High score: 20; (nonzero) Low score: 10; Average score: 13.59
Problem 1 (20 Points). Let $\mathbf{r}(t)=t e^{t} \mathbf{i}-2 \mathbf{j}+\sin (t) \mathbf{k}$.
(a) Find $\mathbf{r}^{\prime}(t)$.
(b) Find a vector equation for the line $\mathbf{u}(t)$ tangent to the curve at the point where $t=0$.

Solution.
(a): We can differentiate a vector function component-wise, so we get

$$
\mathbf{r}^{\prime}(t)=\left(t e^{t}+e^{t}\right) \mathbf{i}-0 \mathbf{j}+\cos (t) \mathbf{k}=\left(t e^{t}+e^{t}\right) \mathbf{i}+\cos (t) \mathbf{k}
$$

(b): To get a vector equation for a line, we need to a point on the line and a vector that is in the same direction as the line. The point is the tip of $\mathbf{r}(0)=0 \mathbf{i}-2 \mathbf{j}+0 \mathbf{k}$, so $(0,-2,0)$.

Since the line is tangent to the curve at $t=0$, it should be in the same direction as the tangent vector to the curve at $t=0$. In other words, a vector pointing in the same direction as the line is $\mathbf{r}^{\prime}(0)=\mathbf{i}+\mathbf{k}$.

The general formula for a vector equation of the line is $\overrightarrow{O P}+t \mathbf{v}$, where O is the origin, P is the point, and \vec{v} is the vector in the direction of the line. Hence,

$$
\mathbf{u}(t)=(-2 \mathbf{j})+t(\mathbf{i}+\mathbf{k})=t \mathbf{i}-2 \mathbf{j}+t \mathbf{k}
$$

