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Abstract. If a surface stabilized ferroelectric liquid crystal cell is cooled from

the smectic-A to the smectic-C phase its layers thin causing V-shaped (chevron

like) defects to form. These create an energy barrier that can prevent switching

between equilibrium patterns. We examine a gradient flow for a mesoscopic

Chen-Lubensky energy F(ψ,n) that allows the order parameter to vanish, so

that the energy barrier does not diverge if the layer thickness becomes small.

The liquid crystal can evolve during switching in such a way that the layers

are allowed to melt and heal near the chevron tip in the process.

1. Introduction

In surface stabilized ferroelectric liquid crystal [SSFLC] cells smectic layers usu-

ally deform into a characteristic chevron pattern [1, 2]. The chevron structure (see

Fig. 1) is believed to arise due to the mismatch between the natural smectic layer

thickness and the periodicity imposed by the layer pinning at the surface in the

smectic-A phase, where this surface memory effect has been confirmed experimen-

tally [3]. In the past, several theoretical models have been presented to describe

the director and layer structure in smectic-C chevron cells. This work has been mo-

tivated by a potential use of [SSFLC] cells in display devices. The original model

was put forward by Clark and co-workers [1, 4]. Theirs is a macroscopic description

where the molecular alignment varies slowly across each chevron arm, restricted so
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that the molecules lie on the arm’s smectic-C cone. The chevron tip is idealized to

have zero thickness; the smectic layers form a sharp bend at the tip so that their

normal is discontinuous there. A key assumption in their model is the continuity of

the equilibrium director pattern across the cell. Assuming the cone angle is larger

than the layer tilt, these conditions lead to two out-of-plane states determined by

the intersection of the cones from each side of the tip. This means that chevron

cells exhibit two stable director states between which the cell can be switched by

the application of an external electric field. An important reason to model surface

stabilized cells is to describe the switching dynamics between these stable director

states. The model of Clark et al. has been extended to include continuity of the

biaxial ordering at the chevron tip [5].

−L L x2

x1

dsdb

θ

−L L

Figure 1. Switching in a Chevron Structure

The development of models to describe ferroelectric switching has a number of

difficulties. These are largely due to the contrasting length scales associated with

the chevron arms and tip. The macroscopic models such as the one described above

require that the director at the chevron tip leaves the cones from the adjacent arms

during the switching process. The models account for this by allowing the director

to be discontinuous at the tip during the transition and an ad hoc energy barrier

is included in the free energy penalizing the director’s jump across the tip. (See

Maclennan et al. [6, 7], Ulrich and Elston [8], and Brown et al. [9]).

A number of models of the chevron structure have been reported which take

into account continuous layer bending at the chevron tip and the director rotation

on the cone [10 - 15]. These models however, enforce specific couplings between



DYNAMIC ANALYSIS OF CHEVRON STRUCTURES IN LIQUID CRYSTAL CELLS 3

the molecular cone angle from the smectic layer tilt angle that permit a continuous

pattern near the tip but are also ad hoc.

In this paper we use a Chen-Lubensky model to characterize the director and

layer structure of surface stabilized smectic-C cells in an external electric field. This

approach has been developed in the papers Kralj and Sluckin [16], Vaupotic̆ et al.

[17, 18], Hazelwood and Sluckin [19], and Cheng and Phillips [20]. We build on

these works here. The advantage of this phenomenological model over others is that

the formation of chevrons and the nature of the director pattern near the chevron

tip follow from energetic considerations as opposed to features that are directly

inserted into the model. In [20], the smectic layer thickness is introduced as a

small parameter and the static model of Clark et al. described above is captured

as a singular limit having smectic layers with a sharp chevron tip and its two out-

of-plane equilibrium director patterns. In this work we consider a more complete

Chen-Lubensky model that allows the smectic layers to melt near the chevron tip

under the application of a finite electric field allowing for the switching from one

state, tending to the other assuming gradient flow dynamics. Our contribution here

is that we establish existence and uniqueness results for the gradient flow problem.

Many open questions for this model remain to be explored. For example once the

switching occurs the model allows the smectic layers to reform near the chevron

tip. Just how robust this regeneration is remains an open question. This is an

important point since the studies of Willis et al. [21] showed that there should be

no significant change in smectic layer thickness or chevron layer structure under

typical director switching conditions.

2. Model

We consider a cross section of an SSFLC cell of width 2L and place the origin

of the axes at the midpoint of the lower cell aperture. The domain is then written

as {(x1, x2);−L < x2 < L}.
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To model a smectic phase, we need two types of ordering, orientational and

positional. The former is described by a unit vector n that indicates the average

local orientation of the rod-shaped molecules, called the nematic director field.

The latter is described by a complex-valued order parameter, Ψ, whose amplitude

indicates the degree of smectic ordering and whose phase indicates the position of

the smectic layer. If |Ψ| = 0, then the phase is completely nematic. For a smectic

phase, |Ψ| > 0, with |Ψ| ≥ 1 for well-structured smectic layers.

An essential parameter in our analysis is the wave number q, which equals

2π/db, where db is the layer thickness in the bulk smectic-C phase. In a realistic

model, db is very small (typically L/db is in the range 300 − 400 [17]) , so one

eventually would like to study the limiting problem letting q →∞. For the present

work, q is assumed to be a large number. Let ds denote the layer thickness at the

surface. This is a spacing inherited from the material initially being cooled from

the smectic-A phase. We use the parameter b = tan
(

cos−1 db
ds

)
to measure the

mismatch between the different layer thicknesses. Lastly, let θ denote the bulk tilt

angle of the molecules from the layer normal in the smectic-C phase.

We base our model on a covariant form of the Landau-de Gennes free energy,

introduced by Chen & Lubensky [22]. The density for our free energy F(n,Ψ)

consists of three parts, nematic, smectic and electrostatic

F(n,Ψ) =

∫
{fN (n) +

1

q
fCL(n,Ψ) + fE(n,Ψ)} .

The nematic density, fN (n), measures the uniformity of n and we take it to

be the one-constant approximation of the Oseen-Frank energy density, 1
2K|∇n|

2

where K > 0. The smectic part, 1
q fCL(n,Ψ), measures the uniformity of the layer

structure and is a variation of the Chen-Lubensky energy density. We split this

energy density into two components, F (n,Ψ) and G(|Ψ|2). The first component is

the elastic energy density,

F (n,Ψ) =
a⊥
q3
|D ·D⊥Ψ|2 +

a‖

q3
|D ·D‖Ψ|2 −

c⊥
q
|D⊥Ψ|2 +

c‖

q
|D‖Ψ|2 +

c2⊥q

4a⊥
|Ψ|2.
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The second component we call the smectic penalization density,

G(|Ψ|2) = g(|Ψ|2 − 1)2 + |∇|Ψ|2|2 +
1

q2
|∇2|Ψ|2|2 +

1

q6
|∇3|Ψ|2|2.

D is the covariant derivative, D = ∇− iq cos θn with its parallel component (to n)

D‖ = (n ·D)n and perpendicular component (to n) D⊥. The parameter constants

a⊥, a‖, c‖, c⊥, g are positive and determined by the material. Lastly, we write the

electrostatic part, fE(n,Ψ) = −P·E, where P = P
q ={Ψ∇Ψ}×n is the spontaneous

polarization field and E = (0, E, 0) is the applied electric field directed across the

cell.

Due to the periodicity of Ψ, we are able to reduce our model to be one-

dimensional. Specifically, we write Ψ(x1, x2) = e
iqx1√
1+b2 ψ(x2) where ψ is complex-

valued. Expressing periodicity in this form was used by Kralj and Sluckin [16],

wherein to enforce the smectic density wave in the x1 direction, Ψ was written in

the form Ψ = ηe
iq

[x1−g(x2)]√
1+b2 such that η > 0 was assumed to be a constant and

x1 = g(x2) is the graph of a uniformly smectic layer in their setting. The same

idea was also used in [20]. Our approach, however, is different in that it aims to

explain the whole process through the model without invoking any ad hoc energy

terms added later. Particularly, we want the system to allow for phase changes in

certain areas if that is less costly in an energetic sense (by melting, for instance).

The tool to do that is to keep the complex-valued order parameter in a general

form, allowing ψ to vanish.

We consider the admissible set

X =
{

(n, ψ) ∈ H1((−L,L); S2)×H3((−L,L);C);

ψ − ψ0 ∈ H2
0 ((−L,L);C) and |ψ|2′′(−L) = |ψ|2′′(L) = 0

}
where ψ0 ∈ H3((−L,L);C) such that |ψ0(±L)| = 1 and ψ′0ψ0(±L) = ± iqb√

1+b2
.

The boundary conditions enforce uniform smectic layers at the cell surfaces and for

simplicity there are no boundary conditions on the director. We rewrite the smectic

energy by integrating by parts and taking into account the boundary conditions to
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get an integrand that is bounded below. We then carry out the dimension reduction

with our variable denoted by x rather than x2. Within the above admissible set,

our total free energy ( per unit length with respect to x1 ) becomes

F(ψ,n) =

∫ L

−L

{
a⊥
q
|ψ
′′

q
− [(

i√
1 + b2

n1ψ + n2
ψ′

q
)n2]′ − q

1 + b2
ψ +

q

1 + b2
n2

1ψ

− i√
1 + b2

n1n2ψ
′ +

c⊥q

2a⊥
ψ|2

+
a‖

q
|( n1√

1 + b2
− cos θ)(− q√

1 + b2
n1ψ + in2ψ

′ + q cos θψ)

+ [(
i√

1 + b2
n1ψ + n2

ψ′

q
− i cos θψ)n2]′|2(2.1)

+ qc‖|
i√

1 + b2
n1ψ + n2

ψ′

q
− i cos θψ|2

+ g(|ψ|2 − 1)2 + (|ψ|2′)2 +
1

q2
(|ψ|2′′)2 +

1

q6
(|ψ|2′′′)2 +

ρ

q6
|ψ′′′|2

+
1

2
K[n′21 + n′22 + n′23 ] +

PE√
1 + b2

|ψ|2n3

}
dx

Remark 2.1. We have added a regularizing factor ρ
q6 |ψ

′′′|2 , with ρ a small

positive constant, to aid with the analysis. We will let ρ→ 0 later.

3. Static Analysis

To set up for the dynamic analysis, we highlight the quantities that are bounded

uniformly (in q). We are able to find well-prepared initial data, specifically we

can construct a family of possible initial configurations. One such example is

n0 = (cos θ
√

1 + b2, 0,
√

1− cos2 θ(1 + b2)) and ψ0 = e
− iq√

1+b2
g(x2)

where g′(x2) =

−b tanh(qx2)/ tanh(qL).

