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In the Existence and Uniqueness Theorem for 2nd order linear differential equations, we saw
that we had to have initial conditions of the form y(t0) = y0 and y′(t0) = y′0.

We show that the initial conditions must be of this form. If the initial conditions vary from
this, then we may not be guaranteed existence or uniqueness of a solution.

Consider the differential equation

y′′ + y = 0

One can check that the general solution is of the form

y(t) = c1 cos t+ c2 sin t

and its derivative is

y′(t) = −c1 sin t+ c2 cos t

Now, we will change up the initial conditions to show that the theorem no longer holds:

t0 6= t1

Consider the initial conditions y(0) = 1, y′
(
π
2

)
= 2. Using the first initial condition, we get:

1 = y(0) = c1 cos(0) + c2 sin(0) = c1

Thus, the solution is y(t) = cos t+ c2 sin t. Now, plugging in the second initial condition, we
get:

2 = y′
(π

2

)
= − sin

(π
2

)
+ c2 cos

(π
2

)
= −1

So, we get 2 = −1, a false statement. This shows that no solution satisfies the IVP y′′+y = 0,
y(0) = 1, y′

(
π
2

)
= 2. This violates existence of solutions.

Similarly, choosing the initial conditions y(0) = 1, y′
(
π
2

)
= −1, you can see that both initial

conditions only give us that c1 = 1. Neither restricts c2 or leads to a contradiction, so there
are infinitely many solutions. This violates uniqueness of solutions.

Now, it is possible for a unique solution to exist when t0 6= t1, but we cannot guarantee it.

(An example where it holds is y(0) = 1, y′(π) = 2. You get the unique solution y(t) =
cos t− 2 sin t, but like was said earlier, we cannot guarantee it.)
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Both conditions y or both conditions y′.

It is obvious that the we cannot have a solution if we have initial conditions of the form
y(0) = 1, y(0) = 2, or if we have y′(0) = 1, y′(0) = 2. A function can only have one output
for each input, so it is impossible for solutions to exist.

Similarly, choosing initial conditions like y(0) = 1, y(0) = 1 or y′(0) = 1, y′(0) = 1 will result
in infinitely many solutions. So uniqueness ceases to be.

Going back to our original example, we still can’t guarantee a unique solution if we have
both y or both y′ with t0 6= t1. For example, the initial conditions y(0) = 1, y(π) = 2 has no
solution, but using the initial conditions y(0) = 1, y(π) = −1 gives infinitely many solutions
(and similarly with y′).

Of course, like before, it is possible that we could have a unique solution anyway, but it is
not guaranteed.
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