MA 261 - Lesson 11

Double Integrals Over Rectangles (15.1)

How do you find the volume under a surface
\(z = f(x,y) \) and above the rectangle
\(R = [a,b] \times [c,d] = \{(x,y) \mid a \leq x \leq b, c \leq y \leq d \} \)?

We denote this by \(\iint_R f(x,y) \, dA \), which we will see later why we denote it this way.

If the surface is nice enough, we can find the volume geometrically.

Ex. 1. Find \(\iint_R (4-2y) \, dA \), \(R = [0,1] \times [0,1] \)

The surface is \(z = 4-2y \), which when plotted on the \(yz \)-plane is

\[
\begin{align*}
\text{Volume} &= \text{area of region in } yz \text{-plane} \\
&\quad \times \text{distance in } x \text{-direction}
\end{align*}
\]

\[
\text{Area} = \frac{1}{2} (b - a) h = \frac{1}{2} (4 - 2)(1) = 3
\]

\[
\text{distance} = 1
\]

\[
\text{volume} = 3
\]
If the surface isn't nice enough, though, we need another approach. Like approximating the area under a curve in Calc 1, we approximate the volume under the surface by breaking the volume up into rectangular prisms that approximate the volume.

We do this by breaking \(R \) into smaller rectangles, \(m \) in the \(x \)-direction and \(n \) in the \(y \)-direction. We then choose a sample point in each rectangle which we will use to determine the height of the rectangular prism. This is often done by choosing a corner or a midpoint of each rectangle.

\[
R = [0, 3] \times [0, 2] \quad \text{with} \quad m = 3, \ n = 2
\]

with a sample point in each rectangle.

Notice, \(Ax = \frac{b-a}{m} \), \(Ay = \frac{d-c}{n} \) and the area of each rectangle is \(\Delta A = AxAy \) (when \(R = [a,b] \times [c,d] \)).

Doing this, we get a Riemann sum

\[
\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A
\]

approximating the volume of the solid.

Where \((x_{ij}^*, y_{ij}^*)\) is the sample point.
Ex 2. If $R = [0, 4] \times [-1, 2]$, use a Riemann sum with $m = 2$ and $n = 3$ to approximate the value of $SS_R (xy^2 + 1) \, dA$. With sample points:
(a) upper left corners, (b) midpoints

\[
\begin{array}{c|c|c|c|c}
& 1 & 2 & 3 & 4 \\
\hline
0 & - & - & - & - \\
-1 & - & - & - & - \\
\hline
0 & - & - & - & - \\
2 & - & - & - & - \\
\hline
4 & - & - & - & - \\
\end{array}
\]

$\Delta x = \frac{4 - 0}{2} = 2$
$\Delta y = \frac{2 - (-1)}{3} = 1$
So $\Delta A = (2)(1) = 2$

(a) upper left corners are $(0,0), (0,1), (0,2), (2,0), (2,1), (2,2)$
So $V \approx \left(f(0,0) + f(0,1) + f(0,2) + f(2,0) + f(2,1) + f(2,2) \right) \Delta A$
\[= \left(0 + 1 + 1 + 1 + 3 + 9 \right)(2)\]
\[= (16)(2) = 32\]
(Since $f(x,y) = xy^2 + 1$)

(b) midpoints are $(1,\frac{1}{2}), (3,\frac{3}{4}), (1,\frac{3}{2}), (3,\frac{3}{2}), (1,\frac{3}{2}), (3,\frac{3}{2})$
So $V \approx \left(f(1,\frac{1}{2}) + f(3,\frac{3}{4}) + f(1,\frac{3}{2}) + f(3,\frac{3}{2}) + f(1,\frac{3}{2}) + f(3,\frac{3}{2}) \right) \Delta A$
\[= \left(\frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4} \right) 2\]
\[= (17)(2) = 34\]

Our approximation gets better as $\Delta A \to 0$
(i.e., as $n \to \infty$ and $m \to \infty$)

In fact, $SS_R f(x,y) \, dA = \lim_{m,n \to \infty} \sum \sum f(x_{ij}, y_{ij}) \Delta A$

But how do you calculate a double integral?
Partial Integrals and Iterated Integrals

Suppose you have \(f(x,y) \) and want to integrate it just with respect to the variable \(x \). We can by treating \(y \) as a constant. Our final result will be a function depending only on \(y \). Similarly for the other variable. This is a partial integral.