Lemma 3.1. For q sufficiently large, there exists (n0, ψ0) ∈ X such that F(n0, ψ0) ≤

C0, where C0 is independent of q.

Our dynamic analysis is based on energy minimization, so we only consider the

states (n, ψ) ∈ X with F(n, ψ) ≤ F(n0, ψ0). Through out this paper it is assumed

that the constants appearing in (2.1), with the exceptions of 0 ≤ ρ < 1 and q ≥ 1

are fixed. We use C1 to denote a constant in our estimates such that C1(C) is
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independent of ρ, states (n, ψ) for which F(n, ψ) ≤ C, and all q sufficiently large

q ≥ q0(C). Since the energy for our initial data is uniformly bounded, we can deduce

using Sobolev’s embedding theorem in 1-dim that |ψ| and |ψ|
2′′

q2 at later times are

uniformly bounded as well. We also prove a Modica-Mortola type estimate.

Lemma 3.2. For q sufficiently large,
|ψ′|
q
≤ C1 on [−L,L], where C1 is inde-

pendent of q.

This specific boundedness, in fact, has an important physical implication for

our system: the coupling between n and |ψ| weakens for a sufficiently large q.

Proof. Note ψ ∈ C1[−L,L] and we seek a specific bound in terms of q. We

write {x : |ψ(x)| > 0,−L < x < L} as a countable union of disjoint intervals

{(aj , bj) for j ∈ I}. Since |ψ
′|
q = 0 on (−L,L)\ ∪

j∈I
(aj , bj), it is enough to prove

|ψ′|
q ≤ C1 on each interval (aj , bj) for a constant C1 independent of j ∈ I. The plan

is to prove the real and imaginary parts of ψ′ψ
q|ψ| are bounded.

We first note that since F(n, ψ) ≤ F(n0, ψ0) we have∫ L

−L
((|ψ|4 + (|ψ|2′)2 +

1

q2
(|ψ|2′′)2 +

1

q6
(|ψ|2′′′)2) dx ≤ C1.

It follows that | |ψ|
2′′

q2 |+ |ψ|
2 ≤M1 where C1 and M1 are independent of q for q ≥ 1.

Fix j ∈ I. Using the fact that the initial energy is bounded, and after carrying out

some algebraic manipulations, we get

∫ bj

aj

1

q

∣∣∣∣={ψ′′ψq }
∣∣∣∣2 |ψ|−2 + q

∣∣∣∣<{ψ′′ψq2
}+

b2

1 + b2
|ψ|2

∣∣∣∣2 |ψ|−2 dx ≤ C1(3.1)

q

∫ bj

aj

∣∣∣∣<{ψ′′ψq2
}+

b2

1 + b2
|ψ|2

∣∣∣∣2 |ψ|−2 dx = q

∫ bj

aj

∣∣∣∣∣
(
<{ψ

′ψ

q2
}
)′
− |ψ

′|2

q2
+

b2

1 + b2
|ψ|2

∣∣∣∣∣
2

|ψ|−2 dx

= q

∫ bj

aj

∣∣∣∣ |ψ|2′′2q2
− |ψ

′|2

q2
+

b2

1 + b2
|ψ|2

∣∣∣∣2 |ψ|−2 dx
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Consider the set E =
{
x ∈ (aj , bj);

|ψ′|2
q2 ≥ 2M

}
where M is such that |ψ|

2′′

2q2 +

b2

1+b2 |ψ|
2 ≤M . On E, we have

(3.2)
q

4

∫
E

[
|ψ′ψ|2

q2|ψ|2

]2

|ψ|−2 dx =
q

4

∫
E

[
|ψ′|2

q2

]2

|ψ|−2 dx ≤ C1.

and

(3.3) q

∫
E

[
|ψ′|2

q2
− 2M

]2

|ψ|−2 dx ≤ C1.

We now utilize the equality

(
<{ψ

′ψ

q|ψ|
}
)′

=

−<{ψ′ψ|ψ| }
|ψ|2

(<{ψ′ψ
q
}
)

+
1

|ψ|

(
<{ψ

′ψ

q
}
)′
.

Knowing that

1

q

∫ bj

aj

[(
<{ψ

′ψ

q
}
)′]2

dx =
1

q

∫ bj

aj

(
|ψ|2′′

2q

)2

dx dx ≤ C1

and that

1

q

∫
E

∣∣∣∣<{ψ′ψ|ψ| }<{ψ′ψq|ψ|
}
∣∣∣∣2 dx ≤ qM1

∫
E

[
|ψ′ψ|2

q2|ψ|2

]2

|ψ|−2 dx ≤ C1 by (3.2),

we conclude that

1

q

∫
E

∣∣∣∣∣|ψ|
(
<{ψ

′ψ

q|ψ|
}
)′∣∣∣∣∣

2

≤ C1.(3.4)

Adding Inequalities (3.3) and (3.4),

C1 ≥
1

q

∫
E

∣∣∣∣∣|ψ|
(
<{ψ

′ψ

q|ψ|
}
)′∣∣∣∣∣

2

dx+ q

∫
E

[
|ψ′|2

q2
− 2M

]2

|ψ|−2 dx

≥
∫ bj

aj

∣∣∣∣∣
(
<{ψ

′ψ

q|ψ|
}
)′ [ |ψ′|2

q2
− 2M

]+
∣∣∣∣∣ dx ≥

∫ bj

aj

∣∣∣∣∣∣
(
<{ψ

′ψ

q|ψ|
}
)′ [(

<{ψ
′ψ

q|ψ|
}
)2

− 2M

]+
∣∣∣∣∣∣ dx,

noting that the second inequality above is a Modica-Mortola type estimate.

If Φ is such that Φ′(y) = [y2−2M ]+, then osc
(aj ,bj)

Φ
(
|ψ|′
q

)
= osc

(aj ,bj)
Φ
(
<{ψ

′ψ
q|ψ|}

)
≤ C1.

If −L < aj < bj < L then |ψ(aj)| = |ψ(bj)| = 0 and it follows that |ψ(x)|′ = 0 for
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some x ∈ (aj , bj). If either aj = −L or bj = L then it follows from the boundary

conditions that |ψ|′ = 0 at that point. In either case it follows that | |ψ|
′

q | is uniformly

bounded independent of q and j on (aj , bj). A similar reasoning can be applied to

the imaginary part to get the conclusion. �

One last static result we present is the existence of minimizers.

Theorem 3.3. For q sufficiently large, there exists (m, ξ) ∈ X such that

F(m, ξ) = inf
(n,ψ)∈X

F(n, ψ).

Proof. By coercivity and initial boundedness of the energy (2.1), we can guar-

antee the existence of a subsequence (nj , ψj) that converges weakly to (m, ξ) in

H1 × H3. Weak convergence, however, is not enough due to the nonlinearity of

the terms. We invoke a Sobolev embedding theorem to deduce that {nj} and {ψ′j}

are uniformly bounded in C0,1/2(−L,L), followed by Arzelà-Ascoli theorem to get

uniform convergence to m and ξ′ respectively. By convergence proved thus far and

lower semicontinuity of the L2-norm,

F(m, ξ) ≤ lim inf F(nj , ψj),

proving that F(m, ξ) is a minimizer. �

4. Dynamic Analysis

4.1. Method of Rothe. We begin the dynamic analysis of a chevron struc-

ture under an applied electric field by constructing a discretized-in-time gradient

flow. We follow the Method of Rothe [23], through which we construct an ap-

proximate elliptic-type problem. Convergence of the approximate solution to the

continuous solution is the main goal of our analysis. An advantage of this ap-

proach is that it not only exploits the variational feature of the problem, but also

accommodates for its nonlinearity, as will be seen later.
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Let (n0, ψ0) ∈ X be any initial data (which we showed exist in lemma 3.1).

Consider any time period [0, T ] and let τ > 0 be any step size in t. Choose the

number of steps M such that Mτ > T . Minimize:

J0(n, ψ) =

∫ L

−L

{
|n− n0|2

2τ
+
|ψ − ψ0|2

2τ

}
dx+ F(n, ψ)

where F(n, ψ) =

∫ L

−L

{
fN +

1

q
fCL + fE

}
dx, with the given initial values, on

[0, τ ]. We know that such a minimizer exists by theorem 3.3. Denote the minimizer

by (n1, ψ1). Use the minimizer (n1, ψ1) as the initial values for the second time step

[τ, 2τ ] and minimize the new energy functional J1(n, ψ). Repeating the process,

we get a sequence of minimizing problems and a family of minimizers (nm, ψm),

m = 0, 1, ...,M .

These minimizers satisfy Euler-Lagrange equations as well as an energy dissipa-

tion inequality. Specifically, the minimizer (nm1 , n
m
2 , n

m
3 , ψ

m) satisfies the following

four equations over the time interval ((m − 1)τ,mτ ] - see details of the derivation

in Appendix A,

∫ L

−L

{
(1− n2

1)δτn1 − n1n2δτn2 − n1n3δτn3 + (1− n2
1)Fn1

− n1n2Fn2
+ (1− n2

1)′Fn′1

(4.1)

− (n1n2)′Fn′2 −K(n′21 + n′22 + n′23 )n1 −
PE√
1 + b2

|ψ|2n1n3

}
u1

+
{

(1− n2
1)Fn′1 − n1n2Fn′2 +Kn′1

}
u′1 dx = 0

∫ L

−L

{
−n1n2δτn1 + (1− n2

2)δτn2 − n2n3δτn3 − n1n2Fn1 + (1− n2
2)Fn2 − (n1n2)′Fn′1

(4.2)

+ (1− n2
2)′Fn′2 −K(n′21 + n′22 + n′23 )n2 −

PE√
1 + b2

|ψ|2n2n3

}
u2

+
{
−n1n2Fn′1 + (1− n2

2)Fn′2 +Kn′2
}
u′2 dx = 0
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∫ L

−L

{
−n1n3δτn1 − n2n3δτn2 + (1− n2

3)δτn3 − n1n3Fn1
− n2n3Fn2

− (n1n3)′Fn′1

(4.3)

− (n2n3)′Fn′2 −K(n′21 + n′22 + n′23 )n3 +
PE√
1 + b2

|ψ|2(1− n2
3)

}
u3

+
{
−n1n3Fn′1 − n2n3Fn′2 +Kn′3

}
u′3 dx = 0

and

2<
∫ L

−L

1

2
δτψφ+ Fψφ+ Fψ′φ′ + Fψ′′φ′′ + 2g(ψφ)(|ψ|2 − 1) + 2(ψφ)′|ψ|2′

(4.4)

+
2

q2
(ψφ)′′|ψ|2′′ + 2

q6
(ψφ)′′′|ψ|2′′′ + ρ

q6
(ψ′′′φ′′′) +

PE√
1 + b2

n3(ψφ) dx = 0,

where (u1, u2, u3, φ) are the test functions such that (u1, u2, u3) ∈ H1(−L,L), φ ∈

H3(−L,L) with φ ∈ H2
0 (−L,L) and <{φ′′ψ}(−L) = <{φ′′ψ}(L) = 0.

