Recall, for \(y = f(x) \), \(\frac{dy}{dx} = f'(x) \), so \(dy = f'(x) \, dx \). Therefore, you can approximate a small change \(\Delta y \approx f'(x) \, \Delta x \).

For \(z = f(x, y) \), we get partial differentials:
- \(\frac{\partial z}{\partial x} \) (with respect to \(x \)) = \(\frac{\partial z}{\partial y} \) (with respect to \(y \)) = \(\frac{\partial z}{\partial y} \) dy

Thus, we get the total differential:
\[
\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y
\]

Thus, you can approximate changes in \(z \) given small changes in \(y \) and \(x \):
\[
\Delta z \approx \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y
\]

at the value \((x_{\text{initial}}, y_{\text{initial}})\)

\(\Delta \text{variable} = \text{change in variable} = (\text{variable final value}) - (\text{variable initial value}) \)

Ex 1. Estimate \(\sqrt{2.2^2 + 3.1} - \sqrt{2^2 + 3} \) using differentials.

(Round to 2 decimal places)

Let \(z = f(x, y) = \sqrt{x^2 + y^2} \)

Then \(\Delta z = \sqrt{2.2^2 + 3.1} - \sqrt{2^2 + 3} \)

\(\Delta x = 2.2 - 2 = 0.2 \), \(\Delta y = 3.1 - 3 = 0.1 \)

\(\frac{\partial z}{\partial x} = \frac{1}{2} (x^2 + y^2)^{-1/2} \cdot 2x = \frac{x}{\sqrt{x^2 + y^2}} \) when \(x = 2, y = 3 \):

\(\frac{\partial z}{\partial x} = \frac{2}{\sqrt{7}} \)

\(\frac{\partial z}{\partial y} = \frac{1}{2} (x^2 + y^2)^{-1/2} = \frac{1}{2\sqrt{x^2 + y^2}} \) when \(x = 2, y = 3 \):

\(\frac{\partial z}{\partial y} = \frac{1}{2\sqrt{7}} \)

\(\Delta z \approx \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y = \frac{2}{\sqrt{7}} \cdot 0.2 + \frac{1}{2\sqrt{7}} \cdot 0.1 \)

\(\approx 0.17 \)
Ex 2. An ideal gas satisfies $PV = 0.5T$, where P is pressure, V is volume, T is temperature. A scientist measures volume as 2 m^3 with an error of 0.1 m^3 and temperature as 200 Kelvin with an error of 5 Kelvin. What is the maximum error in the estimated pressure? (Round to 2 decimals)

$$P = 0.5TV^{-1} \quad \text{so} \quad \frac{dP}{dT} = 0.5V^{-1} = \frac{0.5}{V}, \quad \frac{dP}{dV} = -0.5TV^{-2} = -\frac{0.5T}{V^2}$$

$T_{\text{measured}} = 200, \quad V_{\text{measured}} = 2, \quad \Delta T = \pm 5, \quad \Delta V = \pm 0.1$

$$\Delta P \approx \frac{0.5}{V} \Delta T + \frac{-0.5T}{V^2} \Delta V = \frac{0.5}{2} (\pm 5) + \frac{-0.5(200)}{2^2} (\pm 0.1)$$

four possibilities: $-1.25, -3.75, 1.25, \text{or} 3.75$

maximal error is when you get 3.75 (or -3.75) kPa

Ex 3. A soup can with height h cm and radius r cm has volume $V = \pi r^2 h$. Currently, it has $h = 8$ cm and $r = 3$ cm. If they want to decrease the height by 0.1 cm and keep the volume the same, use differentials to estimate how much they should change the radius. (Round to 3 decimals)

$$\frac{dV}{dr} = 2\pi rh, \quad \frac{dV}{dh} = \pi r^2, \quad r_{\text{initial}} = 3, \quad h_{\text{initial}} = 8, \quad \Delta h = -0.1, \quad \Delta V = 0\quad \text{(decrease)}$$

Find Δr.

$$\Delta V \approx 2\pi rh \cdot \Delta r + \pi r^2 \cdot \Delta h$$

$$0 \approx 2\pi(3)(8) \cdot \Delta r + \pi (3)^2 (-0.1)$$

$$0 \approx 48\pi \Delta r - 0.9\pi$$

$$\Delta r \approx \frac{0.9\pi}{48\pi} \approx 0.019$$

Since Δr is positive, increase radius by about 0.019 cm.
Ex 4. A company has \(P(x, y) = 20x^{3/4}y^{1/4} \) thousand units produced where \(x \) is number of employees and \(y \) is expenditures in thousands of dollars. Suppose they wish to reduce the employees from 100 to 90 and increase expenditures from $15,000 to $18,000.

