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BOUNDARY REGULARITY AND THE
DIRICHLET PROBLEM FOR HARMONIC MAPS

RICHARD SCHOEN & KAREN UHLENBECK

In a previous paper [10] we developed an interior regularity theory for
energy minimizing harmonic maps into Riemannian manifolds. In the first two
sections of this paper we prove boundary regularity for energy minimizing
maps with prescribed Dirichlet boundary condition. We show that such maps
are regular in a full neighborhood of the boundary, assuming appropriate
regularity on the manifolds, the boundary and the data. The reader may refer
to Theorem 2.7 for a statement of the precise result. It is not surprising that the
boundary regularity is actually stronger than the partial regularity we obtained
for the interior. This is due to the fact that there are no nontrivial smooth
harmonic maps from hemispheres S+~J which map the boundary Sn~J~ι =
9S+"7 to a point (I <j'<n — 2), and is analogous to the fact that in certain
cases we were able to obtain complete regularity in the interior. Many authors
have worked on boundary regularity for this general type of problem. We
mention Hildebrandt and Widman [5] and Hamilton [4] as having obtained
important results specifically for harmonic maps. Morrey had obtained the
boundary regularity for domain dimension n = 2 in conjunction with his
investigation of the Plateau problem in Riemannian manifolds [8].

In §3 of this paper, we observe that the direct method gives solvability of the
Dirichlet problem under reasonable hypotheses on the manifolds. We give, as
an application, an amusing proof of a theorem of Sacks and Uhlenbeck [9] on
the existence of minimal 2-spheres representing the second homotopy group of
a manifold. The same method gives smooth harmonic representations for
πk(N) for a certain class of manifolds N. These are characterized by the
nonexistence of lower dimensional harmonic spheres whose homogeneous
extensions are minimal (see Proposition 3.4).

In the last section of the paper we discuss approximation of L\ maps by
smooth maps. We give a simple example of an L\ map from the three-dimen-
sional ball to the two-sphere which is not an L\ limit of continuous maps. We
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also prove that L\ maps from a two-dimensional manifold can be approxi-
mated by smooth maps. These approximation questions were explicitly posed
by Eells-Lemaire [2].

J. Jost and M. Meier [6] have proven the boundary regularity for minima of
a slightly larger class of functionals than those considered here. They need an
additional restriction that the image of the map lie within a fixed uniformly
Euclidean coordinate chart. The interior partial regularity in this setting had
been previously developed by Giaquinta and Giusti [3].

1. Partial boundary regularity

We follow the notation of [10], letting Mn and N be Riemannian manifolds
with N CRk isometrically embedded. Let L](M, N) be the subset of L](M, Rk)
whose image lies in N a.e. For u E L\{M,Rk), the energy functional is given
by

E(u) = ( (du,du)dV=( e(u),
JM JM
JM JM

where

with gaβ being the metric tensor of M. The norm on L\(M, Rk) is then given by

0 r i
II II r</ \ i I V̂  ί iί \ \ Δ

 JΎZ

||M||I,2 = E(u) + / 2 ("(*)) dv-
JM i

As in [10] we will prove our results for slightly more general functionals
E(u) = E(u) + V(u) where V(u) is of the form V(u) = / t (w) dV with

i V «(̂ . w( x)) l i i i( x) + w χ u(χ\\ d v

a

We assume throughout that the metric on M is C 2 and γ, Γ E C r for r>2. Let
L2

0(M,R*) be the maps which are zero on dM. A map u E L\{M, N) is
^-minimizing provided E(u) ^ E(v) for all ϋ E L](M, N) with w — t> E
L^oίM,^). We will be interested in this paper in the boundary regularity of
E-minimizing maps, so we assume that dM is of class C2 'α and that u satisfies
the Dirichlet boundary condition, that is, u — v0 on dM where v0 E
C2'a(dM, N). Since the regularity question is local in M, we may choose
coordinates xa centered at a point p0 E dM such that locally M is the upper
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{-space R\ . Thus we will deal with maps u G L\(B+, N) which are E-

minimizing. Clearly we may assume that gaβ(0) = δaβ, and also that the

boundary data v0 is defined on all of Bσ, i.e., v0 G C2a(Bσ9 N).