Ex 3. Compute the partial integrals

\[
\int_0^1 x^2 \sqrt{y+3} \, dx \quad \text{and} \quad \int_0^1 x^2 \sqrt{y+3} \, dy
\]

\[
\int_0^1 x^2 \sqrt{y+3} \, dx = \frac{1}{3} x^3 \sqrt{y+3} \bigg|_{x=0}^{x=1} = \frac{1}{3} \sqrt{y+3}
\]

\[
\int_0^1 x^2 (y+3)^{1/2} \, dy = \frac{2}{3} x^2 (y+3)^{3/2} \bigg|_{y=0}^{y=1} = \frac{2 x^2}{3} \left(8 - 3 \sqrt{3} \right)
\]

We can then compute iterated integrals

\[
\int_0^1 \left[\int_0^1 f(x,y) \, dx \right] \, dy , \quad \text{doing the inside integral first.}
\]

Ex 4. Calculate the iterated integral

\[
\int_0^1 \int_0^3 \frac{\ln y}{xy} \, dy \, dx
\]

Let \(u = \ln y \), then \(du = \frac{1}{y} \, dy \)

\[
\int_0^1 \int_0^{\ln(5)} \frac{u}{x} \, du \, dx = \int_0^1 \left(\frac{1}{2x} u^2 \bigg|_{u=0}^{u=\ln(5)} \right) \, dx
\]

\[
= \int_0^1 \frac{\ln^2(5)}{2} \, x \, dx
\]

\[
= \frac{\ln^2(5)}{4} x^2 \bigg|_0^1 = \frac{\ln^2(5)}{4} - \frac{\ln^2(5)}{4} = 0
\]
Suppose you have a surface \(z = f(x, y) \) over a rectangle \(R = [a, b] \times [c, d] \).

For a fixed value of \(y \), \(\int_a^b f(x, y) \, dx \) gives you the area of the cross-section of the solid by slicing it with that plane. Then integrating along all \(y \)-values from \(c \) to \(d \), we get the entire volume.

So \(\iiint_R f(x, y) \, dA = \int_c^d \int_a^b f(x, y) \, dx \, dy \).

We could do a similar argument to show we could switch the order of the variables.

Fubini's Theorem. If \(z = f(x, y) \) is a continuous function on the rectangle \(R = [a, b] \times [c, d] \), then
\[\iiint_R f(x, y) \, dA = \int_c^d \int_a^b f(x, y) \, dx \, dy = \int_a^b \int_c^d f(x, y) \, dy \, dx. \]

This lesson only deals with rectangular regions. The argument to establish the connection between double and iterated integrals will still work for non-rectangular regions, but it won't look as clean and nice as Fubini's Theorem.
Ex 5. Compute the double integral
\[\iint_{R} (y + xy^2) \, dx \, dy \]
where \(R = \{(xy) \mid 0 \leq x \leq 2, 1 \leq y \leq 2\} \).

Easier to integrate with respect to \(x \), so by Fubini's Theorem,
\[\int_{1}^{2} \int_{0}^{x} (y + xy^2) \, dy \, dx \]
\[= \int_{1}^{2} \left[xy + \frac{1}{2}x^2y^2 \right]_{y=1}^{y=2} \, dx \]
\[= \int_{1}^{2} (2y + 2y^2) \, dx \]
\[= y^2 + 2y^2 \bigg|_{y=1}^{y=2} \]
\[= 4 - 1 - (1 - 2) = 3 - (-1) = 4 \]

Ex 6. Find the volume under the plane
\[2x + 3y - z = 4 \]
above the rectangle \(R = [0, 1] \times [1, 2] \).

\[z = 2x + 3y - 4 \]

\[\iiint_{R} (2x + 3y - 4) \, dx \, dy \]
\[= \int_{1}^{2} \int_{0}^{x} (2x + 3y - 4) \, dy \, dx \]
\[= \int_{1}^{2} \left[2xy + \frac{3}{2}xy^2 - 4y \right]_{y=0}^{y=2} \, dx \]
\[= \int_{1}^{2} (2x + 3y - 4) \, dx \]
\[= \int_{1}^{2} (3y - 3) \, dx \]
\[= \frac{3}{2}y^2 - 3y \bigg|_{y=1}^{y=2} \]
\[= (6 - 6) - \left(\frac{3}{2} - 3 \right) \]
\[= \frac{3}{2} \]