MA 261 - Lesson 6
Functions of Several variables (14.1)

A function for two variables is a rule that assigns to every pair of real numbers (x, y) in its domain a unique real number deroted $f(x, y)$. The range of f is the set of all real values that the output tales on.

Ex 1. Find the domain and range of $f(x, y)=\ln \left(9-x^{2}-9 y^{2}\right)$. Sketch the domain of f in the $x y$-plane.
Need $9-x^{2}-9 y^{2}>0 \Leftrightarrow x^{2}+9 y^{2}<9 \Leftrightarrow \frac{x^{2}}{9}+y^{2}<1$
Domain: $\left\{(x, y) \left\lvert\, \frac{x^{2}}{9}+y^{2}<1\right.\right\}$

For the range, note that the smallest x^{2} and y^{2} car be is 0 ,
So the largest $9-x^{2}-9 y^{2}$ can be : $9-0-0=9$ $9-x^{2}-9 y^{2}$ car go to any number larger than 0 . So $0<9-x^{2}-9 y^{2} \leq 9$ (subject to the domain). So $\lim _{t \rightarrow 0^{+}} \ln (t)<\ln \left(9-x^{2}-9 y^{2}\right) \leq \ln (9)$ Hence, the range is $(-\infty, \ln 9$]

You can also have functions of more than two variables, which work much the same wry.

MA 261-Lessun 6

Ex,2. Find and sketch the domain of

$$
f(x, y, z)=\frac{\sqrt{y-x^{2}}}{1-x^{2}}+\sqrt{9-z^{2}}
$$

Need: $y-x^{2} \geq 0 \Leftrightarrow y \geq x^{2}$
and $1-x^{2} \neq 0 \Leftrightarrow x \neq 1$ and $x \neq-1$
and $\quad 9-z^{2} \geq 0 \Leftrightarrow(3-z)(3+z) \geq 0$

$$
-3 \leq z \leq 3
$$

Domain: $\left\{(x, y) \mid x \neq \pm 1\right.$ and $y \geq x^{2}$ and $\left.-3 \leq z \leq 3\right\}$

To evaluate the function $f(x, y)$ at (a, b), you plug in a for x and b. for y.
You con also create single-varrable functions by evaluating $f(x, y)$ at one of the variables.

$$
\text { MA } 261 \text { - Lesson } 6
$$

Ex 3. The temperature-humidity index I is the perceived air temperature when the cectual temperature is T and the relative humidity is h, So we write $I=f(T, L)$.

(a) What is the value $f(95,70)$? What is its mearing?

When $T=95$ and $h=70, \quad I=124$, so $f(95,70)=124$.
This means twat when the actual temperature is $95^{\circ} \mathrm{F}$ and the relative humidity is 70%, it "feels like" it is $124^{\circ} \mathrm{F}$.
(b) Consider the function $g(T)=f(T, 60)$. What does this function mean ard what is its behavior?
$g(T)$ tells the apparent temperature at actual temperature T when the relate humidity is fixed at 60%. As actual temperature increases, apparent temperature appears to increase at an increasing rate.
(c) What does $j(h)=f(90, h)$ ran and what is its behan??
$j(h)$ gives the apparent temperature at relative humidity 2% when actual temperature is fixed at $90^{\circ} \mathrm{F}$. As h increases, j appears to have a constant increase until $h=60$, where it speeds up.

MA 261 -Lesson 6

Level Curves.
One way to visualize a surface $z=f(x, y)$ is to plot the level curves of z or the $x y$-plane. A level curve is the projection of the intersection of the surface $z=f(x, y)$ with a plane $z=k$ for some constant k.

Sketching level curves of a surface produces a contour map or topographical nap of the surface.

Ex 4. Draw a contour map of the function showing several level curves, where $f(x, y)=\sqrt{x}+y$

$$
\begin{aligned}
& k=0 \text {, get } \sqrt{x}+y=0 \Leftrightarrow y=-\sqrt{x} \\
& k=1, \text { get } \sqrt{x}+y=1 \Leftrightarrow y=-\sqrt{x}+1 \\
& k=-1, \text { get } \sqrt{x}+y=-1 \Leftrightarrow y=-\sqrt{x}-1
\end{aligned}
$$

etc.

MA 261 -Lesson 6

Ex 5. Sketch a contour map of $f(x, y)=\ln \left(x^{2}+4 y^{2}\right)$, showing several level curves.

Intersect $z=\ln \left(x^{2}+4 y^{2}\right)$ with $z=k$ and get

$$
\begin{aligned}
& k=\ln \left(x^{2}+4 y^{2}\right) \\
& e^{k}=x^{2}+4 y^{2}
\end{aligned}
$$

$\frac{x^{2}}{e^{k}}+\frac{y^{2}}{\left(\frac{\pi}{4}\right)}=1$ ellipses with major axis $e^{\frac{k}{2}}$ in x-direction miner axis $\frac{e^{k / 2}}{2}$ in y-direction

Surface should look kind of like a funnel, going toward $-\infty$ at the origin

Level Curves con also help us identify surfaces. (See attached)

MA 261, Lesson 6

Ex 6. Match the following equations with their contour plots (I-IV) and surfaces (A-D).

$$
\text { 1. } \cos \left(x^{2}+y^{2}\right) \quad \text { 2. } \cos (x y) \quad \text { 3. } \cos \left(x^{2}+y\right) \quad \text { 4. } \cos \left(\frac{x^{2}}{4}+\frac{y^{2}}{9}\right)
$$

(Answer on next page)

MA 261, Lesson 6

Level curves for 1 are of the form

$$
k=\cos \left(x^{2}+y^{2}\right) \Leftrightarrow \cos ^{-1}(k)=x^{2}+y^{2}
$$

which are each a series of circles with different radii. Hence, the correct contour plot is III, and the matching graph with that contour plot is D.

Level curves for 2 are of the form

$$
k=\cos (x y) \Leftrightarrow \cos ^{-1}(k)=x y \Leftrightarrow y=\frac{\cos ^{-1}(k)}{x}
$$

which are a series of hyperbolas. Hence, the correct contour plot is I, and the matching graph with that contour plot is C.

Level curves for 3 are of the form

$$
k=\cos \left(x^{2}+y\right) \Leftrightarrow \cos ^{-1}(k)=x^{2}+y \Leftrightarrow y=-x^{2}+\cos ^{-1}(k)
$$

which are a series of parabolas opening downward, shifted. Hence, the correct contour plot is IV, and the matching graph with that contour plot is A.

Level curves for 4 are of the form

$$
k=\cos \left(\frac{x^{2}}{4}+\frac{y^{2}}{9}\right) \Leftrightarrow \cos ^{-1}(k)=\frac{x^{2}}{4}+\frac{y^{2}}{9} \Leftrightarrow \frac{x^{2}}{4 \cos ^{-1}(k)}+\frac{y^{2}}{9 \cos ^{-1}(k)}=1
$$

which are a series of ellipses with major axis in the y-direction and minor axis in the x-direction. Hence, the correct contour plot is II, and the matching graph with that contour plot is B.

