
Self-interacting Random Walks

Self-interacting Random Walks

Jonathon Peterson

Purdue University
Department of Mathematics

September 16, 2013

Jonathon Peterson 9/16/2013 1 / 25



Self-interacting Random Walks Simple Random Walks

Simple Random Walk

Simple random walk on Z

p1− p

x x+ 1x− 1

Simple (symmetric) random walk on Zd

1
4

1
4

1
4

1
4

Jonathon Peterson 9/16/2013 2 / 25



Self-interacting Random Walks Simple Random Walks

Simple Random Walk

Simple random walk on Z

p1− p

x x+ 1x− 1

Simple (symmetric) random walk on Zd

1
4

1
4

1
4

1
4

Jonathon Peterson 9/16/2013 2 / 25



Self-interacting Random Walks Simple Random Walks

Recurrence and Transience

Recurrent: RW returns to starting location infinitely many times.
Transient: RW returns only finitely many times.

Theorem
Simple RW on Z is recurrent ⇐⇒ p = 1/2.

Theorem

Simple symmetric RW on Zd is
I recurrent if d = 1,2.
I transient if d ≥ 3.

Random walks and electric networks by Doyle and Snell.
http://arxiv.org/abs/math/0001057
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Simple Random Walk

Theorem (Law of Large Numbers)

lim
n→∞

Sn

n
= 2p − 1, P − a.s.

Proof:

Sn =
n∑

i=1

ξi

Theorem (Central Limit Theorem)

Let v = 2p − 1 and σ = 2
√

p(1− p). Then,

lim
n→∞

P
(

Sn − nv
σ
√

n
≤ x

)
=

∫ x

−∞

1√
2π

e−t2/2dt .
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Brownian Motion

t 7→
Sbntc − ntv

σ
√

n
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Brownian Motion (higher dimensions)
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Classical random walks

Sn =
n∑

i=1

ξi

with {ξi}i≥1 independent and identically distributed.

Drawbacks of the classical model

I Spatial homogeneity
I Temporal homogeneity
I Independent increments
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Self-interacting Random Walks Interacting Random Walks

Self-avoiding random walk

{Xk}k≤n - uniform from all
self-avoiding paths of length n.
Simulation from Tom Kennedy

SAW in plane - 1,000,000 steps

Conjecture

The paths {Xk/n2/3}k≤n converge in distribution to an SLE8/3 process.
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Reinforced random walk

I Initial edge weights ≡ 1

I Edge weights increase by c
when crossed

I Steps taken proportional to
edge weights
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The ERRW is recurrent in Z2 for any reinforcement c > 0.
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Self-interacting Random Walks Interacting Random Walks

Excited (Cookie) Random Walks

(M,p) Cookie Random Walk
Initially M cookies at each site.

I Cookie available: Eat cookie. Move right with probability
p ∈ (0,1)

I No cookies: Move right/left with probability 1
2 .
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Excited (Cookie) Random Walks

Unequal cookies
I M cookies at each site.
I Cookie strengths p1,p2, . . . ,pM ∈ (0,1).
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Cookie Random Walks - Recurrence/Transience

Question: Is the cookie random walk recurrent or transient?
Simple case: 1 cookie per site, strength p > 1/2.

When reaching n, what is the probability of reaching n + 1 before
returning to 0?

p + (1− p)PSSRW(reach n + 1 before 0 |S0 = n − 1)

= p + (1− p)
n − 1
n + 1

= 1− 2(1− p)
n

P(never return to 0 after hitting n) =
∞∏

k=n

(
1− 2(1− p)

k

)
= 0.
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Cookie Random Walks - Recurrence/Transience

Cookie RW with 1 cookie are always recurrent.
Question: When can a cookie RW be transient?
Key parameter: total drift per site

δ =
M∑

i=1

(2pi − 1).

Theorem (Zerner ’05, Zerner & Kosygina ’08)
The cookie random walk is

I recurrent if δ ∈ [−1,1].
I transient to the right if δ > 1.
I transient to the left if δ < −1.

Jonathon Peterson 9/16/2013 13 / 25
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Cookie Random Walks - Limiting Speed

Question: Is there a limiting speed of the cookie RW?

lim
n→∞

Xn

n
= v0?

Theorem (Basdevant & Singh ’07, Zerner & Kosygina ’08)

The limiting speed limn→∞ Xn/n = v0 exists and is constant. Moreover
I v0 > 0 ⇐⇒ δ > 2.
I v0 = 0 ⇐⇒ δ ∈ [−2,2].
I v0 < 0 ⇐⇒ δ < −2.

Jonathon Peterson 9/16/2013 14 / 25
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A transient cookie RW with “zero-speed”

An example with δ = 1.4.

