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Cardinal Numbers

A cardinal number represents the size of a set.

The cardinality of a set S is denoted by |S |.

Examples

|∅| = 0
|{0, 1, 2}| = 3
|N| = |Q| = ℵ0, the first transfinite cardinal
|R| = c, the cardinality of the continuum, strictly larger than ℵ0

Intuitively, one would think to define the cardinal numbers as equivalence
classes of sets, where S ∼ T if and only if there exists a bijection
f : S → T . This is how Bertrand Russell defined a “number.”
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Well-Ordered Sets

Definition

A set S is said to be well-ordered if S is totally ordered and every
nonempty subset of S has a least member.

The canonical example of a well-ordered set is N.

If we assume the Axiom of Choice (which we will in this talk), we can
prove the Well-Ordering Theorem.

Well-Ordering Theorem

Every set can be well-ordered.
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Well-Ordered Sets

Definition

Two well-ordered sets (S ,≤) and (T ,≤′) are said to be order isomorphic
if there exists a bijection f : S → T such that s ≤ s ′ if and only if
f (s) ≤′ f (s ′).
In this case, f is said to be an order isomorphism.

Examples

• If S = {1, 2} and T = {3, 15} under the standard ordering, then
f : S → T given by f (1) = 3 and f (2) = 15 is an order isomorphism.
• g : N→ N+ by g (n) = n + 1 is an order isomorphism under the
standard ordering.
• Let N ∪ {ω} be given the ordering that n < ω for all natural numbers n.
Then there is no order isomorphism between N and N ∪ {ω}.
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Ordinal Numbers

An ordinal number can be thought of as the position of an element in a
well-ordered set.

Example

Let N ∪ {ω} have the same ordering as before.
The 1st element is 0. The 14th element is 13. The nth element is n − 1.
The (ω + 1)st element is ω.

An ordinal number can also be thought of as the order type of a
well-ordered set (the position of the “last” element, if one exists).

Examples

The order type of ∅ is 0.
The order type of {0, 1, 2} is 3.
The order type of N is ω.
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Problems with Equivalence Classes

Like before, we could think of ordinal numbers as equivalence classes of
well-ordered sets, where (S ,≤) ∼ (T ,≤′) if and only if (S ,≤) is order
isomorphic to (T ,≤′).
This view of the ordinal numbers and the corresponding view of the
cardinal numbers does not work in ZFC.
It turns out that bijection classes of sets are too big to be sets. Similarly,
order isomorphism classes of well-ordered sets are too big to be sets.
This is related to Russell’s Paradox. A collection C is too big to be a set if

C a set ⇒ the set of all sets exists

There are a few ways to prove that a collection C is too big to be a set.

C a set ⇒ C ∈ C

S ↪→ C for all sets S

D is too big to be a set and D ↪→ C
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The von Neumann Construction

The von Neumann construction of the natural numbers is as follows:
0 := ∅
n + 1 := n ∪ {n} = {0, 1, 2, ..., n}

We can extend this construction to make a definition for every ordinal
number.
An ordinal number α is defined to be the set of all ordinal numbers less
than α.

Examples

0 := ∅
5 := {0, 1, 2, 3, 4}
ω := N = {0, 1, 2, ...}
ω + 1 := N ∪ {ω} = {0, 1, 2, ...;ω}
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Types of Ordinal Numbers

Definition

An ordinal number β is a successor ordinal if there exists an ordinal
number α such that β = α + 1 = {0, 1, ..., α}.
An ordinal number λ is a limit ordinal if λ > 0 and for all ordinals α,
λ 6= α + 1.

Successor ordinals are named as such because they are the immediate
successor of some other ordinal. Limit ordinals are named as such because
they are the limit of the sequence of ordinals less then them without being
a successor ordinal.

Examples

All natural numbers n > 0 are successor ordinals.
ω + n is a successor ordinal for all natural numbers n > 0.
ω is the smallest limit ordinal.
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Order Type

Every well-ordered set is order isomorphic to exactly one ordinal number
(and the isomorphism is unique!). As such, we make the following
definition:

Definition

The order type of a well-ordered set (S ,≤) is the unique ordinal number
which is order isomorphic to (S ,≤). Denote the order type of (S ,≤) as
Ord (S ,≤).

These facts allow us to see that this new definition of ordinal number fits
in line with our intuitive notion of an ordinal number from before.
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Cardinal Numbers

Even though every set can be well-ordered (Well-Ordering Theorem), for
infinite sets, the order type can depend on the specific ordering chosen.

Examples

Ord N = ω under the standard ordering.
If we choose an ordering ≤′ on N so that 0 is greater than every other
natural number, but the other natural numbers have the standard
ordering, then Ord (N,≤′) = ω + 1 6= ω.

With this in mind, we can define cardinality in the following way.