Most of our arguments will be on Bx, so we define for Λ > 0 a class <5A of

functional E on Bλ satisfying gaβ(0) = δaβ and such that for x G Bx

+ , u G N

Denote by ^ the class of boundary data t>0 E C\BX, N) such that υo(0) = 0

G R* where we assume without loss of generality that 0 E N. We assume for

c0 E %, x E Bλ

Throughout the paper we will assume JV0 is a fixed compact subset of iV and

our maps have image lying in No a.e.. We use the notation

Let %A denote the space of maps u G L\(B^ , NQ) such that u is ^-minimizing

for some E G ^ and u = v0 on Γ, (in an L^-sense) for some u0 G ^ We

observe the following lemma.

Lemma 1.1. Given p G 3M, we can choose coordinates centered at p on M,

and the origin in R* so that the boundary values v0 G C\dM, N) satisfy

t>0(0) = 0, and so that we have u G %A. Then the map uλ(x) = u(λx) satisfies

uλ E %λA for any λE(09l].

This lemma reduces the regularity question to the study of maps u G %A

where Λ is arbitrarily small. We next observe that [10, Lemma 2.3] carries over

directly to our setting to yield

Lemma 1.2. // Λ is sufficiently small and u G %A, then there exists a

constant c = c(n) such that for σ G (0,1 ]

K (u) < ( 1 + cAσ)EΪ (w) + cAσ"-χ

for any w G L\(B* , N) with w — u on dB* , where we have used E* to denote

energy taken on B£ .

As in [10], a suitable scaling inequality plays an important role in our proof.

To derive such an inequality, we first consider approximate reflection of maps

u G %A. We define a map ύ G L](BX, Rk) by

ύ(x\ xn) = - (u(x\ -χn) - vo(x\ -xn))9
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where x' - (xχ,... 9xn-λ) denotes the first {n - l)-coordinates, and the above
definition is for xn < 0. We take ύ = u - vQ in Bf. We use Ex to denote
energy taken on Bσ(x\ and we now derive our scaling inequality.

Lemma 1.3. Given u E %A for Λ sufficiently small, we have for x E Bt,

0 < σ < p < {

σ2-"Eσ

x(ύ) < c[p2-"Ep

x(ύ) + Λp].

Proof. Our proof involves consideration of two cases. First, if p < xn we
can apply [10, Proposition 2.4] to assert o2~nEx{u) < c[ρ2~nE*(u) + Λp].
Since ύ — u — v0 in Bf and Bp(x) C 2?^ we have by the triangle inequality

σ2-nEx{ύ) < 2σ2-nEϊ(u) + cΛ2σ2

< c[p2-"Ep

x(u) + Λp] < c[p 2 -^(w) + Λp],

where we have used the fact that v0 E ^D ,̂ and not bothered to distinguish
between constants. This gives the required results for p < xn. For p > xn, we
first note that if σ < xn the above argument gives

(1.1) o2~"Eσ

x(ύ) < c[^ 2-"^.(β) + Λ*J.

Thus if σ = max{σ, xn), it suffices to prove

(1.2) o2-"Eϊ{ύ) < c[p 2-^(«) + Λp],

because if σ < xn, then σ = xn, and (1.1) together with (1.2) gives the desired
conclusion. We may assume without loss of generality that 2xn < p and
σ < p/4, for if p < 2xn, then (1.1) already implies our conclusion, while if
σ ^ p / 4 , inequality (1.2) is automatic. Thus if x = (x\ xn), we have the
inclusions

Bσ-(x) C B2σ-(x') C Bp/2(x') C Bp{x).

