Refereed Publications

[1]  Jonathon Peterson and Ofer Zeitouni. Quenched limits for transient, zero speed one-dimensional random walk in random environment. Ann. Probab., 37(1):143-188, 2009. [ bib | DOI | arXiv | http ]
[2]  Jonathon Peterson. Quenched limits for transient, ballistic, sub-Gaussian one-dimensional random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat., 45(3):685-709, 2009. [ bib | DOI | arXiv | http ]
[3]  Jonathon Peterson and Ofer Zeitouni. On the annealed large deviation rate function for a multi-dimensional random walk in random environment. ALEA Lat. Am. J. Probab. Math. Stat., 6:349-368, 2009. [ bib | arXiv | .pdf ]
[4]  Jonathon Peterson. Systems of one-dimensional random walks in a common random environment. Electron. J. Probab., 15:no. 32, 1024-1040, 2010. [ bib | DOI | arXiv | http ]
[5]  Jonathon Peterson and Timo Seppäläinen. Current fluctuations of a system of one-dimensional random walks in random environment. Ann. Probab., 38(6):2258-2294, 2010. [ bib | DOI | arXiv | http ]
[6]  Jonathon Peterson. The contact process on the complete graph with random vertex-dependent infection rates. Stochastic Process. Appl., 121(3):609-629, 2011. [ bib | DOI | arXiv | http ]
[7]  Nina Gantert and Jonathon Peterson. Maximal displacement for bridges of random walks in a random environment. Ann. Inst. Henri Poincaré Probab. Stat., 47(3):663-678, 2011. [ bib | DOI | arXiv | http ]
[8]  Jonathon Peterson and Gennady Samorodnitsky. Weak weak quenched limits for the path-valued processes of hitting times and positions of a transient, one-dimensional random walk in a random environment. ALEA Lat. Am. J. Probab. Math. Stat., 9(2):531-569, 2012. [ bib | arXiv | .pdf ]
[9]  Jonathon Peterson. Large deviations and slowdown asymptotics for one-dimensional excited random walks. Electron. J. Probab., 17(48):1-24, 2012. [ bib | DOI | arXiv | http ]
[10]  Jonathon Peterson. Strict monotonicity properties in one-dimensional excited random walks. Markov Process. Related Fields, 19(4):721-734, 2013. [ bib | arXiv ]
[11]  Jonathon Peterson. A Probabilistic Proof of a Binomial Identity. Amer. Math. Monthly, 120(6):558-562, 2013. [ bib | DOI | arXiv | http ]
[12]  Jonathon Peterson and Gennady Samorodnitsky. Weak quenched limiting distributions for transient one-dimensional random walk in a random environment. Ann. Inst. Henri Poincaré Probab. Stat., 49(3):722-752, 2013. [ bib | DOI | arXiv | http ]
[13]  Jonathon Peterson. Large deviations for random walks in a random environment on a strip. ALEA Lat. Am. J. Probab. Math. Stat., 11(1):1-41, 2014. [ bib | arXiv | .pdf ]
[14]  Jonathon Peterson. Strong transience of one-dimensional random walk in a random environment. Electron. Commun. Probab., 20:no. 67, 1-10, 2015. [ bib | DOI | arXiv | http ]
[15]  Jonathon Peterson. Extreme slowdowns for one-dimensional excited random walks. Stochastic Process. Appl., 125(2):458-481, 2015. [ bib | DOI | arXiv | http ]
[16]  Sung Won Ahn and Jonathon Peterson. Oscillations of quenched slowdown asymptotics for ballistic one-dimensional random walk in a random environment. Electron. J. Probab., 21:1-27, 2016. [ bib | DOI | arXiv | http ]
[17]  Elena Kosygina and Jonathon Peterson. Functional limit laws for recurrent excited random walks with periodic cookie stacks. Electron. J. Probab., 21:1-24, 2016. [ bib | DOI | arXiv | http ]
