High score: 20; (nonzero) Low score: 12; Average score: 18.07
Problem 1 (20 Points). Evaluate $\iint_{S} x^{2} y z d S$, where S is the part of the plane $z=1+2 x+3 y$ that lies above the rectangle $[0,3] \times[0,2]$.

Solution.
S can be parameterized as $\vec{r}(x, y)=\langle x, y, 1+2 x+3 y\rangle, 0 \leq x \leq 3,0 \leq y \leq 2$.
To find the surface area differential $d S$, you could either do $\left|\vec{r}_{x} \times \vec{r}_{y}\right| d A$ or recognize that since we have z as a function of x and y, we could use $\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A$. In either case, we get $d S=\sqrt{14} d A$.

By the parameterization of S, we get $x^{2} y z=x^{2} y(1+2 x+3 y)=x^{2} y+2 x^{3} y+3 x^{2} y^{2}$. Thus, we get

$$
\begin{gathered}
\iint_{S} x^{2} y z d S=\iint_{D}\left(x^{2} y+2 x^{3} y+3 x^{2} y^{2}\right) \sqrt{14} d A \\
=\sqrt{14} \int_{0}^{2} \int_{0}^{3}\left(x^{2} y+2 x^{3} y+3 x^{2} y^{2}\right) d x d y \\
=\left.\sqrt{14} \int_{0}^{2}\left(\frac{1}{3} x^{3} y+\frac{1}{2} x^{4} y+x^{3} y^{2}\right)\right|_{x=0} ^{x=3} d y \\
=\sqrt{14} \int_{0}^{2}\left(9 y+\frac{81}{2} y+27 y^{2}\right) d y \\
=\left.\sqrt{14}\left(\frac{9}{2} y^{2}+\frac{81}{4} y^{2}+9 y^{3}\right)\right|_{0} ^{2} \\
=\sqrt{14}(9 \cdot 2+81+9 \cdot 8)=\sqrt{14}(18+81+72)=171 \sqrt{14}
\end{gathered}
$$