Definition

Let S be a set. The cardinality of S (denoted |S |) is the minimum order
type of S under all possible well-orderings. i.e., |S | = min≤ Ord (S ,≤).

We skip the proofs for time purposes, but one can prove that there exists a
bijection between S and T iff |S | = |T |.
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Addition of Ordinal Numbers

Definition

Let α and β be ordinal numbers. Consider the set α q β. Define an
well-order ≤ on α q β by preserving the original orders on α and β
themselves and having the additional criterion that all elements of β are
greater than all elements of α.
Then α + β := Ord (α q β,≤).

Examples

2 + 3 = Ord ({0, 1} q {0, 1, 2}) = Ord {0, 1, 0′, 1′, 2′} = 5
ω + 1 = Ord (Nq {0}) = Ord {0, 1, 2, ...; 0′} = ω + 1
1 + ω = Ord ({0} q N) = Ord {0, 0′, 1′, 2′, ...} = ω

The example of ω + 1 justifies our choice of notation for successors.
The example of 1 + ω shows that addition of ordinal numbers is not
commutative!
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Multiplication of Ordinal Numbers

Definition

Let α and β be ordinal numbers. Consider the set α× β. Define an
well-order < on α× β by (α′, β′) < (α′′, β′′) if and only if β′ < β′′ or
β′ = β′′ and α′ < α′′. For convenience, we will denote (α′, β′) by α′β′

Then αβ := Ord (α× β,<).

Examples

2 · 3 = Ord ({0, 1} × {0, 1, 2}) = Ord {00, 10, 01, 11, 02, 12} = 6
ω2 = Ord (N× {0, 1}) = Ord {00, 10, 20, ...; 01, 11, 21, ...} = ω + ω
2ω = Ord ({0, 1} × N) = Ord {00, 10, 01, 11, 02, 12...} = ω

Again, we see that multiplication is not commutative!
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Ordinal Numbers are Complicated

So far, we have seen some operations and shown that they are quite
complicated. For time purposes, we will skip ordinal exponentiation.
In ordinal exponentiation, we get even weirder results. For example, there
are types of ordinal numbers called “ε-numbers” which satisfy the equation

ε = ωε

The first ε-number is ε0 = ωω
ω..

.

In this, we are dealing with unfathomably large numbers, but we’ve barely
scratched the surface.
The collection of ordinal numbers is too big to be a set. Indeed, if it were
a set, it would itself be an ordinal number, so it would have to contain
itself as an element.
Overall, the ordinal numbers are very complicated, but they can be quite
helpful when it comes to transfinite recursion and induction.
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Recursion and Induction

Recursion and Induction are similar processes.

Recursion defines a sequence of objects.

Induction proves a property is true for a sequence of objects.

Normally, we work with recursion and induction for only the natural
numbers, giving us sequences of order type ω.

When we have sequences of order type larger than ω, we use transfinite
recursion and induction, since our processes use transfinite ordinal
numbers.
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Transfinite Recursion

To define things recursively, we use the following process:

Transfinite Recursion

1. Base Case: Define an object S0.

2. Successor Step: For all ordinal numbers α, define Sα+1 using the
definition of Sα.

3. Limit Step: For all limit ordinals λ, define Sλ using the definition of Sα
for all ordinals α < λ.
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An Example

Consider R as a Q-vector space. By Zorn’s Lemma, we know this vector
space must have a basis. Here, we will use transfinite recursion and
induction to prove that this vector space has a basis.

Base Case: Let B0 = ∅.

Successor Case: For all ordinals α, choose vα+1 to be an element of
R− Span Bα. Then, define Bα+1 = Bα ∪ {vα+1}.

Limit Case: For all limit ordinals λ, define Bλ =
⋃
α<λ

Bα.

Since |R| < |℘ (R)| = γ for some ordinal γ, it follows that this process will
terminate at some ordinal β, where R− Span Bβ = ∅.

Claim: Bβ is a basis for R as a Q-vector space.
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Transfinite Induction

To prove things inductively, we use the following process:

Transfinite Induction

Let P be a property and P (α) denote that P is true for the ordinal α.
The following is the method of transfinite induction to prove that P is true
for all ordinal numbers:

1. Base Case: Prove P (0).

2. Successor Step: Assuming P (α) for arbitrary α, prove P (α + 1).

3. Limit Step: For all limit ordinals λ, assuming P (α) for all ordinals
α < λ, prove P (λ).
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Proof that Bβ is a basis.

To show that Bβ is a basis, it suffices to show that Bβ is linearly
independent. Afterall, R− Span Bβ = ∅, so Bβ spans R. To do this, it
suffices to show that Bα is linearly independent for all ordinals α.

Base case: B0 = ∅ is vacuously linearly independent.