Thus in proving (1.2) we can work with balls centered at (x',0) E Tλ. There-
fore without loss of generality we can assume xn — 0 and x ELTV We prove
(1.2) under this assumption. By a linear change of coordinates we can assume
x — 0 and gaβ(x) — δaβ. Since ύ is an odd mapping with respect to reflection
about Γ,, inequality (1.2) is equivalent to

(1.3) O2-»E: (ύ) < c [ p 2 " ^ ; (fl) + Λp],

where E+ denotes energy taken over B+ . Inequality (1.3) is proven as in [10,
Proposition 2.4]. For σ E (0, p ] one considers the comparison map vσ on Bp

+

given by

vσ(x) = u(x)9 \x\>σ,

vσ(x) = ύ^σ-^-rj + ϋ o ( x ) , \x\<σ.
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We can calculate as in [10]

V v \x\ H n — 2y do σ JdB+ dr

Since | dv0 | < cΛ, we get by the Schwartz inequality

(1.5) E+ (vσ) < (1 + cAo)E+ ύ\ στ-7 I I + cAσn~ι.

We cannot directly use vσ as a comparison map even though υσ = u on 9i?+
because vσ does not have image in N. To remedy this problem we observe that
since υo(0) E N and | dυ0 \< cΛ, the distance from vσ(x) to N is at most cΛσ.
Thus if Λ is small, we can use the projection π: 0 -> N to push t>σ(x) onto N;
that is, we use π ° t?σ as a comparison. First observe that since dist(t>σ, iV) <
cΛσ,

(1.6) E: (π o t J < (1 + cAσ)£σ

+ (υ σ).

Now combining Lemma 1.3 with (1.4), (1.5), and (1.6) we have

σ(l+cAσ)[ d dύ
dr

+ cΛσ""

This implies

(1.7) 0 < .

Since £ ^ (M) is a nondecreasing function, we can integrate this inequality from
σ to p and discard the radial derivative term to get

(1 + cΛσ X (ύ) < (1 + cAp)n~2p2-"E+ (ύ) + cA(p - σ ).

This implies (1.3) which concludes the proof of Lemma 1.3.
Taking the radial term into consideration we now get the following result

whose proof we omit since it is the same as the proof of [10, Lemma 2.5].
Lemma 1.4. Let u E %A. There is a sequence λ(ι) -> 0, λ(ι) E (0,1] such

that wλ(/) converges weakly in L](B*, N) to a limiting map u0 E L2

x(Bl9 N).
The map u0 is a map satisfying duo/dr — 0 a.e. in Bf , and also satisfying
u0 = 0 on Tλ.

We now prove the initial regularity theorem under smallness assumptions on
the energy.

Regularity Estimate 1.5. There exists ε > 0 depending only on n and No Q N
such that ifuE. %A, A < ε and E^ (u) < ε, then u is Holder continuous on Bt
and satisfies \ u(x) — «(y) |< c \ x — y |α for x, y E Bt where c, a > 0 depend
only on n, No.
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Proof. We give the necessary modifications of [10, §3]. Let ύ be the odd

map used in Lemma 1.3, and let φ be a symmetric mollifier, φ > 0, support

φ C Bl9 φ(x) = φ(| x |), fφ — 1. Applying Lemma 1.3 as in [10] gives us the

inequality

2(1.8) h~n f £<">(*) -\ύ(y)\2 dy < cxi9
JBh{x)

where W(Λ)(JC) = Jφ(h\x - z)ύ(z)dz. Note that by (1.2) and the fact that

vo(0) = 0 G i V w e have for a.e. y E B\

(1.9) dist(ύ(y),N0)<c2e.

Let 6 denote a normal neighborhood of N in R*. Since No is compact, Θ

contains a uniform neighborhood of NQ. Thus we see immediately from (1.8),

(1.9)

(1.10)

for x E Bt, 0 < h < \. In particular, if ε is small we can set ύh(x) =

77- o ύ{h\x) to get comparison maps into N. Since ύ is an odd map and φ is a

symmetric mollifier, we also have

(1.11) w ( Λ )(x) = 0 for* E Γ., A e ( 0 , i ] .

(Recall Tσ = {x E ^ σ : xn = 0}.) We now proceed with the following lemma

which is Lemma 3.2 in [10].

