1. A construction worker stands at the top of a 40 meter bell tower and throws a clock face upward with a speed of $5 \mathrm{~m} / \mathrm{s}$. Suppose there is a force due to air resistance acting on the clock face in the opposite direction of velocity with a magnitude of $\frac{|v|}{22} \mathrm{~m} / \mathrm{s}$. Set up a differential equation to model this scenario (use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ as the magnitude of the acceleration due to gravity).
2. Pete stands on the top of a 20 foot train and throws a 2 slug hammer upward with a speed of $10 \mathrm{ft} / \mathrm{s}$. Suppose there is a force due to air resistance acting on the hammer in the opposite direction of velocity with a magnitude of $\frac{v^{2}}{2000} \mathrm{ft} / \mathrm{s}$. Assuming the hammer misses the train, how long will it take the hammer to hit the ground? (Use g $=32 \mathrm{ft} / \mathrm{s}^{2}$ as the magnitude of the acceleration due to gravity.)
3. Suppose that a rocket is launched straight up from the surface of the Earth with an initial velocity of $v_{0}=\sqrt{2 g R}$, where R is the radius of the Earth. Neglect air resistance. Find an expression for the velocity v in terms of the distance x from the surface of the Earth. Find the time required for the rocket to go $140,000,000$ miles (the approximate distance from Earth to Mars). Assume that $R=4000$ miles. (There are 5280 feet in a mile.)
4. Suppose that the rate of change of a function f is proportional to a function g. Write a differential equation which expresses this situation.
5. If Jack weighs 200 lbs , what is his mass?
