High score: 20; (nonzero) Low score: 12; Average score: 19.31
Problem 1 (20 Points). Find a parametric representation for the part of the surface $x^{2}+y^{2}=$ $4 z^{2}$ that lies above the $x y$-plane.

Solution.
There are many valid solutions one could give. For example, one could notice that in order to be above the $x y$-plane, we need $z>0$. As such, we could solve the above equation for z :

$$
z=\sqrt{\frac{x^{2}}{4}+\frac{y^{2}}{4}}=\frac{\sqrt{x^{2}+y^{2}}}{2}
$$

You could then have the following parameterization:

$$
x=x, \quad y=y, \quad z=\frac{\sqrt{x^{2}+y^{2}}}{2}, \quad 0<x^{2}+y^{2}
$$

Alternatively, you could try viewing the surface in cylindrical coordinates. In this case, $x=r \cos \theta, y=r \sin \theta$, and $r^{2}=4 z^{2}$. Solving for z and noticing that we want $z>0$, we get the parameterization:

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=\frac{r}{2}, \quad r>0, \quad 0 \leq \theta<2 \pi
$$