Lemma 1.5. Let h — ε~ % and suppose h E (0, h]. Then we have

/ 2
f

sup |« ( A">(x)-M<Λ")(0) | 2<c 4εϊ.
*e«ϊ/2

We now choose Λ = h(x) where Λ(Λ ) = h{r), r=\x\. Let T = ε^ and

suppose ε e (T, 5). Choose h(r) to be a nonincreasing function of r satisfying

(1.12) A(r) = A

We then set for x e β 1

The following result is immediate from [10, Lemma 3.3], (1.2), and (1.11).
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Lemma 1.6. For θ E (T, \ ], the map uh given by

satisfies uh = u on (B+± ~ Bf+r) U Γ. Moreover, we have

ί \duh\
2 dx < c5\ f \du\2dx + εθn .

As in [10, (3.4)] we will be finished if we can prove the following result.
Proposition 1.7. There exists ε = ε(«, No) > 0 swcλ ίΛαί if u G %A, A

ε, E^ (u) < ε,

= 0(n,JVo)G(O,l).
The proof of the regularity estimate, given Proposition 1.7, is identical to the

proof in the interior given in [10], so we proceed with the proof of Proposition
1.7. Let v be the solution of the linear Dirichlet problem

Δυ = 0 inBt,

v = M(Λ) on dBt'

As in [10] we prove the following inequalities:

(1.13) sup \v-ύw\ <c6e*9
Bΐ/2

(1.14) sup \dvI <c6(E* (u) + A).

For θ G (0, i ] we get, setting wA- = π o (M<Λ) + t>0),

(1.15) ί 2 - ^ (wΛ-) < cΊ[θ2-"EΪ (w ( Λ )) H- β2Λ]

< 2c\ Θ2~nj +[\d{ύ^ - v)\2 +\dv\2} dx + Θ2A .

Integrating by parts gives

By (1.13) and the harmonic property of v we get

(1.16)
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From the fact that ύ{x*) = -ύ(x) for x* = (x\ -χn) when x = (x\ xn) it
follows that

Since φ ( Λ ) is an even function, we may write

[Δyξx(y)]ΰ(y)dy,
R+

where ζx(y) = s>(h\x - y) - φ(h\x* - y). Note that ξx = 0 on 9Rn

+ , and

0 < Sx(y) < <P(Λ)(* - y) for x j G Rπ

+ . Since ύ = 0 on 3Rn+ we have

) = / dξx d(u-v0)dy.

By the Euler-Lagrange equation for u [10, Lemma 2.1] and by (1.2) this gives

|Δw<Λ~>(x)| < elf n ψ(h\x - y)[\du\2 + A] dy + ΛΛ"1!,

where we have used the obvious fact l ^ f j ^ c(h)~n~ιXBάχ) w ^ e r e XE denotes
the characteristic function of E. Integrating over x G 5 [ we have

Using this in (1.16) and combining with (1.14), (1.15) yield

(1.17) θ*-nEt (Ui) < cπ(β2--eί + θ*)(Et (u) + Λ)

for any θ E (0, i).
Following [10] let yn E (0, ̂ ] be a number to be chosen depending only on

w, and let θ = Pn. Let p be the greatest integer less than or equal to 0/(3 T)
where T = ε π and write

[θ9θ + 3pτ]= \Jli, |//l = 3τ,

where each It is a closed interval. Since yn < ^ , we have p > j (έ)~ 1 / 3 2 "~ l
We choose an interval lj for somey with 1 <y < p such that

(1.18) ί \du\2dx^p-χE+{u)^cne
λ^2EUu).



HARMONIC MAPS 261

Let θ be the number such that Ij = [θ — T, θ + 2τ], and let h(x) be as in
Lemma 1.6. Thus by Lemma 1.2, Lemma 1.6, (1.17), and (1.18) we have

EΪ (uh~) + ϊH2-nEΪ{u) + «

< c 1 4 ( β 2 - - ε 4 + » ) ( £ + ( « ) + A ) ,

since 0 G [0,20]. Choosing γπ small now finishes the proof of the regularity
estimate.