The elastic part of the smectic free energy density from (2.1) is

F (n1, n2, n3, ψ) =
a⊥
q3
|ψ′′ − [(

iq√
1 + b2

n1ψ + n2ψ
′)n2]′ − q2

1 + b2
ψ +

q2

1 + b2
n2

1ψ

− iq√
1 + b2

n1n2ψ
′ +

c⊥q
2

2a⊥
ψ|2

+
a‖

q3
|( n1√

1 + b2
− cos θ)(− q2

√
1 + b2

n1ψ + iqn2ψ
′ + q2 cos θψ)

+ [(
iq√

1 + b2
n1ψ + n2ψ

′ − iq cos θψ)n2]′|2

+
c‖

q
| iq√

1 + b2
n1ψ + n2ψ

′ − iq cos θψ|2.

We have used the notation Fn1
for ∂n1

F and the fact that ∂x|z|2 = 2<{zxz}

for a complex number z. However, in the fourth equation, for Fψ where F =

a1|g1|2 + a2|g2|2 + a3|g3|2 means a1g1ψg1 + a2g2ψg2 + a3g3ψg3. In addition, δτn1 is

the difference quotient defined by 1
τ (n1 − nm−1

1 ).
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Lemma 4.1. (Energy Dissipation)

(4.5)

1

2

m∑
k=1

τ(||δτnk||2L2(−L,L)+||δτψ
k||2L2(−L,L))+F(nm, ψm) ≤ F(n0, ψ0) for 1 ≤ m ≤M .

Proof. Let m be an integer such that 1 ≤ m ≤ M where Mτ > T . Since

(nm, ψm) is a minimizer of Jm(n, ψ), we have

Jm(nm, ψm) ≤ Jm(nm−1, ψm−1) = F(nm−1, ψm−1).

Adding the (m− 1)st difference quotient to both sides of the above inequality,∫ L

−L

|nm−1 − nm−2|2

2τ
+
|ψm−1 − ψm−2|2

2τ
dx+ Jm(nm, ψm) ≤ Jm−1(nm−1, ψm−1).

With Jm−1(nm−1, ψm−1) ≤ F(nm−2, ψm−2), we get

1

2

m∑
k=m−1

τ(||δτnk||2L2(−L,L) + ||δτψk||2L2(−L,L))+F(nm, ψm) ≤ F(nm−2, ψm−2).

Adding the (m− 2)nd difference quotient to both sides of the above inequality and

iterating, we deduce the desired inequality. �

Set Ω = (−L,L). To extend the Euler-Lagrange equations to ΩT = (−L,L)×

(0, T ), we construct piecewise constant (in t) functions, for instance, nτ1(x, t) =

nτ1(x,mτ) = nm1 (x) for t ∈ ((m − 1)τ,mτ ],m = 1, ...,M for n1; and similarly for

the other components. For piecewise constant test functions, we multiply the first

Euler-Lagrange equation (4.1) by τ and add up the equations as m spans 1 to M .

As the integrand is independent of t, we get:

∫ T

0

∫ L

−L

{
(1− (nτ1)2)δτn1(x, t)− nτ1nτ2δτn2(x, t)− nτ1nτ3δτn3(x, t) + (1− (nτ1)2)Fnτ1

(4.6)

− nτ1nτ2Fnτ2 + (1− (nτ1)2)′Fnτ1 ′ − (nτ1n
τ
2)′Fnτ2 ′ −K[(nτ1

′)2 + (nτ2
′)2 + (nτ3

′)2]nτ1

− PE√
1 + b2

|ψτ |2nτ1nτ3
}
u1(x, t)

+
{

(1− (nτ1)2)Fnτ1 ′ − n
τ
1n

τ
2Fnτ2 ′ +Knτ1

′}u′1(x, t) dxdt = 0
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We define the Sobolev-Bochner space Hk,1(ΩT ) by

Hk,1(ΩT ) = {u(x, t) ∈ L2(ΩT ) ; ∂jxu(x, t) ∈ L2(ΩT ), 0 ≤ j ≤ k and ∂tu(x, t) ∈ L2(ΩT )}.

Since our piecewise constant functions fail to belong to such a Sobolev space,

we construct piecewise linear (in t) functions (ñτ1(x, t)), for instance, ñτ1(x, t) =

t−(m−1)τ
τ nm1 (x) + mτ−t

τ nm−1
1 (x), t ∈ [(m− 1)τ,mτ) for m = 1, ...,M ; and similarly

for the other components.

Lemma 4.2. {ñτ1(x, t)} is uniformly bounded in H1,1(ΩT ) for any τ . Similarly,

{ñτ2(x, t)} and {ñτ3(x, t)} are uniformly bounded in H1,1(ΩT ), {ψ̃τ (x, t)} is bounded

in H2,1(ΩT ), and {|ψ̃τ (x, t)|2} is bounded in H3,1(ΩT ) for any τ .

Proof. We have

∂tñ
τ
1(x, t) =

nm1 (x)− nm−1
1 (x)

τ
, t ∈ ((m− 1)τ,mτ) for m = 1, ...,M.

∫ T

0

∫ L

−L
|∂tñτ1(x, t)|2 dxdt ≤

M∑
m=1

∫ mτ

(m−1)τ

∫ L

−L

∣∣∣∣nm1 (x)− nm−1
1 (x)

τ

∣∣∣∣2 dxdt
=

M∑
m=1

τ

∫ L

−L

∣∣∣∣nm1 (x)− nm−1
1 (x)

τ

∣∣∣∣2 dx ≤ C1,

where that last inequality is true by (4.5). From the well-prepared initial data, we

get the uniform bound. In a similar way, we can prove
∫ T

0

∫ L
−L |∇xñ

τ
1(x, t)|2 dxdt is

uniformly bounded. �

Since {ñτ1} is uniformly bounded in H1,1(ΩT ), there is a subsequence, still

denoted by {ñτ1}, which converges strongly to some n1 in L2(ΩT ). Also, by weak

compactness of Sobolev spaces we can find a subsequence, {ñτ1} converging weakly

to n1 in H1,1(ΩT ). Similarly, we can prove strong convergence of ñτ2 , ñτ3 , ψ̃τ , and

|ψ̃τ |2; and weak convergence in the corresponding Sobolev-Bochner spaces.
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In the analysis of the discrete gradient flow, it is more convenient to work with

the piecewise constant approximations than with the piecewise linear approxima-

tions and since the two have the same asymptotic behavior, we use (nτ1 , n
τ
2 , n

τ
3 , ψ

τ )

from now on.

4.2. Convergence of the Discrete Gradient Flow. Due to the high non-

linearity of the discrete system, the above convergence of subsequences is not enough

to prove convergence of the discrete gradient flow. It turns out that we need higher

regularity, which is achieved through the following three major steps that are car-

ried out for q sufficiently large.

Step I. Local Regularity. We utilize the Euler-Lagrange equations them-

selves, and replace the test functions by convenient ones. For instance, in equation

(4.6), we let u1 = ∆−h[(∆hn
τ
1)ϕ2] for a small h > 0, where ϕ ∈ C∞0 (−L,L) is a

cut-off function s.t. 0 ≤ ϕ ≤ 1 and

(4.7) ϕ(x) =

 1 if x ∈ (−L+ η, L− η)

0 if x /∈ (−L+ η
2 , L−

η
2 )

for η > 0.

From the resulting equation, we are able to deduce an estimate on
∫

ΩT
|∆hn

τ
1
′ϕ|2 dxdt

in terms of the initial energy bound and small multiples of the integral itself (See

Appendix B). We repeat the process for the remaining Euler-Lagrange equations,

as the equations are coupled, and get the following estimate∫ T

0

∫ L−η

−L+η

(
|∆hn

τ ′|2 + |∆hψ
τ ′′|2 + |∆h|ψτ |2′′′|2 + ρ |∆hψ

τ ′′′|2
)
ϕ2 dxdt ≤ C(ρ, q).

Letting h→ 0,∫ T

0

∫ L−η

−L+η

|nτ ′′|2 + |ψτ ′′′|2 + ||ψτ |2(4)|2 + ρ|ψτ(4)|2 dxdt ≤ C(ρ, q).

We are able to remove the dependence on ρ in the final estimate (See Appendix B)

to get the following theorem.
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Theorem 4.3.

(4.8)

∫
Ω′T

|nτ ′′|2 + |ψτ ′′′|2 + ||ψτ |2(4)|2 + ρ|ψτ(4)|2 dxdt ≤ C(q).

where Ω′T = (L− η, L+ η)× [0, T ].

Step II. Higher Local Regularity. Due to the nature of the local regularity

achieved thus far, we are not able to attain the convergence required. We therefore

prove higher local regularity by following a similar method. Specifically, the test

function in the first equation is now replaced by u1 = ∆−h[(∆hn
τ ′

1)ϕ2]′ for a small

h > 0 and with the same cut-off function as before. The difference here is that

we require more of the initial conditions on n (See Appendix C). We complete the

estimates by removing the dependence on ρ, as before, to get the following result.

Theorem 4.4. Under the assumption that

∫
Ω′
|n0′′|2 dx is initially bounded,

we have

(4.9)

∫
Ω′T

|nτ ′′′|2 + |ψτ(4)|2 + ||ψτ |2(5)|2 + ρ|ψτ(5)|2 dxdt ≤ C(q).

To be able to extend the estimates to the full domain, we need to get rid of

the regularization term at this stage. The regularity results, (4.8) and (4.9), are

set up in a way that allows for this, due to their independence of ρ. However, to

recover the Euler-Lagrange equations when we let ρ→ 0, more should be done (See

Appendix D). Specifically, the fourth Euler-Lagrange equation recovered is

2<
∫ T

0

∫ L

−L

1

2
δτψφ+ Fψτφ+ Fψτ ′φ′ + Fψτ ′′φ′′ + 2g(ψτφ)(|ψτ |2 − 1) + 2(ψτφ)′|ψτ |2′

(4.10)

+
2

q2
(ψτφ)′′|ψτ |2′′ + 2

q6
(ψτφ)′′′|ψτ |2′′′ + PE√

1 + b2
n3(ψτφ) dxdt = 0.

Step III. Regularity up to the Boundary.
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Theorem 4.5.

(4.11)

∫
ΩT

|nτ ′′|2 + |ψτ ′′′|2 + ||ψτ |2(5)|2 dxdt ≤ C(q).

