High score: 20; (nonzero) Low score: 7; Average score: 15.06
Problem 1 (20 Points). Find the length of the curve $\mathbf{r}(t)=\mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}, 0 \leq t \leq 1$.
Solution.
Recall that $L=\int_{0}^{1}\left|\mathbf{r}^{\prime}(t)\right| d t$, so we first find $\mathbf{r}^{\prime}(t)$:

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=2 t \mathbf{j}+3 t^{2} \mathbf{k} \\
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{(2 t)^{2}+\left(3 t^{2}\right)^{2}}=\sqrt{4 t^{2}+9 t^{4}}=\sqrt{t^{2}\left(4+9 t^{2}\right)}=|t| \sqrt{4+9 t^{2}}=t \sqrt{4+9 t^{2}}
\end{gathered}
$$

$(|t|=t$ since $0 \leq t \leq 1)$

$$
L=\int_{0}^{1} t \sqrt{4+9 t^{2}} d t
$$

Make the following u-substitution: $u=4+9 t^{2}, d u=18 t d t$. Also, $u(0)=4, u(1)=13$.

$$
\begin{gathered}
\frac{1}{18} \int_{4}^{13} u^{1 / 2} d u \\
=\left.\frac{1}{18} \cdot \frac{2}{3} u^{3 / 2}\right|_{4} ^{13}=\frac{1}{27}\left(13^{3 / 2}-4^{3 / 2}\right)=\frac{1}{27}\left(13^{3 / 2}-8\right)
\end{gathered}
$$