We get the following corollary concerning partial boundary regularity. First,
we say that a point p E M is a regular point for u if u is continuous in a
neighborhood of /? in M. The neighborhood may be taken as a ball if
p E Int Λf or as a half ball if p E 3M. The singular set S of « is then the
complement of the regular set. Note that if v0 E C2α(3M, N) and u is
^-minimizing with w = v0 on 3M, then u is C 2 α in a half ball centered at
p E dM provided u is continuous in this half ball.

Corollary 1.8. // u E L\(M, N) is E-minimizing (u E No a.e.) with u — υ0

on dM where v0 E C2'α(3M, N), then %n~2(S) = 0. More generally, ifuG%A

then %n~2(S Π (tff U 7\)) = 0.
The proof of the corollary is the same as [10, Corollary 2.7], so we omit the

argument.

2. A geometric lemma and complete boundary regularity

We first reduce the boundary regularity problem to a question about the
existence of certain harmonic maps of hemispheres which take a constant value
on the boundary. Most of the work pertaining to this reduction has already
been done in [10], so we indicate the necessary modifications. For a fixed point
u* E R*, we use the notation

'+(«) = j Ju-u*\2dx.

We observe first that our main extension lemma works also in half balls.
Lemma 2.1. For n > 2 there exist S = δ(n, No) and a constant q — q(n)

such that if ε E (0,1) is given, and u E L2(dB? , No) satisfies σ4~2nE(u)W(u)
^ δ V , then there exists ΰ E L\(B^ ,N0)9ΰ \dB+ - u such that

K (") < c(εσE(u) + e'qσ~ιJV{u))9

Proof. By rescaling we may assume σ = 1. The lemma now follows from
the corresponding result on Bx given in [10, Lemma 4.3] by the fact that B+ is
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Lipschitz equivalent to Bx. Note that the hypotheses and conclusions are

invariant (up to constants) under bi-Lipschitz transformations of the domain.

We get the following strengthening of the regularity estimate whose proof is

an obvious modification of the proof of [10, Proposition 4.5].

Proposition 2.2. Given B > 0 there exists a positive constant ε0 =

ε 0 O , No, B) such that if u E 3CΛ, Λ < ε0, Ef (u) < B, and Wf (u) < ε0, then u

is Holder continuous on Bt, and \u(x) — u(y)\<^ c\x — y\a for x, y E Bt,

where a = a(n) > 0 and c = c(n, No).

The following compactness theorem is proved as in [10, Proposition 4.6].

Proposition 2.3. Let {MZ} C %A be a weakly convergent (in L\) sequence

with limit u0 such that E^ (w,) < B for some B > 0. Then u0 is locally Holder

continuous outside a closed set So C M with 3CW~2(SO) = 0. Moreover, w,

converges to u0 in L\ norm on Bt and uniformly on compact subsets ofΈf ~ So.

At this point the proof of the boundary regularity becomes somewhat

simpler than the interior proof. The reason is that we will be able to rule out all

nontrivial boundary tangent maps in some generality. We can now strengthen

Lemma 1.4.

Proposition 2.4. Given u E 3CΛ, there is a sequence λ(i) -> 0 such that the

scaled maps wλ(/) given by uλ^(x) = u(λ(i)x) converge in L\ norm to a radially

independent harmonic map u0 E L\(B^ , N) with u0 = 0 on Tλ.

Proof. This is immediate from Proposition 2.3 and Lemma 1.4.

The norm convergence in the above result insures that u0 is nontrivial if

0 E S. We will now show that no such maps u0 can exist. This fact is related to

the geometry of the sphere, in particular to conformal transformations. For

this reason we express the metric on Sn in conformally flat form. With the

north pole as center of polar coordinates, the spherical metric takes the form

ds2 = 4(1 + P2)~2(dp2 + p2dξ2) where £ E Sn~K The equator of Sn in these

coordinates is the set {p = 1}, and S+ — {p < 1}. Given a map u E L\(Sn

+ , N)

with u = u* on dS+ some w* E N, we rescale u in these coordinates by setting

uβ for β > 1

uβ(p, ξ) = i/(l, f) = w* for β " 1 < p < 1.