Proof. Our analysis will deal with the right boundary point x = L, the left

boundary point is analogous. Since |ψτ |2(L, t) = 1 and
∫ L
−L(|ψτ (x, t)|2′)2dx ≤ C1

uniformly in t, we can assume that |ψτ |2 > 1/2 over (L − λ, L) for some λ >

0. Fix L − λ
2 < L′ < L. In the following, we let Rj denote a sum of terms

that are integrable over (L − λ, L′) and whose square integrals are bounded by a

constant and small multiples of
∫ L′
L−λ |n

τ
1
′′|2 dx,

∫ L′
L−λ |n

τ
2
′′|2 dx,

∫ L′
L−λ |n

τ
3
′′|2 dx and∫ L′

L−λ |ψ
τ ′′′|2 dx. And let Sj denote a sum of terms such as |δτn1|, |δτn2|, |δτn3|,

|δτψ| and their integrals over (L− λ, L).

We replace the test function in (4.10) by φ = ζ ψτ

|ψτ |2 where ζ is a compactly

supported smooth function over [0, T ] × (L − λ, L). The higher estimates (4.9),

together with integration by parts, allow us to write the Euler-Lagrange equation

(4.10) in explicit form,

|ψτ |2(5) = 2<

{
a⊥
q2

(1− nτ2
2 )

(
(1− nτ2

2 )
ψτ ′

q

)′′
ψτ

|ψτ |2
+
a‖

q2
nτ2

2

(
nτ2

2

ψτ ′

q

)′′
ψτ

|ψτ |2

}(4.12)

+R1 + S1 for L− δ < y < L.

Now we go back to the first three weak Euler-Lagrange equations, write them in

explicit form, and deduce the following estimate:

(4.13) |nτ1 ′′|+ |nτ2 ′′|+ |nτ3 ′′| ≤ C|ψτ ′′′|+ |R2|+ |S2|

We also go back to the weak equation (4.10), integrate by parts, and write the

explicit equation. We replace ψτ |ψτ |2(6) by (ψτ |ψτ |2(5))′−ψτ ′|ψτ |2(5), plug equation
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(4.12) into (4.10), and then take anti-derivatives to get the estimate

(4.14)

|ψτ ′′′| ≤ ε|nτ1 ′′|+ ε|nτ2 ′′|+
∫ x

L−λ
ε|nτ1 ′′|+

∫ x

L−λ
ε|nτ2 ′′|+ C

∫ x

L−λ
|ψτ ′′′|+ |R3|+ |S3|.

Provided q is sufficiently large we have ε small and can insert inequality (4.13) into

the above to get

(4.15) |ψτ ′′′(x)| ≤ C
∫ x

L−λ
|ψτ ′′′|+ |R4|+ |S4|.

So
[
e−Cx

∫ x
L−λ |ψ

τ ′′′|
]′
≤ e−Cx|R4|+e−Cx|S4|. Integrating from L−λ to L′, we get

an estimate on
∫ L′
L−λ |ψ

τ ′′′|, which we use to bound the integral on the right-hand

side of (4.15). We square the resulting inequality, as well as (4.13), and integrate

both from L− λ to L′. The result is the following inequality

(4.16)∫ L′

L−λ
|nτ1 ′′|2+|nτ2 ′′|2+|nτ3 ′′|2+|ψτ ′′′|2 dx ≤ C

∫ L′

L−λ
|δτn1|2+|δτn2|2+|δτn3|2+|δτψ|2 dx+C

where crucially C is independent L′. Integrating from 0 to T , and since the resulting

right-hand side is bounded by (4.5), we can let L′ ↑ L to conclude that

(4.17)

∫ T

0

∫ L

L−λ
|nτ1 ′′|2 + |nτ2 ′′|2 + |nτ3 ′′|2 + |ψτ ′′′|2 dxdt ≤ C.

Going back to (4.12), it is now easy to see that
∫ T

0

∫ L
L−λ ||ψ

τ |2(5)|2 dxdt ≤ C. Note

that we gain one more order of regularity for |ψτ |2 through this method. �

4.3. Existence. With the higher regularity bound (4.11) thus obtained, we

define the solution set Xsol then state and prove the existence theorem. Let

Xsol = {(n(x, t), ψ(x, t)) ∈ X for almost every t;

ess sup
t∈[0,T ]

∫ L

−L
|n|2 + |nx|2 + |ψ|2 + ...+ |ψxx|2 + ||ψ|2|2 + ...+ ||ψ|2xxx|2 dx <∞,∫

ΩT

|n|2 + |nx|2 + |nxx|2 + |ψ|2 + ...+ |ψxxx|2 + ||ψ|2|2 + ...+ ||ψ|2xxxxx|2 dxdt <∞,

and

∫
ΩT

|nt|2 + |ψt|2 dxdt <∞
}
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Theorem 4.6. Given C > 0. We can find q0(C) so that, if q > q0 and

F(n0, ψ0) ≤ C for some initial data (n0, ψ0) ∈ X with n0′′ ∈ L2(Ω′), there exists a

solution (n(x, t), ψ(x, t)) ∈ Xsol to the time-dependent Euler-Lagrange equations:

∫
ΩT

{
∂tn1 + (1− n2

1)Fn1
− n1n2Fn2

+ (1− n2
1)′Fn′1 − (n1n2)′Fn′2 −K(n′21 + n′22 + n′23 )n1

(4.18)

− PE√
1 + b2

|ψ|2n1n3

}
u1 +

{
(1− n2

1)Fn′1 − n1n2Fn′2 +Kn′1
}
u′1 dxdt = 0

∫
ΩT

{
∂tn2 − n1n2Fn1

+ (1− n2
2)Fn2

− (n1n2)′Fn′1 + (1− n2
2)′Fn′2 −K(n′21 + n′22 + n′23 )n2

(4.19)

− PE√
1 + b2

|ψ|2n2n3

}
u2 +

{
−n1n2Fn′1 + (1− n2

2)Fn′2 +Kn′2
}
u′2 dxdt = 0

∫
ΩT

{
∂tn3 − n1n3Fn1 − n2n3Fn2 − (n1n3)′Fn′1 − (n2n3)′Fn′2 −K(n′21 + n′22 + n′23 )n3

(4.20)

+
PE√
1 + b2

|ψ|2(1− n2
3)

}
u3 +

{
−n1n3Fn′1 − n2n3Fn′2 +Kn′3

}
u′3 dxdt = 0

2<
∫

ΩT

1

2
∂tψφ+ Fψφ+ Fψ′φ′ + Fψ′′φ′′ + 2g(ψφ)(|ψ|2 − 1) + 2(ψφ)′|ψ|2′ + 2

q2
(ψφ)′′|ψ|2′′

(4.21)

+
2

q6
(ψφ)′′′|ψ|2′′′ + PE√

1 + b2
n3ψφdxdt = 0

for any (u, φ) ∈ H1,1(ΩT ;R3) × H3,1(ΩT ;C) such that φ(·, t) ∈ H2
0 (−L,L) with

<{φ′′ψ}(−L, t) = <{φ′′ψ}(L, t) = 0 for almost every 0 < t < T .

Proof. Let (nτ , ψτ ) be a discrete gradient flow. Write equation (4.6) as∫
ΩT

{(1− nτ12)δτn1 − nτ1nτ2δτn2 − nτ1nτ3δτn3 + Uτ1 }u1 + V τ1 u
′
1 dxdt = 0,
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where Uτ1 and V τ1 are nonlinear functions of nτ1 , n
τ
2 , n

τ
3 , ψ

τ and their derivatives.

Knowing that nτ1 → n1 and δτn1 ⇀ ∂tn1 in L2(ΩT ), with nnt = 0 since |n| = 1,

lim
τ→0

∫
ΩT

{(1− nτ12)δτn1 − nτ1nτ2δτn2 − nτ1nτ3δτn3}u1 dxdt

=

∫
ΩT

{∂tn1 − n1(n1∂tn1 + n2∂tn2 + n3∂tn3)}u1 dxdt =

∫
ΩT

∂tn1u1 dxdt.

It remains to prove that Uτ1 ⇀ U1 and V τ1 ⇀ V1 in L2(ΩT ). In fact, it suffices to

prove that Uτ1 , V τ1 are bounded in L2(ΩT ) and Uτ1 → U1, V τ1 → V1 in L1(ΩT ). To

show how this can be achieved, we consider a typical nonlinear term, Cnτ2
′ψτψτ ′′.

Before estimating this, note that it follows from (4.5) and the coercivity of F that

ess sup
t∈[0,T ]

∫
Ω

|nτ ′|2 + |ψτ |2 + |ψτ ′′|2 dx ≤ C

uniformly in τ . Applying Nirenberg’s interpolation inequality [24], we can see that∫
ΩT

|nτ2 ′ψτψτ ′′|2 dxdt ≤ C
∫ T

0

||ψτ ′′||2L∞(Ω)

∫
Ω

|nτ2 ′|2 dxdt ≤ C
∫ T

0

||ψτ ′′||2L∞(Ω)dt

≤ C
∫ T

0

{C||ψτ ′′||L2(Ω)||ψτ ′′′||L2(Ω) + C||ψτ ′′||2L2(Ω)}dt

≤ C

[∫ T

0

||ψτ ′′||2L2(Ω) dt

]1/2 [∫ T

0

||ψτ ′′′||2L2(Ω) dt

]1/2

+ C||ψτ ′′||2L2(ΩT )

≤ C||ψτ ′′||L2(ΩT )||ψτ ′′′||L2(ΩT ) + C||ψτ ′′||2L2(ΩT ) <∞,

where the last inequality is true by (4.11). This proves L2-boundedness. To prove

L1-convergence, we utilize Nirenberg’s interpolation inequality and higher regular-

ity again to improve the convergence of subsequences.

||nτk1 ′−n
τj
1
′||2L2(ΩT ) ≤ C||n

τk
1
′′−nτj1 ′′||L2(ΩT )||nτk1 −n

τj
1 ||L2(ΩT )+C||nτk1 −n

τj
1 ||2L2(ΩT ).
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{nτ1} is Cauchy and {nτ1 ′′} is bounded in L2(ΩT ) so {nτ1 ′} is Cauchy in L2(ΩT ),

hence convergent to n′1. Similarly, we obtain ψτ ′′ → ψ′′′ in L2(ΩT ). We have∫
ΩT

|nτ2 ′ψτψτ ′′ − n′2ψψ′′| dxdt ≤ C
[
||ψτ ′′||L2(ΩT )||nτ2 ′ − n′2||L2(ΩT )

+||n′2ψτ ′′||L2(ΩT )||ψτ − ψ||L2(ΩT ) + ||n′2||L2(ΩT )||ψτ ′′ − ψ′′||L2(ΩT )

]
and∫ T

0

∫
Ω

|n′2ψτ ′′|2 dxdt =

M∑
m=1

∫ mτ

(m−1)τ

∫
Ω′
|n′2ψm′′|2 dxdt ≤

M∑
m=1

τ sup
Ω
|ψm′′|2

∫
Ω

|n′2|2 dx

≤ C
M∑
m=1

τ sup
Ω
|ψm′′|2 ≤ C

M∑
m=1

τ

(∫
Ω

|ψm′′′|2 dx+

∫
Ω

|ψm′′|2 dx
)

= C

∫ T

0

∫
Ω

|ψm′′′|2 dxdt+ C

∫ T

0

∫
Ω

|ψm′′|2 dxdt ≤ C.