(a) Estimate the change in productivity due to change in employees.

Want \(\Delta P \) wrt \(x \) \(\approx \frac{2}{3} \frac{P}{dx} \Delta x \), \(\Delta x = 90 - 100 = -10 \)
\(\frac{2}{3} \frac{P}{dx} = 15x^{-1/4}y^{-1/4} \) so \(\Delta P \) wrt \(x \approx 15 \cdot (100)^{-1/4} \cdot (15)^{-1/4} \cdot (-10) \)
\(\approx -93.350 \) thousand units

So a decrease of 93.350 thousand units

(b) Estimate the change in productivity due to change in expenditures.

Want \(\Delta P \) wrt \(y \) \(\approx \frac{2}{3} \frac{P}{dy} \Delta y \), \(\Delta y = 18 - 15 = 3 \)
\(\frac{2}{3} \frac{P}{dy} = 5x^{3/4}y^{-3/4} \) so \(\Delta P \) wrt \(y \approx 5 \cdot (100)^{3/4} \cdot (15)^{-3/4} \cdot (3) \)
\(\approx 62.233 \) thousand units

So an increase of 62.233 thousand units

(c) Estimate the total change in productivity.

\(\Delta P = \Delta P \) wrt \(x \) + \(\Delta P \) wrt \(y \approx -93.350 + 62.233 \approx -31.117 \)
so a decrease of 31.117 thousand units

Ex 5. A can of height \(h \) cm and radius \(r \) cm is in production. The materials for the can cost 0.002 cents per cm\(^2\) and the liquid inside costs 0.001 cents per cm\(^3\). Estimate the change in cost by increasing height by 0.2 cm and decreasing radius by 0.3 cm if \(r = 4 \) cm and \(h = 9 \) cm.

\[
SA = 2\pi r^2 + 2\pi rh, \quad V = \pi r^2 h
\]
so \(C = 0.002(2\pi r^2 + 2\pi rh) + 0.001(\pi r^2 h) \)
\(\frac{2C}{dr} = 0.002(4\pi r + 2\pi h) + 0.001(2\pi rh) \)
\(\frac{2C}{dh} = 0.002(2\pi r) \)
\(AC \approx [0.002(2\pi r + 2\pi h) + 0.001(\pi r^2)] \Delta r + [0.002(2\pi r) + 0.001(\pi r^2)] \Delta h \)
\(\approx [0.002(2\pi(4) + 2\pi(9)) + 0.001(\pi(4)^2(9))](-0.3) + [0.002(2\pi(4)) + 0.001(\pi(4)^2)](0.2) \)
\(\approx -0.112, \) so approx 0.112 cent decrease
Relative percent error of f at c is

$$\left(\frac{\text{max error of } f}{f(c)} \right) \times 100 \%$$

Ex 6. If $S = \frac{A}{A-W}$, A is measured to be 2.8 with max error of 0.01, W is measured to be 2.2 with max error of 0.05, approximate the relative percentage error of S.

$$\frac{\partial S}{\partial A} = \frac{(A-W)(1)-(A)(1)}{(A-W)^2} = -\frac{W}{(A-W)^2}$$

$$\frac{\partial S}{\partial W} = \frac{\partial}{\partial W} (A(A-W)^{-1}) = -A(A-W)^{-2}(-1) = \frac{A}{(A-W)^2}$$

So

$$\Delta S \approx -\frac{W}{(A-W)^2} \Delta A + \frac{A}{(A-W)^2} \Delta W$$

error of $S \approx \frac{-2.2}{(2.8-2.2)^2} (\pm 0.01) + \frac{2.8}{(2.8-2.2)^2} (\pm 0.05)$

$$\approx \pm 0.328 \text{ or } \pm 0.45$$

max error is 0.45

Calculate $S = \frac{A}{A-W} = \frac{2.8}{2.8-2.2} = \frac{14}{3}$

relative percent error = $\left(\frac{0.45}{(\frac{14}{3})} \right) \times 100 \% \approx 9.64 \%$