We compute the spherical energy of uβ by

β:

dp (βp,ξ)
-*-2

31
(βp,ξ)\dpdξ.
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By changing variables to σ = βp, this becomes

n-2

σn'ι\d0u\2(σ,ξ)dadξ,
1 +

where | dou |2(p, £) = | du/dp |2 + ρ~21 9M/9£ |2. If e(w) denotes the spherical
energy density, i.e.,

ϊ ^
then the above expression takes the form

< 2 1 > «•<*>=

This expression is valid for n > 2, and for n = 2 it simply expresses the
conformal invariance of energy. The following result can now be stated. (See
also J. Wood [11].)

Geometric Lemma 2.5. A smooth harmonic map u0: S+-+N taking a
constant value on 9S+ is itself constant for n > 2.

Proof. The result for n — 2 was proven by Lemaire [7]. Lemaire's result
applies when the domain is the unit disk in the complex plane, but since energy
is invariant under conformal transformations for n = 2, this implies the result
we are after. For n > 2, since u is assumed to be smooth, the family uβ

represents a valid variation of w, so we must have (d/dβ)Eι(iiβ) = 0 at β — 1.
Thus by (2.1) we get

(2-n)f

which implies e(u) = 0 in 5+ and w0 is constant, thereby establishing the
geometric lemma.

The above proof encounters difficulties if u0 is not assumed a priori smooth
because it is not clear that uβ represents an admissible variation of u0 in that
case. For the maps u0 arising as limits of wλ(/) for u E %A we can prove the
result for singular maps.

Proposition 2.6. A map u0 E L\(B*, N) arising as a limit of «λ(/) for
u E %A (see Proposition 2.4) is constant.

Proof. First observe that for n = 3 we must have that u0 is smooth away
from the origin since %n~2(S0) — 0. Therefore this case follows from Lemaire's
result [7]. Thus we assume n > 4. Let r —\x\ on Rn so that (r, p, ξ) represent
coordinates for R+ , p and | as above. For /? E (1, f) let β(r) be a smooth
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nonincreasing function satisfying β(r) — 1 for r > 1, β(r) = β for r < \,
I jB'(r) |< 4(j8 - 1). Let Ω̂  C R"+ be given by Ω̂  = {(r, p, | ) : p < jS(r)-1},
and consider the diffeomorphism F: Ωβ -> R+ defined by F(r, p, ξ) =
(r, β(r)p, £). Now for each /, consider the comparison map wt given by
wz = t/λ(/) o F on ίlβ9 wt(r9 p, €) = um(r91, €) for (r, p, | ) E Rw

+ - 0^. Since
F is the identity outside Bf , we clearly have wz = Mλ(/) on θ^j1", and hence by
Lemma 1.2 we have

Eΐ K o ) < (1 + cλ(i)A)E+ (w,) + cλ(ι)A.

By Proposition 2.4, wλ(/) converges in norm to u0, so it follows directly that

(2.2) £ 1

+ ( i ι 0 ) < £ 1

+ K ) ,

where H>0 = w0 o F on Q ,̂ w0 = 0 on R+ ~ Ω .̂ We will show that (2.2) implies
u0 is constant. We write E+(w0) = Er + E* where Er is the radial part in R"
and E* the spherical part. From (2.1) we easily get

Λ ,

where

By elementary calculus we have

Therefore we get, since duQ/dr = 0,

(2.3) E'<EΪ(uo)-(β-l)f (l-p)|Λ0|
2.

B\/2

On the other hand we compute directly

Er<c(β-\fEΪ(u0),

which combined with (2.3) gives

(w0) < E+ («0) - (β - 1)/ (l-
5l/2

If u0 is not constant, we can choose (β — 1) sufficiently small to contradict
(2.2). This completes the proof of Proposition 2.6.

The above result combined with Proposition 2.4 and Regularity Estimate 1.5
gives us the following theorem.
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Regularity Theorem 2.7. Let M be a compact manifold with C2a boundary.