So∫
ΩT

|nτ2 ′ψτψτ ′′ − n′2ψψ′′| dxdt

≤ C
[
||nτ2 ′ − n′2||L2(ΩT ) + ||ψτ − ψ||L2(ΩT ) + ||ψτ ′′ − ψ′′||L2(ΩT )

]
→ 0 as τ → 0.

�

The higher convergence obtained in the proof of theorem (4.6), along with

energy dissipation statement (4.5), result in the following energy inequality.

Corollary 4.7.

(4.22)
1

2

∫
Ωs

|∂tn|2 + |∂tψ|2 dxdt+ F(n(s), ψ(s)) ≤ F(n0, ψ0) for 0 ≤ s ≤ T.

4.4. Uniqueness. Now that we established the existence of a continuous gra-

dient flow, we prove uniqueness of the solution independent of the choice of mini-

mizing sequence and the time discretization.

Theorem 4.8. Given C > 0. We can find q1(C) so that, if q > q1 and

F(n0, ψ0) ≤ C for some initial data (n0, ψ0) ∈ X then there exists at most one
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solution (n(x, t), ψ(x, t)) ∈ Xsol to the time-dependent Euler-Lagrange equations,

(4.18), (4.19), (4.20), and (4.21), satisfying the energy inequality (4.22).

Proof. We consider two solutions (n, ψ) and (ñ, ψ̃) of the weak Euler-Lagrange

equations with the same initial data (n0, ψ0) and that satisfy the energy inequality.

We take the difference between the corresponding Euler-Lagrange equations and

highlight the terms we need.∫
ΩT

{(∂tn1 − ∂tñ1) +A}u1(x, t) + {B +Kn′1 −Kñ′1}u′1(x, t) dxdt = 0.

Replace u1(x, t) by v1(x, t)χ(t−δ,t+δ) for each t ∈ [0, T ] then let δ → 0. By the

Lebesgue Differentiation Theorem, we get for a.e. t ∈ [0, T ]:∫
Ω

{(∂tn1 − ∂tñ1) +A} v1(x, t) + {B +Kn′1 −Kñ′1} v′1(x, t) dx = 0.

Letting v1(x, t) = n1 − ñ1,∫
Ω

1

2
∂t(n1 − ñ1)2 +K(n′1 − ñ′1)2 =

∫
Ω

−A(n1 − ñ1)−B(n′1 − ñ′1) dx.

We want to estimate the right-hand side, so we consider one of the terms,

1

q2

∫
Ω

|(n′2ψψ′′ − ñ′2ψ̃ψ̃′′)(n1 − ñ1)| dx

=
1

q2

∫
Ω

|n′2ψ(ψ′′ − ψ̃′′)(n1 − ñ1) + ψ̃′′ψ̃(n′2 − ñ′2)(n1 − ñ1)− ψ̃′′n′2(ψ − ψ̃)(n1 − ñ1)| dx

≤ ||n
′
2ψ||∞
q2

∫
Ω

|ψ′′ − ψ̃′′||n1 − ñ1| dx+
||ψ̃′′ψ̃||∞

q2

∫
Ω

|n′2 − ñ′2||n1 − ñ1| dx

+
||ψ̃′′n′2||∞

q2

∫
Ω

|ψ − ψ̃||n1 − ñ1| dx

≤ ||ψ||
2
∞

2q4

∫
Ω

|ψ′′ − ψ̃′′|2 dx+
||n′2||2∞

2q4

∫
Ω

|n1 − ñ1|2 dx+
||ψ̃||2∞

2q4

∫
Ω

|n′2 − ñ′2|2 dx

+
||ψ̃′′||2∞

2q4

∫
Ω

|n1 − ñ1|2 dx+
||ψ̃′′||2∞

2q4

∫
Ω

|ψ − ψ̃|2 dx+
||n′2||2∞

2q4

∫
Ω

|n1 − ñ1|2 dx.

Note that |ψ| and |ψ̃| are uniformly bounded independent of q, in the first and third

terms above. We repeat the process for the remaining equations and add up the
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final estimates to get, for q sufficiently large,

1

2
∂t

∫
Ω

|n1 − ñ1|2 + |n2 − ñ2|2 + |n3 − ñ3|2 + |ψ − ψ̃|2 dx

+ ε

∫
Ω

|n′1 − ñ′1|2 + |n′2 − ñ′2|2 + |n′3 − ñ′3|2 + |ψ′′ − ψ̃′′|2 dx

≤ Cη(t)

∫
Ω

|n1 − ñ1|2 + |n2 − ñ2|2 + |n3 − ñ3|2 + |ψ − ψ̃|2 dx

where

η(t) = ||n′1||2∞ + ||ñ′1||2∞ + ||n′2||2∞ + ||ñ′2||2∞ + ||n′3||2∞ + ||ñ′3||2∞ + ||ψ′′||2∞ + ||ψ̃′′||2∞

+ |||ψ|2′′||2∞ + |||ψ̃|2′′||2∞ + |||ψ|2′||2∞ + |||ψ̃|2′||2∞ + |||ψ|2(4)||2∞ + |||ψ̃|2(4)||2∞ + C1.

As a consequence of the global estimates (4.11), η(t) is integrable over [0, T ]. By

the differential form of Grönwall’s inequality, we conclude that∫
Ω

|n1 − ñ1|2 + |n2 − ñ2|2 + |n3 − ñ3|2 + |ψ − ψ̃|2 dx = 0 for any t ∈ [0, T ].

Consequently, n1 − ñ1 = n2 − ñ2 = n3 − ñ3 = ψ − ψ̃ = 0. �

5. Conclusions

Our analysis of the switching dynamics of chiral smectic-C falls within the

Landau-de Gennes theory. It also serves as an example of investigating defects us-

ing geometric flows, particularly in problems arising in Materials Science. We build

our mathematical model upon the free energy introduced by Chen and Lubensky

[22]. This energy is closely related to the work of Vaupotič, Kralj, Čopič and Sluckin

in [17], and Shalaginov, Hazelwood and Sluckin in [25]. The main difference is that

|ψ| = 1 is assumed throughout their analyses. While this does not present a major

obstacle in the statics, it results in a high energy barrier to overcome in the dynam-

ics. The construction and an analysis of the gradient flow under the assumption

|ψ| = 1 was done by Cheng in [26]. In the present work, we use a full complex-

valued order parameter allowing the smectic structure to relax, which leads to a
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well-posed flow problem for a realistic energy barrier.

Appendices

A. Derivation of the Weak Euler-Lagrange Equations. Write the En-

ergy Functional as

J(n, ψ) = J1(n, ψ) + J2(n) + J3(n, ψ) + J4(n, ψ) + J5(ψ) + J6(ψ′′′)

=

∫ L

−L
E(n, ψ) dx+

∫ L

−L
H(n) dx+

∫ L

−L
I(n, ψ) dx+

∫ L

−L
F (n, ψ) dx

+

∫ L

−L
G(|ψ|2) dx+

∫ L

−L
γ|ψ′′′|2 dx

where E =
(n1 − n0

1)2

2τ
+

(n2 − n0
2)2

2τ
+

(n3 − n0
3)2

2τ
+
|ψ − ψ0|2

2τ
,

H =
1

2
K[n′21 + n′22 + n′23 ], I =

PE√
1 + b2

|ψ|2n3,

F =
a⊥
q3
|ψ′′ − [(

iq√
1 + b2

n1ψ + n2ψ
′)n2]′ − q2

1 + b2
ψ +

q2

1 + b2
n2

1ψ −
iq√

1 + b2
n1n2ψ

′

+
c⊥q

2

2a⊥
ψ|2

+
a‖

q3
|( n1√

1 + b2
− cos θ)(− q2

√
1 + b2

n1ψ + iqn2ψ
′ + q2 cos θψ)

+ [(
iq√

1 + b2
n1ψ + n2ψ

′ − iq cos θψ)n2]′|2

+
c‖

q
| iq√

1 + b2
n1ψ + n2ψ

′ − iq cos θψ|2,

and G(|ψ|2) = g(|ψ|2 − 1)2 + (|ψ|2′)2 + 1
q2 (|ψ|2′′)2 + 1

q6 (|ψ|2′′′)2.

We take the first variation of J(n, ψ) with respect to n and ψ respectively. Let

(u, φ) be test functions where u ∈ H1(−L,L), φ ∈ H3(−L,L) with φ ∈ H2
0 (−L,L)

with <{φ′′ψ}(−L) = <{φ′′ψ}(L) = 0.

Let ε0 > 0. For every ε ∈ [−ε0, ε0], define nε = n+εu
|n+εu| . Since |nε| = 1, nε belongs

to the same space as n . Write nε = n + εP (n)u + o(ε) where P (n) = I− n⊗ n is

a projection tensor. We have:
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J1(nε, ψ) = J1(n, ψ) + ε

∫ L

−L

∂E

∂n
· P (n)u +

∂E

∂∇n
· ∇(P (n)u) + o(ε).

d

dε
J1(nε, ψ)

∣∣∣∣
ε=0

=

∫ L

−L

∂E

∂n
· P (n)u +

∂E

∂∇n
· ∇(P (n)u) dx =

∫ L

−L

∂E

∂n
· P (n)u dx.

The components of
d

dε
J1(nε, ψ)

∣∣∣∣
ε=0

are:

∫ L

−L

{
(1− n2

1)

(
n1 − n0

1

τ

)
− n1n2

(
n2 − n0

2

τ

)
− n1n3

(
n3 − n0

3

τ

)}
u1 dx∫ L

−L

{
−n1n2

(
n1 − n0

1

τ

)
+ (1− n2

2)

(
n2 − n0

2

τ

)
− n2n3

(
n3 − n0

3

τ

)}
u2 dx∫ L

−L

{
−n1n3

(
n1 − n0

1

τ

)
− n2n3

(
n2 − n0

2

τ

)
+ (1− n2

3)

(
n3 − n0

3

τ

)}
u3 dx.