2000 4000 6000 8000 10 000

200

400

600

800

1000

H M ,pL -cookie RW with M =2 and p =0.85
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The limiting speed

Open Problem

For a given cookie sequence ~p = (p1,p2, . . . ,pM) with δ = δ(~p) > 2,
compute the limiting speed v0 = v0(~p).

Open even for 3 cookies, all of strength p > 5/6.

Simulation from Basdevant and Singh

Jonathon Peterson 9/16/2013 16 / 25
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Self-interacting Random Walks Interacting Random Walks

Monotonicity in the cookie sequence

Cookie sequences ~p and ~q.

~p = (.85, .9, .95) δ(~p) = 2.4
~q = (.8, .9, .95) δ(~q) = 2.3

Question: Is it true that v0(~p) > v0(~q)?
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Monotonicity in simple random walks

Fix q < p
I Xn - simple random walk using q-coin
I Yn - simple random walk using p-coin

Coupling: Construct the random paths {Xn}n≥1 and {Yn}n≥1 so that

P(Xn ≤ Yn, ∀n ≥ 0) = 1.

Let U1,U2, . . . be i.i.d. and Uniform(0,1).

Xn = Xn−1 +

{
1 if Un ≤ q
−1 if Un > q.

and Yn = Yn−1 +

{
1 if Un ≤ p
−1 if Un > p.

Jonathon Peterson 9/16/2013 18 / 25



Self-interacting Random Walks Interacting Random Walks

Coupling of simple random walks

Coupled simple random walks with q = .55 < .6 = p.

20 40 60 80 100

- 10

- 5

5

10

15
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Naive coupling of cookie random walks

Cookie sequences ~p and ~q.

~p = (.85, .9, .95) and ~q = (.8, .9, .95)

U1 = .6, U2 = .82, U3 = .87, U4 = .3, U5 = .92

Jonathon Peterson 9/16/2013 20 / 25



Self-interacting Random Walks Interacting Random Walks

Naive coupling of cookie random walks

Cookie sequences ~p and ~q.

~p = (.85, .9, .95) and ~q = (.8, .9, .95)

U1 = .6,

U2 = .82, U3 = .87, U4 = .3, U5 = .92

Jonathon Peterson 9/16/2013 20 / 25



Self-interacting Random Walks Interacting Random Walks

Naive coupling of cookie random walks

Cookie sequences ~p and ~q.

~p = (.85, .9, .95) and ~q = (.8, .9, .95)

U1 = .6, U2 = .82,

U3 = .87, U4 = .3, U5 = .92

Jonathon Peterson 9/16/2013 20 / 25



Self-interacting Random Walks Interacting Random Walks

Naive coupling of cookie random walks

Cookie sequences ~p and ~q.

~p = (.85, .9, .95) and ~q = (.8, .9, .95)

U1 = .6, U2 = .82, U3 = .87,

U4 = .3, U5 = .92

Jonathon Peterson 9/16/2013 20 / 25



Self-interacting Random Walks Interacting Random Walks

Naive coupling of cookie random walks

Cookie sequences ~p and ~q.

~p = (.85, .9, .95) and ~q = (.8, .9, .95)

U1 = .6, U2 = .82, U3 = .87, U4 = .3,

U5 = .92

Jonathon Peterson 9/16/2013 20 / 25



Self-interacting Random Walks Interacting Random Walks

Naive coupling of cookie random walks

Cookie sequences ~p and ~q.

~p = (.85, .9, .95) and ~q = (.8, .9, .95)

U1 = .6, U2 = .82, U3 = .87, U4 = .3, U5 = .92

Jonathon Peterson 9/16/2013 20 / 25



Self-interacting Random Walks Branching Process with Migration

Associated branching process with migration
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Self-interacting Random Walks Branching Process with Migration

Branching process offspring distribution

Simple random walk:
Offspring ∼ Geometric(p).

Cookie random walk:
Use independent
(Ber(p1), Ber(p2),. . . , Ber(pM ),
Ber(1/2), Ber(1/2),. . . )
to generate offspring.
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Self-interacting Random Walks Branching Process with Migration

Coupling the branching processes

~p = (.85, .9, .95) and ~q = (.8, .9, .95)
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With this coupling, Tn ≤ Tn.
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Self-interacting Random Walks Branching Process with Migration

Coupling the branching processes

Needed for coupling - partial sums of Bernoulli random variables.

~p = (.9, .8, .95) and ~q = (.8, .9, .95)

01

101

101

1

01

011

101

1
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Self-interacting Random Walks Branching Process with Migration

Monotonicity of the speed for cookie RW

1 Relate hitting times to limiting speed.

lim
n→∞

Tn

n
=

1
v0

2 Apply the coupling of branching processes to hitting times

1
v0

= lim
n→∞

Tn

n
≤ lim

n→∞

Tn

n
=

1
v0
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