High score: 20; (nonzero) Low score: 15; Average score: 17.34
Problem 1 (20 Points). Use Green's Theorem to evaluate $\int_{C} y^{3} d x-x^{3} d y$, where C is the positively-oriented circle $x^{2}+y^{2}=4$.

Solution.
Let D be the region enclosed by C. Since C is a positively-oriented closed curve, by Green's Theorem, we have

$$
\oint_{C} y^{3} d x-x^{3} d y=\iint_{D}\left(\frac{\partial}{\partial x}\left[-x^{3}\right]-\frac{\partial}{\partial y}\left[y^{3}\right]\right) d A=\iint_{D}\left(-3 x^{2}-3 y^{2}\right) d A
$$

Since the region D is the interior of the circle $x^{2}+y^{2}=4$, this double integral is best done in polar coordinates:

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{2}-3 r^{2} \cdot r d r d \theta \\
& =-\left.3 \int_{0}^{2 \pi} \frac{1}{4} r^{4}\right|_{r=0} ^{r=2} d \theta \\
& =-3 \cdot 4 \int_{0}^{2 \pi} d \theta \\
& =-12 \cdot 2 \pi=-24 \pi
\end{aligned}
$$