Suppose u E L 2 (M, N) is E-minimizing and satisfies u(x) E No a.e. for a

compact subset No C N. Suppose v E C2 'α(3M, No) and u — von dM. Then the

singular set Sofu is a compact subset of the interior of M\ in particular, u is C2a

in a full neighborhood of dM.

3. The Dirichlet problem and harmonic spheres

In this section we observe that the direct method gives solvability of the

Dirichlet problem, and we give, as an application, a proof of the result of

Sacks-Uhlenbeck [9] that π2(N) can be represented by harmonic (minimal)

maps of S2 into N. Let M be a compact manifold with (possibly empty) C 2 α

boundary, and let £ b e a functional of the type which we are considering.

Suppose N is compact with or without boundary.

Proposition 3.1. Suppose dN is empty and let v E C2 'α(3M, N) be given.

Suppose v extends to a map v E L2(Λf, N). There exists a map u E L 2 (M, N)

with u — v on dM which is E-minimizing over all L\ extensions of v. The map u

is C 2 ' α near dM and has possibly a singular set S of Hausdorff dimension at most

n — 3 in the interior of M. The interior regularity theory o/[10] applies to u.

Proof. Let wz be a minimizing sequence of extensions of t>, and observe that

E(Uί) ^ K for some constant K. Thus a subsequence converges weakly to

u E L 2 (M, N) which is also an extension of v. Applying the interior and

boundary regularity theorems then gives the conclusions.

Remark. If 3M — 0 , Proposition 3.1 asserts the existence of a map which

is ^-minimizing over all competing maps from M to N. If E is the ordinary

energy functional, this minimizing map is obviously constant.

We next observe that for the energy functional E we can weaken the

requirement that 3Λf = 0 , and merely require that 37V is locally convex with

respect to N.

Corollary 3.2. Suppose dN is locally convex with respect to N and v E

C2 'α(3M, No) where No is a compact subset of the interior of N. There exists a

map u E L2

X(M, N) which minimizes the energy E over all extensions of v in

L2

X{M, N). The map u has image contained in a compact subset Nλ of the interior

of N and enjoys the regularity properties described in Proposition 3.1.

Proof. We need only show that we can find a minimizing sequence ui with

image contained in a suitable compact subset Nλ of the interior of N. To do

this let M, be any minimizing sequence, and let Nx be the set of points of N a

distance at least ε0 from dN. Since dN is convex, for ε0 small the set {p E N:

d(p, dN) = ε} is locally convex for ε E (0, ε0 ]. Also suppose ε0 is so small that
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dist(iV0, dN) > ε0. Let F be the Lipschitz map given by F(p) — p for p E Nl9

and F(p) is the point of dNx nearest top forp E N ~ Nx. From the convexity

hypothesis we clearly have that F is distance nonincreasing. Thus if we set

ύi, = F o ui9 then E(ut) < E(ut), and since dist(Λ^0, 9iV) > ε0, we have ύi = v

on ΘΛf. Thus w, is a minimizing sequence with image in Nx. This proves

Corollary 3.2.

We now give an application of our results to prove existence of harmonic

spheres.

Proposition 3.3. Suppose N is compact without boundary or compact with

convex boundary. Any smooth map v: S2 -> N which does not extend continuously

to B3 is homotopic to a sum of smooth harmonic (hence minimal) maps uy.

S2->NJ=1, ,P.

Proof. Since v is smooth, it has finite energy and hence the map ϋ(x) =

v(x/\ x |) is a finite energy extension of v to B3. Thus there exists a least

energy extension u E L](B3, N) of v. By the previous results u is smooth near

dB3 = S2 and has isolated singular points xl9- -,xp in B3, (p > 1 since v does

not extend continuously to B3). By the results of [10] each Xj is associated to a

minimizing tangent map (MTM) hence a smooth harmonic uy. S2 -> N. This

proves the required result.

If one attempts to extend this result to higher dimensions, one encounters

the problem that singularities are not necessarily isolated, and hence the

blown-up map at a singular point may itself have singularities. For k > 2, we

say that a simply connected manifold N is geometrically k-connected if every

MTM from RJ -» N is constant ίoτj = 3, -,k + 1. The following theorem is

a direct consequence of [10] and the proof of Proposition 3.3.