Successor case: Suppose that for some ordinal α, Bα is linearly
independent, but Bα+1 is not. Now, Bα+1 = Bα ∪ {vα+1}, so it follows
that 0 = c1w1 + ...+ cnwn + cn+1vα+1. We can then write

vα+1 = −c−1n+1c1w1 − ...− c−1n+1cnwn

So vα+1 ∈ Span Bα, which contradicts the fact that vα+1 ∈ R− Span Bα.
Thus, when Bα is linearly independent, Bα+1 is linearly independent.
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Proof that Bβ is a basis.

Limit case: Suppose that λ is a limit ordinal. Suppose that Bα is linearly
independent for all α < λ.

Notice that, by definition, Bγ ⊂ Bδ for all ordinals γ < δ. Hence, {Bα}α<λ
is actually a chain of sets.

Now, suppose that Bλ is linearly dependent. Then there exists a finite set
{w1, ...,wn} ⊂ Bλ which is linearly dependent. By definition, Bλ =

⋃
α<λ

Bα,

so it follows that there exist ordinals α1, ..., αn < λ with wi ∈ Bαi .

Since {Bα}α<λ is a chain, without loss of generality, it follows that
Bα1 ⊂ ... ⊂ Bαn . In particular, {w1, ...,wn} ⊂ Bαn , which contradicts the
assumption that Bαn is linearly independent (since αn < λ).

Therefore, Bλ is linearly independent whenever Bα is linearly independent
for all α < λ. �
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Every well-ordered set has an order type

We will now give another example of transfinite induction to prove that
every well-ordered set has an order type. To do this, we will prove that
every well-ordered set is uniquely order isomorphic to some ordinal.

Let (S ,≤) be a well-ordered set. We will begin by using transfinite
recursion to construct a sequence of subsets of (S ,≤).

Base case: Let S0 = ∅.

Successor case: For all ordinals α, define xα to be the least element of
S − Sα, provided that S − Sα 6= ∅. Then Sα+1 = Sα ∪ {xα}.

Limit case: For all limit ordinals λ, define Sλ = ∪α<λ Sα.

This process must terminate for some ordinal β (where S − Sβ = ∅). If
not, then the ordinal numbers can be embedded into S , which makes S
too big to be a set, contradicting the fact that S is a set.

Edward Price III (Purdue) Ordinal Numbers SC 2015 25 / 28



Every well-ordered set has an order type

We prove that Sα is uniquely order isomorphic to α for all ordinals α ≤ β.

Base case: S0 = ∅ is vacuously order isomorphic to 0 = ∅ by the empty
function, which is unique.

Successor case: Suppose Sα is uniquely order isomorphic to α for some
ordinal α < β. i.e., fα : Sα → α is the unique order isomorphism.

Now, by definition, Sα+1 = Sα ∪ {xα}, where xα is the smallest element of
S − Sα. It follows that xα is larger than all elements of Sα. So we
establish the function fα+1 : Sα+1 → α + 1 by fα+1 (x) = fα (x) for x ∈ Sα
and fα+1 (xα) = α.

Clearly, fα+1 is an order isomorphism, and it must be unique since the
maximal elements must be sent to each other and since fα is unique.
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Every well-ordered set has an order type

Limit case: Let λ ≤ β be a limit ordinal, and suppose that fα : Sα → α is
the unique order isomorphism for all α < λ. Notice that since Sγ ⊂ Sδ
whenever γ < δ, it follows that these order isomorphisms must agree. i.e.,
for all γ < δ, fγ+1 (xγ) = fδ (xγ). Now, define fλ : Sλ → λ by
fλ (xα) = fα+1 (xα).

Suppose fλ (xγ) = fλ (xδ) for γ ≤ δ < λ. By definition, fλ (xγ) = fγ+1 (xγ)
and fλ (xδ) = fδ+1 (xδ). This gives the equality

fγ+1 (xγ) = fδ+1 (xδ)

Since the functions agree on subsets, fγ+1 (xγ) = fδ+1 (xγ). Then
fδ+1 (xγ) = fδ+1 (xδ), so xγ = xδ, and fλ is injective.
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Every well-ordered set has an order type

Now, let α ∈ λ. Since λ consists of all ordinals less than λ, α < λ. Since
λ is a limit ordinal, α + 1 < λ. Thus, fλ (xα) = fα+1 (xα) = α, so fλ is
surjective.

Let xγ < xδ ∈ Sλ. Then fλ (xγ) = fδ+1 (xγ) < fδ+1 (xδ) = fλ (xδ), so f
preserves order.

Lastly, fλ is unique by the same argument as above (since fλ is an order
isomorphism, its restriction to Sα must be an order isomorphism with α,
which is unique).

Hence, by transfinite induction, there is a unique order isomorphism from
Sβ to β. Since there is clearly (by construction) a unique order
isomorphism from (S ,≤) to Sβ, it follows that there is a unique
isomorphism from (S ,≤) to β, meaning that (S ,≤) has order type β. �
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