Similarly, we have

d

dε
J2(nε)

∣∣∣∣
ε=0

=

∫ L

−L

∂H

∂∇n
· ∇(P (n)u) dx = K

∫ L

−L
∇n.∇(P (n)u) dx

= K

∫ L

−L
∇n · ∇u− |∇n|2n · u dx, since |n| = 1.

The components of
d

dε
J2(nε)

∣∣∣∣
ε=0

are:

K

∫ L

−L
−(n′21 + n′22 + n′23 )n1u1 + n′1u

′
1 dx

K

∫ L

−L
−(n′21 + n′22 + n′23 )n2u2 + n′2u

′
2 dx

K

∫ L

−L
−(n′21 + n′22 + n′23 )n3u3 + n′3u

′
3 dx.

d

dε
J3(nε, ψ)

∣∣∣∣
ε=0

=

∫ L

−L

∂I

∂n
· P (n)u dx, with components

∫ L

−L
− PE√

1 + b2
|ψ|2n1n3u1 dx
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−L
− PE√

1 + b2
|ψ|2n2n3u2 dx∫ L

−L

PE√
1 + b2

|ψ|2(1− n2
3)u3 dx.

d

dε
J4(nε, ψ)

∣∣∣∣
ε=0

=

∫ L

−L

∂F

∂n
· P (n)u +

∂F

∂∇n
· ∇(P (n)u) dx, with components

∫ L

−L

(
(1− n2

1)Fn1 − n1n2Fn2 + (1− n2
1)′Fn′1 − (n1n2)′Fn′2

)
u1 +

(
(1− n2

1)Fn′1

−n1n2Fn′2
)
u′1 dx∫ L

−L

(
−n1n2Fn1

+ (1− n2
2)Fn2

− (n1n2)′Fn′1 + (1− n2
2)′Fn′2

)
u2 +

(
−n1n2Fn′1

+(1− n2
2)Fn′2

)
u′2 dx∫ L

−L

(
−n1n3Fn1 − n2n3Fn2 − (n1n3)′Fn′1 − (n2n3)′Fn′2

)
u3 +

(
−n1n3Fn′1 − n2n3Fn′2

)
u′3 dx.

Note that we use Fn1
to denote the derivative of F with respect to n1, and we

calculate it using the fact that ∂x(|z|2) = 2<(zxz). For instance,

Fn1
= 2<

{
a⊥
q

(
i√

1 + b2
n′2ψ +

2i√
1 + b2

n2ψ′ +
2q

1 + b2
n1ψ

)
(
ψ′′

q
− i√

1 + b2
n′1n2ψ −

i√
1 + b2

n1n
′
2ψ −

2i√
1 + b2

n1n2ψ
′ − 2n′2n2

ψ′

q

−n2
2

ψ′′

q
− q

1 + b2
ψ +

q

1 + b2
n2

1ψ +
c⊥q

2a⊥
ψ

)
+
a‖

q

(
−2q

1 + b2
n1ψ −

2i√
1 + b2

n2ψ′ +
2q√

1 + b2
cos θψ − i√

1 + b2
n′2ψ

)
(
−q

1 + b2
n2

1ψ +
2i√

1 + b2
n1n2ψ

′ +
2q√

1 + b2
cos θn1ψ − 2i cos θn2ψ

′

− q cos2 θψ +
i√

1 + b2
n′1n2ψ +

i√
1 + b2

n1n
′
2ψ + 2n′2n2

ψ′

q

+n2
2

ψ′′

q
− i cos θn′2ψ

)
+qc‖

(
−i√

1 + b2
ψ

)(
i√

1 + b2
n1ψ + n2

ψ′

q
− i cos θψ

)}
Adding the components of the above variations, we get the first 3 Euler-

Lagrange Equations in weak form, (4.1), (4.2) and (4.3).
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For the fourth Euler-Lagrange equation, we note that the energy has the general

form

∫
a1|g1|2 + a2|g2|2 + ... + ak|gk|2 dx where g1, g2, ... and gk are linear in

ψ,ψ′, ψ′′. We’ll take for example f(ψ) =

∫
a1|b1ψ|2+a2|b2ψ|2 dx. Then f(ψ+εφ) =∫

a1[b1(ψ+εφ)][b1(ψ+εφ)]+a2[b2(ψ+εφ)][b2(ψ+εφ)] dx, where φ is a test function.

d

dε
f(ψ + εφ)

∣∣∣∣
ε=0

=

∫
a1b1φb1ψ + a1b1ψb1φ+ a2b2φb2ψ + a2b2ψb2φdx

=2<
∫

(a1gψg + a2hψh)φdx.

Proceeding in a similar way as in deriving the first three equations, we add the

different variations to get

2<
∫ L

−L

1

2
δτψφ+ Fψφ+ Fψ′φ′ + Fψ′′φ′′ + 2g(ψφ)(|ψ|2 − 1) + 2(ψφ)′|ψ|2′

+
2

q2
(ψφ)′′|ψ|2′′ + 2

q6
(ψφ)′′′|ψ|2′′′ + ρ

q6
(ψ′′′φ′′′) +

PE√
1 + b2

n3(ψφ) dx = 0,

Note that Fψ, Fψ′ , Fψ′′ , Fψ′′′ are not derivatives but notation for expressions that

are sums of terms like gψg, gψ′g, gψ′′g, gψ′′′g respectively.

B. Proof of L2-Local Estimates (4.8). We replace the test function in (4.6)

by ∆−h[(∆hn1)ϕ2] for a small h > 0 with ϕ as in (4.7). We drop the superscript τ

for convenience throughout this proof.∫
ΩT

{
(1− n2

1)δτn1 − n1n2δτn2 − n1n3δτn3 + Fn1
− n2

1Fn1
− n1n2Fn2

− 2n′1n1Fn′1

−n′1n2Fn′2 − n1n
′
2Fn′2 −Kn

′2
1 n1 −Kn′22 n1 −Kn′23 n1 −

PE√
1 + b2

|ψ|2n1n3

}
∆−h[(∆hn1)ϕ2]

+
(
Fn′1 − n

2
1Fn′1 − n1n2Fn′2

)
∆−h[(∆hn

′
1)ϕ2 + 2(∆hn1)ϕ′ϕ] dxdt = 0.

Using the fact that
∫
f∆−hg dx = −

∫
∆hfg dx and rearranging the terms,

K

∫
ΩT

(∆hn
′
1ϕ)2 =

∫
ΩT

[(1− n2
1)δτn1 − n1n2δτn2 − n1n3δτn3]∆−h[∆hn1ϕ

2]

(B.1)

−∆h[Fn1
− n2

1Fn1
− n1n2Fn2

− 2n′1n1Fn′1 − n
′
1n2Fn′2 − n1n

′
2Fn′2
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−Kn′21 n1 −Kn′22 n1 −Kn′23 n1 −
PE√
1 + b2

|ψ|2n1n3]∆hn1ϕ
2

−∆h[Fn′1 − n
2
1Fn′1 − n1n2Fn′2 ][(∆hn

′
1)ϕ2 + 2(∆hn1)ϕ′ϕ] dxdt.

We want to estimate the right-hand side by a constant or a small multiple of the

left-hand side. We highlight a few terms, the remaining terms are approximated in

a similar fashion. Recall that |n| = 1 and |ψ| ≤ C1, where C1 is independent of q.

∗
∫

ΩT

|(1− n2
1)δτn1∆−h∆hn1ϕ

2| dxdt ≤ ε
∫

ΩT

|∆−h∆hn1ϕ|2 dxdt+
1

ε

∫
ΩT

|n1δτn1ϕ|2 dxdt

≤ ε
∫

ΩT

|∆hn
′
1ϕ|2 dxdt+

1

ε

M∑
m=1

τ ||δτn1||L2(Ω)

≤ ε
∫

ΩT

|∆hn
′
1ϕ|2 dxdt+ C,

where we have used Young’s inequality for conjugate Hölder exponents and the

energy dissipation property (4.5).

∗
∫

ΩT

|n′1hn1∆hn
′
1∆hn1ϕ

2| dxdt ≤ ε
∫

ΩT

|∆hn
′
1ϕ|2 dxdt+

K2

ε

∫
ΩT

|n′1h∆hn1ϕ|2 dxdt

= ε

∫
ΩT

|∆hn
′
1ϕ|2 dxdt+

K2

ε

∫ T

0

∫ L−η/2

−L+η/2

|n′1h∆hn1ϕ|2 dxdt

≤ ε
∫

ΩT

|∆hn
′
1ϕ|2 dxdt+

K2

ε

∫ T

0

sup
(−L+η/2,L−η/2)

|∆hn1ϕ|2
∫ L−η−2

−L+η/2

|n′1h|2 dxdt

≤ ε
∫

ΩT

|∆hn
′
1ϕ|2 dxdt+

K2

ε

∫ T

0

C sup
(−L+η/2,L−η/2)

|∆hn1ϕ|2dt

≤ ε
∫

ΩT

|∆hn
′
1ϕ|2 dxdt+ C

where we have used the fact that for f ∈ H1(Ω), sup
Ω
|fϕ|2 ≤ ε

∫
Ω

|f ′ϕ|2 dx+ C.

We estimate ∆hFn′1 , |∆hFn′1 | ≤
C1

q

(
|∆hψ

′′|
q + ...

)
.

∗C1

q

∫
ΩT

∣∣∣∣∆hψ
′′

q
∆hn

′
1ϕ

2

∣∣∣∣ dxdt = C1

∫
ΩT

∣∣∣∣∆hψ
′′

q
7
4

∆hn
′
1

q
1
4

ϕ

∣∣∣∣ dxdt
≤ C1

2

∫
ΩT

∣∣∣∣∆hψ
′′

q
7
4

ϕ

∣∣∣∣2 dxdt+
C1

2

∫
ΩT

∣∣∣∣∆hn
′
1

q
1
4

ϕ

∣∣∣∣2 dxdt
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≤ C1

q
1
2

1

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt+

1

q
1
2

∫
ΩT

|∆hn
′
1ϕ|2 dxdt+ C.

Going back to equation (B.1), we estimate all the right-hand side terms and deduce

K

∫
ΩT

|∆hn
′
1ϕ|2 dxdt ≤ ε

∫
ΩT

|∆hn
′
1ϕ|2 dxdt+ ε

∫
ΩT

|∆hn
′
2ϕ|2 dxdt+ ε

∫
ΩT

|∆hn
′
3ϕ|2 dxdt

(B.2)

+
ε

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt+

C1

q
1
2

∫
ΩT

|∆hn
′
1ϕ|2 dxdt+

C1

q

∫
ΩT

|∆hn
′
1ϕ|2 dxdt

+
C1

q

∫
ΩT

|∆hn
′
2ϕ|2 dxdt+

C1

q
1
2

1

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt+ C,

where C1 is independent of q and η.

