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Recurrent: RW returns to starting location infinitely many times.
Transient: RW returns only finitely many times.

Simple RW on Z is recurrent <— p =1/2.

Simple symmetric RW on Z.9 is
recurrentifd =1, 2.
transient if d > 3.

Random walks and electric networks by Doyle and Snell.
http://arxiv.org/abs/math/0001057
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im =2 =2p—-1, P-as.
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Proof:
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Sn = Z §i
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Theorem (Law of Large Numbers)

lim §:2p—1, P—as.

n—oo N

Proof:

n
Sn=> &
i=1

Theorem (Central Limit Theorem)
Letv=2p—1ando=2,/p(1—p). Then,

. Sp—nv X1 e
lim P <x)= ——e /24,
nl_>moo < U\m N X> /—oo ven
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with {¢;};>1 independent and identically distributed.
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n
Sn = Z §i
i=1

with {¢;};>1 independent and identically distributed.

Drawbacks of the classical model

» Spatial homogeneity
» Temporal homogeneity
» Independent increments
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Simulation from Tom Kennedy
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Self-avoiding random walk

{Xk }k<n - uniform from all
self-avoiding paths of length n.

Simulation from Tom Kennedy

SAW in plane - 1,000,000 steps

The paths { X,/ n?/®} <, converge in distribution to an SLEg 3 process. |
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Reinforced random walk

» Initial edge weights = 1

» Edge weights increase by ¢
when crossed ' e g |tre | !

,_.
[

» Steps taken proportional to
edge weights 1 ! L 1

The ERRW is recurrent in 72 for any reinforcement ¢ > 0. |
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Excited (Cookie) Random Walks

(M, p) Cookie Random Walk
Initially M cookies at each site.

» Cookie available: Eat cookie. Move right with probability

pe(0,1)
> No cookies: Move right/left with probability .
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returning to 07

P(never return to 0 after hitting n) = H (1 — @) =0.
k=n
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Question: Is the cookie random walk recurrent or transient?
Simple case: 1 cookie per site, strength p > 1/2.
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T
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/-\\
n n+1

When reaching n, what is the probability of reaching n+ 1 before
returning to 07
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Cookie Random Walks - Recurrence/Transience

Question: Is the cookie random walk recurrent or transient?
Simple case: 1 cookie per site, strength p > 1/2.

5 0 0 1 2 i1 n n+l

When reaching n, what is the probability of reaching n+ 1 before
returning to 07

p+ (1 — p)Pssprw(reach n+ 1 before 0| Sy = n—1)
1, _2(1-p)

1 n

n—
=p+(1-p)—

P(never return to 0 after hitting n) = H (1 — @) =0.

k=n



Cookie Random Walks - Recurrence/Transience

Cookie RW with 1 cookie are always recurrent.

Question: When can a cookie RW be transient?
Key parameter: total drift per site

M

5= (2pi—1).

i=1

The cookie random walk is

» recurrent if 6 € [—1,1].
» transient to the right if § > 1.
» transient to the left if 6 < —1.
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Cookie Random Walks - Limiting Speed

Question: Is there a limiting speed of the cookie RW?

. X
lim 22 = yy?
n—oo N

The limiting speed limp_, Xn/Nn = vy exists and is constant. Moreover
> >0 <= §>2.
»w=0 <= 6ec[-2,2].
> <0 = o< -2
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A transient cookie RW with “zero-speed”

An example with § = 1.4.

(M ,p)—-cookie RW with M =2 and p=0.85
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The limiting speed

For a given cookie sequence p = (p1, Pz, - - ., Py) With § = 6(p) > 2,
compute the limiting speed vy = vo(P).




The limiting speed

For a given cookie sequence p = (p1, Pz, - - -

,Pm) with & = 5(p) > 2,

compute the limiting speed vy = vo(P).

Open even for 3 cookies, all of strength p > 5/6.

recurrence
0.9

0.8
0.7
0.6

0.4+
0.3
0.2

0.1+

M

T { T T —p
0.6 0.7 0s 5 0.9 1

2 5
3 [

Simulation from Basdevant and Singh



. Seftinteracting Random Walks | Interacting Random Walks
Monotonicity in the cookie sequence

Cookie sequences p and §.

B = (.85,.9,.95) 5(B) =2.4
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Monotonicity in the cookie sequence

Cookie sequences p and §.

B = (.85,.9,.95) 5(B) =2.4
G=(8,.9,.95) 5(§) = 2.3

Question: Is it true that vp(p) > v(q)?
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Monotonicity in simple random walks

Fixg<p
» X, - simple random walk using g-coin
» Y, - simple random walk using p-coin
Coupling: Construct the random paths {Xj},>1 and { Ys},>1 so that

Let Uy, Us, ... be i.i.d. and Uniform(0,1).

1 if Up <q
-1 ifUy,>q.

1 ifUs<p

Xn=Xo_1+
ne o { —1 ifU, > p.

and Y,= Y1+ {
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Coupling of simple random walks

Coupled simple random walks with g = .55 < .6 = p.

15F
100
5
L L L L L L L L L L /\V L L L L L
i 20 0 60’ 80 100
_5 7
—10F
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Naive coupling of cookie random walks

Cookie sequences p and §.

p=(85.9.95 and G=(8..9,.95)

| 1

Uy=.6, U=.82 U;=.87,
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Naive coupling of cookie random walks

Cookie sequences p and §.

p=(85.9.95 and G=(8..9,.95)

| 1

Uy =6 U=.82 U;3=.87 Us=.3,
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Naive coupling of cookie random walks

Cookie sequences p and §.

p=(85.9.95 and G=(8..9,.95)

>—>0

ew i

Uy=6 U=.82 U;3=.387 Us=.3 U=.92
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Associated branching process with migration

5 5 DY =0
4 4] D<35):1
34 31 DY) =4
2-| 2] D =2
14 14 fo'):l
0 0 D =2
—14 \/\/ —14 D) =0




Associated branching process with migration

5
4 44 Dy =1
3] \/ 3 / DY =4
! /
1 /
!
2| * P J D =2
1

11 / 14 / DY =1
/ /
1
0 < DY) =2
—14 \/\/ —14 D(f% =0

<n
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Simple random walk:
Offspring ~ Geometric(p).
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Branching process offspring distribution

Simple random walk:
Offspring ~ Geometric(p).

Cookie random walk:
Use independent

(Ber(p1), Ber(pz).. .., Ber(pm),
Ber(1/2), Ber(1/2),...)
to generate offspring.



Coupling the branching processes

B = (.85,.9,.95)

and

—

g =(.8,.9,.95)

01

101

/
101 ‘

01

0011

1011




Coupling the branching processes

p=(85,.9,.95 and §=(8,.9,.95)

» »
/ /
/ /
/ /
01 01
/ /
/ /
/ /
s 101 / 0011
/ /
’
/ /
P 101 ¢ 1011
1 1

With this coupling, T, < Tj.




Coupling the branching processes

Needed for coupling - partial sums of Bernoulli random variables.

B=(9,8.95 and G=(8,.9,.95)

.
.
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@ Relate hitting times to limiting speed.
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Monotonicity of the speed for cookie RW

@ Relate hitting times to limiting speed.

Q Apply the coupling of branching processes to hitting times

l: lim Eg lim E:l

Vo n—oo N n—oo N Vo
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