[18]  Elena Kosygina and Jonathon Peterson. Excited random walks with Markovian cookie stacks. Ann. Inst. H. Poincaré Probab. Statist., 53(3):1458-1497, 2017. [ bib | DOI | arXiv | http ]
[19]  Milton Jara and Jonathon Peterson. Hydrodynamic limit for a system of independent, sub-ballistic random walks in a common random environment. Ann. Inst. Henri Poincaré Probab. Stat., 53(4):1747--1792, 2017. [ bib | arXiv | http ]
[20]  Burgess Davis and Jonathon Peterson. Excited random walks with non-nearest neighbor steps. J. Theoret. Probab., 30(4):1255--1284, 2017. [ bib | arXiv | http ]
[21]  Erin Madden, Brian Kidd, Owen Levin, Jonathon Peterson, Jacob Smith, and Kevin M. Stangl. Upper and lower bounds on the speed of a one-dimensional excited random walk. Involve, 12(1):97--115, 2019. [ bib | DOI | arXiv | http ]
[22]  Xiaoqin Guo and Jonathon Peterson. Berry–esseen estimates for regenerative processes under weak moment assumptions. Stochastic Processes and their Applications, 129(4):1379 - 1412, 2019. [ bib | DOI | arXiv | http ]
[23]  Sung Won Ahn and Jonathon Peterson. Quenched central limit theorem rates of convergence for one-dimensional random walks in random environments. Bernoulli, 25(2):1386-1411, 05 2019. [ bib | DOI | arXiv | http ]
[24]  Elena Kosygina, Thomas Mountford, and Jonathon Peterson. Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema. Probab. Theory Related Fields, 182(1-2):189--275, 2022. [ bib | DOI | arXiv | http ]
[25]  Otávio Menezes, Jonathon Peterson, and Yongjia Xie. Variable speed symmetric random walk driven by the simple symmetric exclusion process. Electron. J. Probab., 27:Paper No. 6, 14, 2022. [ bib | DOI | arXiv | http ]
[26]  Sung Won Ahn and Jonathon Peterson. Optimal rates of convergence for quenched central limit theorem rates of one-dimensional random walks in random environments. Markov Process. Related Fields, 28(2):215--244, January 2022. [ bib | arXiv | http ]
[27]  Xiaoqin Guo, Jonathon Peterson, and Hung V. Tran. Quantitative homogenization in a balanced random environment. Electron. J. Probab., 27:Paper No. 132, 31, 2022. [ bib | DOI | arXiv | http ]
[28]  Elena Kosygina, Thomas Mountford, and Jonathon Peterson. Convergence and nonconvergence of scaled self-interacting random walks to Brownian motion perturbed at extrema. The Annals of Probability, 51(5):1684 -- 1728, 2023. [ bib | DOI | http ]
[29]  Conrado da Costa, Jonathon Peterson, and Yongjia Xie. Limiting distributions for RWCRE in the sub-ballistic regime and in the critical Gaussian regime. Electron. J. Probab., 29:Paper No. 159, 38, 2024. [ bib | DOI | arXiv | http ]
[30]  Vickie Chen, Charles T. Drucker, Claire Love, Jonathon Peterson, and Joseph D. Peterson. Analytic solution for the linear rheology of living polymers. J. Non-Newton. Fluid Mech., 334:Paper No. 105343, 6, 2024. [ bib | DOI | arXiv | http ]

In Press

[31]  Luca Avena, Conrado da Costa, and Jonathon Peterson. Gaussian, stable, tempered stable and mixed limit laws for random walks in cooling random environments, August 2021. To appear in Ann. Inst. Henri Poincaré Probab. Stat.bib | arXiv | http ]

Preprints

[32]  Elena Kosygina and Jonathon Peterson. Convergence of rescaled "true" self-avoiding walks to the Tóth-Werner "true" self-repelling motion, 2025. [ bib | arXiv | http ]

This file was generated by bibtex2html 1.97.