 0 \mid S_0 = n - 1)$$
$$= p + (1 - p)\frac{n - 1}{n + 1} = 1 - \frac{2(1 - p)}{n}$$

 $P(\text{never return to 0 after hitting } n) = \prod_{k=n}^{\infty} \left(1 - \frac{2(1-p)}{k}\right) = 0.$

Cookie RW with 1 cookie are always recurrent. **Question:** When can a cookie RW be transient? Key parameter: total drift per site

$$\delta = \sum_{i=1}^{M} (2p_i - 1).$$

Theorem (Zerner '05, Zerner & Kosygina '08)

The cookie random walk is

- recurrent if $\delta \in [-1, 1]$.
- transient to the right if $\delta > 1$.
- transient to the left if $\delta < -1$.

Cookie Random Walks - Limiting Speed

Question: Is there a limiting speed of the cookie RW?

$$\lim_{n\to\infty}\frac{X_n}{n}=v_0?$$

Theorem (Basdevant & Singh '07, Zerner & Kosygina '08)

The limiting speed $\lim_{n\to\infty} X_n/n = v_0$ exists and is constant. Moreover

$$\blacktriangleright v_0 > 0 \iff \delta > 2.$$

$$\triangleright \ \mathbf{v}_{\mathbf{0}} = \mathbf{0} \iff \delta \in [-2, 2].$$

$$\blacktriangleright \ v_0 < 0 \iff \delta < -2.$$

A transient cookie RW with "zero-speed"

An example with $\delta = 1.4$.

The limiting speed

Open Problem

For a given cookie sequence $\vec{p} = (p_1, p_2, ..., p_M)$ with $\delta = \delta(\vec{p}) > 2$, compute the limiting speed $v_0 = v_0(\vec{p})$.

The limiting speed

Open Problem

For a given cookie sequence $\vec{p} = (p_1, p_2, ..., p_M)$ with $\delta = \delta(\vec{p}) > 2$, compute the limiting speed $v_0 = v_0(\vec{p})$.

Open even for 3 cookies, all of strength p > 5/6.

Simulation from Basdevant and Singh

Jonathon Peterson

Monotonicity in the cookie sequence

Cookie sequences \vec{p} and \vec{q} .

$$ec{p} = (.85, .9, .95)$$
 $\delta(ec{p}) = 2.4$
 $ec{q} = (.8, .9, .95)$ $\delta(ec{q}) = 2.3$

Monotonicity in the cookie sequence

Cookie sequences \vec{p} and \vec{q} .

$$\vec{p} = (.85, .9, .95)$$
 $\delta(\vec{p}) = 2.4$
 $\vec{q} = (.8, .9, .95)$ $\delta(\vec{q}) = 2.3$

Question: Is it true that $v_0(\vec{p}) > v_0(\vec{q})$?

Monotonicity in simple random walks

Fix q < p

- X_n simple random walk using q-coin
- Y_n simple random walk using p-coin

Coupling: Construct the random paths $\{X_n\}_{n\geq 1}$ and $\{Y_n\}_{n\geq 1}$ so that

$$P(X_n \leq Y_n, \forall n \geq 0) = 1.$$

Let U_1, U_2, \ldots be i.i.d. and Uniform(0,1).

$$X_n = X_{n-1} + \begin{cases} 1 & \text{if } U_n \leq q \\ -1 & \text{if } U_n > q. \end{cases} \text{ and } Y_n = Y_{n-1} + \begin{cases} 1 & \text{if } U_n \leq p \\ -1 & \text{if } U_n > p. \end{cases}$$

Coupling of simple random walks

Coupled simple random walks with q = .55 < .6 = p.

Cookie sequences \vec{p} and \vec{q} .

 $\vec{p} = (.85, .9, .95)$ and $\vec{q} = (.8, .9, .95)$ \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

Cookie sequences \vec{p} and \vec{q} .

 $\vec{p} = (.85, .9, .95)$ and $\vec{q} = (.8, .9, .95)$

Cookie sequences \vec{p} and \vec{q} .

 $\vec{p} = (.85, .9, .95)$ and $\vec{q} = (.8, .9, .95)$

Cookie sequences \vec{p} and \vec{q} .

 $\vec{p} = (.85, .9, .95)$ and $\vec{q} = (.8, .9, .95)$

Cookie sequences \vec{p} and \vec{q} .

 $\vec{p} = (.85, .9, .95)$ and $\vec{q} = (.8, .9, .95)$ $U_1 = .6, \quad U_2 = .82, \quad U_3 = .87, \quad U_4 = .3,$

Cookie sequences \vec{p} and \vec{q} .

 $\vec{p} = (.85, .9, .95)$ and $\vec{q} = (.8, .9, .95)$ $U_1 = .6, \quad U_2 = .82, \quad U_3 = .87, \quad U_4 = .3, \quad U_5 = .92$

Associated branching process with migration

Associated branching process with migration

Associated branching process with migration

Branching process offspring distribution

Simple random walk: Offspring \sim Geometric(p).

Branching process offspring distribution

Simple random walk: Offspring \sim Geometric(p).

Cookie random walk:

Use independent (Ber(p_1), Ber(p_2),..., Ber(p_M), Ber(1/2), Ber(1/2),...) to generate offspring.

Coupling the branching processes

Coupling the branching processes

With this coupling, $T_n \leq T_n$.

Coupling the branching processes

Needed for coupling - partial sums of Bernoulli random variables.

Monotonicity of the speed for cookie RW

Relate hitting times to limiting speed.

$$\lim_{n\to\infty}\frac{T_n}{n}=\frac{1}{v_0}$$

Monotonicity of the speed for cookie RW

Relate hitting times to limiting speed.

$$\lim_{n\to\infty}\frac{T_n}{n}=\frac{1}{v_0}$$

Apply the coupling of branching processes to hitting times

$$\frac{1}{v_0} = \lim_{n \to \infty} \frac{T_n}{n} \le \lim_{n \to \infty} \frac{T_n}{n} = \frac{1}{v_0}$$