For the fourth Euler-Lagrange equation, we use the test function φ = ∆−h[∆hψϕ
2].

with ϕ being the same cut-off function.

2<
∫

ΩT

δτψ∆−h[∆hψϕ
2]−∆hFψ[∆hψϕ

2]−∆hFψ′ [∆hψϕ
2]′ −∆hFψ′′ [∆hψϕ

2]′′

+ 2g(ψ∆−h[∆hψϕ
2])(|ψ|2 − 1) + 2(ψ∆−h[∆hψϕ

2])′|ψ|2′ + 2

q2
(ψ∆−h[∆hψϕ

2])′′|ψ|2′′

+
2

q6
(ψ∆−h[∆hψϕ

2])′′′|ψ|2′′′ + ρ

q6
ψ′′′∆−h[∆hψϕ

2]′′′ +
PE√
1 + b2

n3ψ∆−h[∆hψϕ
2] dxdt = 0

knowing that ∆hFψ′′ =

[
a⊥
q2

(1− n2
2)2 ∆hψ

′′

q
+
a‖

q2
(n4

2)
∆hψ

′′

q

]
+ remaining terms.

We write 2<{ψ∆−h[∆hψϕ
2]} = ∆−h[∆h|ψ|2ϕ2]−∆−h[∆hψh∆hψϕ

2]−2∆−hψ∆−hψϕ
2
−h

and isolate the terms we want to estimate.

2

∫
ΩT

[
a⊥
q2

(1− n2
2)2 |∆hψ

′′|2

q
+
a‖

q2
(n4

2)
|∆hψ

′′|2

q

]
ϕ2 +

1

q6
|∆h|ψ|2′′′ϕ|2 +

ρ

q6
|∆hψ

′′′ϕ|2 dxdt

(B.3)

= 2<
∫

ΩT

δτψ∆−h[∆hψϕ
2]−∆hFψ[∆hψϕ

2]−∆hFψ′ [∆hψϕ
2]′ +

{
−∆hFψ′′ [∆hψϕ

2]′′

+

[
2a⊥
q2

(1− n2
2)2 |∆hψ

′′|2

q
+

2a‖

q2
(n4

2)
|∆hψ

′′|2

q

]
ϕ2 }+ 2g(ψ∆−h[∆hψϕ

2])(|ψ|2 − 1)

+ 2(ψ∆−h[∆hψϕ
2])′|ψ|2′ + 2

q6
(ψ∆−h[∆hψϕ

2])′′|ψ|2′′ + { 2

q6
(ψ∆−h[∆hψϕ

2])′′′|ψ|2′′′

+
1

q6
|∆h|ψ|2′′′ϕ|2 }+ { ρ

q6
ψ′′′∆−h[∆hψϕ

2]′′′ +
ρ

q6
|∆hψ

′′′ϕ|2 }+
PE√
1 + b2

n3ψ∆−h[∆hψϕ
2] dxdt.
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As before, we want to estimate the right-hand side by a constant or a small multiple

of the left-hand side. We highlight only a few terms. Recall that
|ψ′|
q
≤ C1.

One term we consider,∫
ΩT

2<{−∆hFψ∆hψϕ
2} dxdt ≤ 2

∫ T

0

sup
(−L,L)

|∆hψϕ|
∫ L

−L
|∆hFψϕ| dxdt

≤ C1

∫ T

0

sup
(−L,L)

|ψ′|
∫ L

−L
|∆hFψϕ| dxdt

≤ C1q

∫
ΩT

|∆hFψϕ| dxdt,

where |∆hFψ| ≤
C1

q
(|n′1|+ ...)(|∆hψ

′′

q
|+ ...).

∗C1

∫
ΩT

|∆hψ
′′

q
n′1ϕ| dxdt ≤

ε

q

∫
ΩT

|∆hψ
′′ϕ

q
|2 dxdt+

C2
1q

ε

∫
ΩT

|n′1|2 dxdt

≤ ε

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt+ C.

Another term we consider,∫
ΩT

2<
{
−∆hFψ′′ [∆hψϕ

2]′′ +

[
2a⊥
q2

(1− n2
2)2 |∆hψ

′′|2

q
+

2a‖

q2
(n4

2)
|∆hψ

′′|2

q

]
ϕ2

}
dxdt,

where
∣∣∣−∆hFψ′′ +

[
a⊥
q2 (1− n2

2)2 ∆hψ
′′

q +
a‖
q2 (n4

2)∆hψ
′′

q

]∣∣∣ ≤ C1

q2 (|n2hψh∆hn
′
1|+ remain-

ing terms.

∗C1

q2

∫
ΩT

|n2hψh∆hn
′
1∆hψ′′ϕ

2| dxdt ≤ C1

q2

∫
ΩT

|∆hn
′
1∆hψ

′′ϕ2| dxdt

≤ C1q
1
2

∫
ΩT

|∆hn
′
1

q
1
2

ϕ|2 dxdt+ C1
1

q
1
2

∫
ΩT

|∆hψ′′

q
3
2

ϕ|2 dxdt

=
C1

q
1
2

∫
ΩT

|∆hn
′
1ϕ|2 dxdt+

C1

q
1
2

1

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt.

A third term we consider,

2

q6

∫
ΩT

2<
{

(ψ∆−h[∆hψϕ
2])′′′|ψ|2′′′

}
dxdt

=
2

q6

∫
ΩT

(∆−h[∆h|ψ|2ϕ2])′′′|ψ|2′′′ dxdt− 2

q6

∫
ΩT

(∆−h[∆hψh∆hψϕ
2])′′′|ψ|2′′′ dxdt
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− 4

q6

∫
ΩT

(∆−hψ∆−hψϕ
2
−h)′′′|ψ|2′′′ dxdt

= − 2

q6

∫
ΩT

(∆h|ψ|2ϕ2)′′′∆h|ψ|2′′′ dxdt+
2

q6

∫
ΩT

(∆hψh∆hψϕ
2)′′′∆h|ψ|2′′′ dxdt

− 4

q6

∫
ΩT

(∆−hψ∆−hψϕ
2
−h)′′′|ψ|2′′′ dxdt

∗2h

q6

∫
ΩT

|∆hψ|2′′′ϕ2∆h|ψ|2′′′ dxdt

=
2h

q6

∫
ΩT

2<{∆hψ
′′′∆hψ}ϕ2∆h|ψ|2′′′ dxdt+

2h

q6

∫
ΩT

2<{3∆hψ
′′∆hψ′}ϕ2∆h|ψ|2′′′ dxdt

≤ ε1
q6

∫
ΩT

(∆h|ψ|2′′′ϕ)2 dxdt+
42h2

ε1q4

∫
ΩT

|∆hψ
′′′∆hψ

q
ϕ|2 dxdt

+
ε1
q6

∫
ΩT

(∆h|ψ|2′′′ϕ)2 dxdt+
122h2

ε1q6

∫
ΩT

|∆hψ
′′∆hψ′ϕ|2 dxdt

≤ ε1
q6

∫
ΩT

(∆h|ψ|2′′′ϕ)2 dxdt+
42C1h

2

ε1q4

∫
ΩT

|∆hψ
′′′ϕ|2 dxdt

+
122

ε1q6

∫ T

0

sup
(−L,L)

|∆hψ
′ϕ|2

∫ L

−L
|ψ′′(x+ h)− ψ′′(x)|2 dxdt

(
choose h2 <

εε1ρ

42C1q2

)
≤ ε

q6

∫
ΩT

(∆h|ψ|2′′′ϕ)2 dxdt+
ρ

q6

∫
ΩT

|∆hψ
′′′ϕ|2 dxdt+

ε

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt+ C.

Note that the constant on the right-hand side is dependent on ρ.

Going back to equation (B.3), we estimate all the terms and deduce

2

∫
ΩT

a⊥
q2

(1− n2
2)2 |∆hψ

′′|2

q
+
a‖

q2
(n4

2)
|∆hψ

′′|2

q
ϕ2 +

1

q6
|∆h|ψ|2′′′ϕ|2 +

ρ

q6
|∆hψ

′′′ϕ|2 dxdt

≤ ε
∫

ΩT

|∆hn
′ϕ|2 dxdt+

ε

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt+

C1

q
1
2

∫
ΩT

|∆hn
′ϕ|2 dxdt

+
C1

q
1
2

1

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt+

ε

q6

∫
ΩT

(∆h|ψ|2′′′ϕ)2 dxdt+
ερ

q6

∫
ΩT

|∆hψ
′′′ϕ|2 dxdt+ C(ρ).

However,

2a⊥a‖

a⊥ + a‖

1

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt ≤2

∫
ΩT

[a⊥(1− n2
2)2 + a‖(n

4
2)]

1

q3
|∆hψ

′′ϕ|2 dxdt

=2

∫
ΩT

<
{[

a⊥
q2

(1− n2
2)2 ∆hψ

′′

q
+
a‖

q2
(n4

2)
∆hψ

′′

q

]
∆hψ′′ϕ

2

}
dxdt.
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Therefore,

2a⊥a‖

a⊥ + a‖

1

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt+

2

q6

∫
ΩT

(∆h|ψ|2′′′ϕ)2 +
2ρ

q6

∫
ΩT

|∆hψ
′′′ϕ|2 dxdt

(B.4)

≤ ε
∫

ΩT

|∆hn
′ϕ|2 dxdt+

ε

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt+

C1

q
1
2

∫
ΩT

|∆hn
′ϕ|2 dxdt

+
C1

q
1
2

1

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt+

ε

q6

∫
ΩT

(∆h|ψ|2′′′ϕ)2 dxdt+
ερ

q6

∫
ΩT

|∆hψ
′′′ϕ|2 dxdt+ C(ρ)

We add the two estimates (B.2) and (B.4), along with the corresponding ones for

n2 and n3,(
K − ε− C1

q
− C1

q
1
2

)∫
ΩT

|∆hn
′ϕ|2 dxdt+

(
2a⊥a‖

a⊥ + a‖
− ε− C1

q
1
2

)
1

q3

∫
ΩT

|∆hψ
′′ϕ|2 dxdt

+ (2− ε) 1

q6

∫
ΩT

(∆h|ψ|2′′′ϕ)2 dxdt+ (2− ε) ρ
q6

∫
ΩT

|∆hψ
′′′ϕ|2 dxdt ≤ C(ρ).

Choosing ε sufficiently small, and for q sufficiently large, and since ϕ = 1 on (−L+

η, L− η),∫ T

0

∫ L−η

−L+η

|∆hn
′|2 +

1

q3
|∆hψ

′′|2 +
1

q6
|∆h|ψ|2′′′|2 +

ρ

q6
|∆hψ

′′′|2 dxdt ≤ C(ρ).

