Eddie Price

High score: 10; Non-0 Low score: 6; Average score: 7.47 (including 0's)

<u>Problem 1</u> (10 Points). Find the volume of the solid obtained by rotating the region bounded by the curves y = 5 - 2x, y = 0, x = 0 about the x-axis. (Round to 3 decimal places.)

Solution. First sketch a graph of the region and the solid:

Notice here that we have disks of radius y = 5 - 2x, and those disks vary from x = 0 to $x = \frac{5}{2}$ (since $0 = 5 - 2\left(\frac{5}{2}\right)$). Thus, the volume of the solid is

$$V = \pi \int_{0}^{5/2} (5 - 2x)^{2} dx$$

= $\pi \int_{0}^{5/2} (25 - 20x + 4x^{2}) dx$
= $\pi \left(25x - 10x^{2} + \frac{4}{3}x^{3} \right) |_{0}^{5/2}$
= $\pi \left[\left(25 \left(\frac{5}{2} \right) - 10 \left(\frac{5}{2} \right)^{2} + \frac{4}{3} \left(\frac{5}{2} \right)^{3} \right) - (0 - 0 + 0) \right]$
 $\approx \overline{(65.450 \text{ units}^{2})}$

Common Mistakes

Many people forgot to square their radius.

Many people got the upper bound wrong, putting either 5 or $\frac{2}{5}$, when it should have been $\frac{5}{2}$. Several people forgot to integrate their function after squaring it.

Several people squared their radius incorrectly.

Many people made rounding errors.