Proposition 3.4. Suppose N is compact without boundary and suppose the

universal cover N of N is geometrically (k — Y)-connected for some k> 3. Then

each class in πk(N) can be represented by a sum of harmonic maps of Sk -» N.

Remark. It seems to be quite difficult to check whether a given manifold is

geometrically fc-connected.

4. Remarks on approximations of L\ maps

We have been working in the space L](M, N) which we have defined as the

maps in L2

}(M,Rk) whose values lie almost everywhere in N. Another defini-

tion which one might consider is to define L\(M9 N) to be the closure of

C°°(M,N) in the L2

λ(M,Rk) norm. The following example shows that for

n > 3 the two spaces are not the same.
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EXAMPLE. The map u E L2

X(BX, S2) given by u(x) = x/\x\ is not an L\

limit of a sequence w, E C°°(BX, S2). To see this one can simply observe that if

such a sequence u{ did exist, then for almost every r 6 (ΐ, 1) we would have

L2(92?r

3, S2) convergence of w, to the map x/r. In particular, we would have a

sequence vt E C°°(S2, S2) (say vt(x) = U (rx)), each υt having degree zero,

converging to the identity map of S2. By taking a subsequence we could

assume dvi converges pointwise a.e. to the identity. Thus in particular the

Jacobian J(vt) -> 1 a.e. on S2. Since | /(t>,) | < \ \ doi | 2 and | doi | 2 converges in

Lx norm to a limit, the dominated convergence theorem implies that

Urn f/(*,) =
J c-2

The fact that each υt has degree zero implies that the integral of J(vf) is zero

for each /, a contradiction.

Our next result shows that for n — 2 an L 2 map is a limit of smooth maps.

The method we employ is essentially the same as our method of comparison

construction in the proof of the partial regularity theorem.

Proposition. Let M2 be a compact surface with possibly empty C 1 boundary.

Let N be a compact manifold without boundary. Then C°°(M9 N) is dense in

L2(M, N).

Proof. By standard extension theorems (see [8, Theorem 3.43]) we may

assume that M is compactly contained in Mx and that any given u E L 2 (M, N)

is the restriction of a map ΰ E L2

ι(Mι,R
k) to M. We assume Mλ is isometri-

cally embedded in Rn. Let % be a normal neighborhood of Mx in Rw, and Θ be

a normal neighborhood of N in R*. For ε < dist(Λf, dM}) the function Gε(x) —

EB2M(ΰ) is a continuous function of x E M. The function Gε clearly decreases

when ε decreases, and l i m ε i 0 Gε(x) = 0 for all x E M. Therefore it follows that

Gε converges uniformly to zero in M. Now extend ΰ to a map ΰ E L](tyL,Rk)

by setting ΰ(x) = ϋ(P(x)) where P: % -> Mx denotes nearest point projection.

Since the metric on % is uniformly equivalent to a product metric on

Mx X B"~2

9 we clearly have for x E P~\M)

(4.1) EB:ix)(a) < cεn-2EBhP(x))(ΰ) = cen-2Gε(x).

Note also that ΰ(x) E N a.e. c E P~\M). Let ψ(x) be a mollifier on Bx, and

set φε(x) = ε~nφ(x/ε), and

for x E M. By the Poincare inequality and (4.1)

(4.2) ε-« f \U(y) - Uε(x)\2 dy < cε2-nEBn{x)(U) < cGε(x).
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Since ΰ: P~ι(M) -> N, this inequality implies that for all x E M we have

(4.3) dist(Uε(x), N)<cG](x).

Let π: θ -> JV be the nearest point projection map, and observe that by

(4.3) and the fact that Gε converges uniformly to zero, we can define a smooth

map υε: M -> N by setting vε(x) — π o WC(JC). It is quite easy to see that

l im ε i o \\ve — u || X1M — 0. This completes the proof of the proposition.
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