Letting h→ 0, we deduce that n′′1 , n
′′
2 , n

′′
3 , ψ

′′′, |ψ|2(4), ψ(4) ∈ L2((−L+η, L−η)×

[0, T ]). To remove the dependence on ρ, so we repeat all the estimates replacing

difference quotients by derivatives. For instance,

− 2

q6

∫
ΩT

[ψ(ψ′ϕ2)′ + ψ(ψ′ϕ2)′]′′|ψ|2(4) dxdt

= − 2

q6

∫
ΩT

[(ψψ′′ + ψψ′′)ϕ2]′′|ψ|2(4) dxdt− 2

q6

∫
ΩT

[(ψψ′ + ψψ′)2ϕ′ϕ]′′|ψ|2(4) dxdt

= − 2

q6

∫
ΩT

[(|ψ|2′′ − 2ψ′ψ′)ϕ2]′′|ψ|2(4) dxdt− 2

q6

∫
ΩT

[(|ψ|2′)2ϕ′ϕ]′′|ψ|2(4) dxdt.

∗ 4

q6

∫
ΩT

|ψ′′′ψ′ϕ2|ψ|2(4)| dxdt ≤ ε

q6

∫
ΩT

(|ψ|2(4)ϕ)2 dxdt+
42

εq4

∫
ΩT

|ψ′′′ψ
′

q
ϕ|2 dxdt

≤ ε

q6

∫
ΩT

(|ψ|2(4)ϕ)2 dxdt+
C1

q

1

q3

∫
ΩT

|ψ′′′ϕ|2 dxdt
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We proceed as before and arrive to(
K − ε− C1

q
− C1

q
1
2

)∫
ΩT

|n′′ϕ|2 dxdt+

(
2a⊥a‖

a⊥ + a‖
− ε− C1

q
1
2

− C1

q

)
1

q3

∫
ΩT

|ψ′′′ϕ|2 dxdt

+ (2− ε) 1

q6

∫
ΩT

(|ψ|(4)ϕ)2 dxdt+ (2− ε) ρ
q6

∫
ΩT

|ψ(4)ϕ|2 dxdt ≤ C,

which leads to (4.8).

C. Time-Quotient Reasoning in Higher Estimates. To prove higher lo-

cal regularity, we repeat a similar process as in Appendix B. Here we just highlight

where the extra condition, that

∫
Ω′
|n0′′|2 dx is initially bounded, arises from. For

that we consider only one piece of the Euler-Lagrange equation, after replacing the

test function by u = ∆−h[∆hn
′ϕ2]′.∫

ΩT

[δτn− (δτn · n)n]∆−h[∆hn
′ϕ2]′ dxdt = −

∫
ΩT

∆h[δτn− (δτn · n)n][∆hn
′ϕ2]′ dxdt

=

∫
ΩT

∆h[δτn
′][∆hn

′ϕ2] dxdt+

∫
ΩT

∆h[(δτn · n)n][∆hn
′ϕ2]′ dxdt := I + II.

Using the fact that

(δτω · ω)m =
1

τ
(ωm − ωm−1) · 1

2
[(ωm − ωm−1) + (ωm + ωm−1)]

=
1

2τ
|ωm − ωm−1|2 +

1

2τ
(|ωm|2 − |ωm−1|2),

we write

I =

∫
ΩT

δτ (∆hn
′)∆hn

′ϕ2 dxdt

=

∫
ΩT

τ

2
|δτ∆hn

′|2ϕ2 dxdt+

∫
ΩT

1

2τ
|∆hn

M ′|2ϕ2 dxdt−
∫

ΩT

1

2τ
|∆hn

0′|2ϕ2 dxdt

=

∫
ΩT

τ

2
|δτ∆hn

′|2ϕ2 dxdt+
1

2

∫
Ω

|∆hn
M ′|2ϕ2 dx− 1

2

∫
Ω

|∆hn
0′|2ϕ2 dx.

Using the fact that

(δτn · n)m =
1

τ
(nm − nm−1) · 1

2
[(nm − nm−1) + (nm + nm−1)]

=
1

2τ
|nm − nm−1|2 +

1

2τ
(|nm|2 − |nm−1|2) with |nm| = |nm−1| = 1
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=
1

2τ
|nm − nm−1|2,

we write

II =

∫
ΩT

∆h[(δτn · n)n][∆hn
′ϕ2]′ dxdt

=

∫
ΩT

∆h(δτn · n)nh[∆hn
′ϕ2]′ dxdt+

∫
ΩT

(δτn · n)∆hn[∆hn
′ϕ2]′ dxdt

=

∫
ΩT

∆h

(τ
2
|δτn|2

)
nh[∆hn

′ϕ2]′ dxdt+

∫
ΩT

(δτn · n)∆hn[∆hn
′ϕ2]′ dxdt.

We can prove that

|II| ≤ ε
∫

ΩT

|∆hn
′′ϕ|2 dxdt+ ε

∫
ΩT

τ |∆hδτn
′ϕ|2 dxdt+ ε sup

(0,T )

∫
Ω

|∆hn
′ϕ|2 dx+ C,

to get the following estimate∣∣∣∣I + II−
∫

ΩT

τ

2
|δτ∆hn

′ϕ|2 dxdt− 1

2

∫
Ω

|∆hn
M ′ϕ|2 dx

∣∣∣∣(C.5)

≤ 1

2

∫
Ω

|∆hn
0′ϕ|2 dx+ ε

∫
ΩT

|∆hn
′′ϕ|2 dxdt+ ε

∫
ΩT

τ |∆hδτn
′ϕ|2 dxdt

+ ε sup
(0,T )

∫
Ω

|∆hn
′ϕ|2 dx+ C.

As can be seen from (C.5), in order to get an estimate using the Euler-Lagrange

equations with the terms
∫

ΩT
τ
2 |δτ∆hn

′ϕ|2 dxdt and 1
2

∫
Ω
|∆hn

M ′ϕ|2 dx, among oth-

ers, on the left-hand side, we need 1
2

∫
Ω
|∆hn

0′ϕ|2 dx to be initially bounded.

D. Recovering Euler-Lagrange equations when ρ → 0. Recall the en-

ergy functional

Jρ(n, ψ) =

∫ L

−L

{
|n− nk−1|2

2τ
+
|ψ − ψk−1|2

2τ

}
dx+ Fq(n, ψ; ρ)

where we consider (n, ψ) = (nk,ρ, ψk,ρ) that minimizes Jρ. We want to let ρ → 0,

assuming that the time step k is fixed. From the interior estimates (4.8) we have

that nk,ρ → nk,0 in H1(−L′, L′;S2) and ψk,ρ → ψk,0 in H2(−L′, L′) for each

L′ < L. We want to prove that nk,ρ → nk,0 in H1(−L,L;S2) and ψk,ρ → ψk,0 in

H2(−L,L).
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From the lower semi-continuity of the integrals with respect to these sequences

we have

J0(nk,0, ψk,0) ≤ lim
ρ→0

Jρ(nk,ρ, ψk,ρ).

We first show that this is in fact an equality by constructing test functions

(nε, ψε). Fix r > 0 so that 2 > |ψk,0| > 1/2 on (−L,−L+ r) ∪ (L− r, L). Set

nε = nk,0 on (−L,L)

ψε = ψk,0 on (−L+ r, L− r).

On (−L,−L+ r)∪ (L− r, L) we write ψk,0(x) = |ψk,0|eiΘ(x). Since Θ(x) ∈ H3(L−

r, L′) ∩H2(−L+ r, L), we can find Θε ∈ H3(L− r, L) so that Θε(L− r) = Θ(L−

r),Θ′ε(L−r) = Θ′(L−r),Θ′′ε (L−r) = Θ′′(L−r),Θε(L) = Θ(L),Θ′ε(L) = Θ′(L) and

so that Θε(x)→ Θ(x) in H2(L−r, L). We carry out the corresponding construction

on (−L,−L+ r). We set ψε(x) = |ψk,0(x)|eiΘε(x) on (−L,−L+ r) ∪ (L− r, L).

We find that ψε(x) ∈ H3(−L,L), ψε → ψk,0 in H2(−L,L) as ε → 0 with

ψε having the correct boundary conditions at x2 = ±L. This renders (nε, ψε) a

comparison function for each ε, ρ > 0 for Jρ.

We now choose, for each ε > 0, a ρ(ε) > 0 and small so that

ρ(ε)

∫ L

−L
|ψ′′′ε |2 dx < ε.

Then we have

J0(nk,0, ψk,0) ≤ lim
ρ→0

Jρ(nk,ρ, ψk,ρ) ≤ lim
ε→0

Jρ(ε)(nε, ψε) = J0(nk,0, ψk,0).

Thus

J0(nk,0, ψk,0) = lim
ρ→0

Jρ(nk,ρ, ψk,ρ).

It follows that each of the integrals making up Jρ converge to their counterpart in

J0. Therefore
∫ L
−L |(n

k,ρ)′|2 dx →
∫ L
−L |(n

k,0)′|2 dx which implies that nk,ρ → nk,0

in H1(−L,L).
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Expanding the first two terms in Fq out we get{
a⊥
q3

(
1− (nk,02 )

2
)2

+
a‖

q3
(nk,02 )4

}
|(ψk,ρ)′′|2

+

{
a⊥
q3

[(
1− (nk,ρ2 )

2
)2

−
(

1− (nk,02 )
2
)2
]

+
a‖

q3

[
(nk,ρ2 )

4
− (nk,02 )4

]}
|(ψk,ρ)′′|2 + · · ·

=

{
a⊥
q3

(
1− (nk,02 )

2
)2

+
a‖

q3
(nk,02 )4

}
|(ψk,ρ)′′|2 + I(ρ) + II(ρ)

where
∫ L
−L I(ρ) dx→ 0 and

∫ L
−L II(ρ) dx→

∫ L
−L II(0) dx as ρ→ 0. Here we are using

the properties that II(ρ) is at most linear in (ψk,ρ)′′ and nk,ρ → nk,0 in H1(−L,L).

Since the integral of this expression converges to the corresponding integral in J0

we get∫ L

−L

{
a⊥
q3

(
1− (nk,02 )

2
)2

+
a‖

q3
(nk,02 )4

}
|(ψk,ρ)′′|2 dx

−→
∫ L

−L

{
a⊥
q3

(
1− (nk,02 )

2
)2

+
a‖

q3
(nk,02 )4

}
|(ψk,0)′′|2 dx.

Due to this, ψk,ρ → ψk,0 in H2(−L,L).

Finally using the strong convergence for ψk,ρ and nk,ρ we can show that one

recovers the Euler-Lagrange equations (4.1), (4.2), (4.3) with (u1(x, kτ), u2(x, kτ),

u3(x, kτ)) ∈ H1(−L,L) upon letting ρ→ 0.
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