42. Suppose \(g \) satisfies the hypotheses of the lemma for \(p = 1 \). Then \(|g(x)| \leq M \) a.e. For suppose this were false, then there must exist some \(N > M \) for which \(|g(x)| > N \) for a set \(E \) of positive measure. (If there does not exist such an \(N \), then \(\mu \{ x : |g(x)| > N \} = 0 \) \(\forall N > M \), so \(\mu \{ x : |g(x)| > N \} = \mu \{ \cap_{N} \} = 0 \).) But then, letting \(E_1 \) be the subset of \(E \) for which \(g(x) > 0 \) and \(E_2 \) the subset for which \(g(x) < 0 \), we have by hypothesis:

\[
\mu (E) = \mu (E_1) + \mu (E_2) \geq 1 \int g(x) \, d\mu \geq N \mu (E) = M \mu (E),
\]

which is a contradiction, since \(0 < \mu (E) \leq \mu (x) < \infty \).

Hence, the conditions of the lemma imply \(g \leq M \) a.e., which implies \(g \in L^p (\mu) \).

43. The lemma will not always be true for measure spaces for which \(\mu \) is not \(\sigma \)-finite. Consider \(X = [0,1] \), with \(\mu (x) = 0 \), \(\mu ([0,1]) = \infty \). Then for \(1 < p < \infty \), it will be true that for simple functions \(g \) and all \(x \in X \):
This is more or less a statement about the completeness of the complex numbers. Let \(\{\Lambda_1, \Lambda_2, \ldots\} \) be a Cauchy sequence of linear functionals over \(V \). Then for each \(k \geq 0 \) there is an increasing sequence \(N_k \) such that for all \(f \in V \) and all \(n, m \geq N_k \),

\[
|\Lambda_n f - \Lambda_m f| \leq \frac{1}{2^k} \|f\|_V.
\]

(Note that \(\sup_{n \geq 0} |\Lambda_n f| \leq M \) implies \(\|\Lambda_n f\|_V \leq M \), or \(|\Lambda f| \leq M \|f\|_V \) for all \(f \in V \).) Define, for each fixed \(f \),

\[
\Lambda f = \Lambda_{N_0} f + \sum_{k=0}^{\infty} (\Lambda_{N_{k+1}} f - \Lambda_{N_k} f).
\]

Because \(|\Lambda_{N_{k+1}} f - \Lambda_{N_k} f| \leq \frac{1}{2^k} \|f\|_V \), the sum defining \(\Lambda \) is convergent, and then for \(\Lambda \) is well-defined.

Now, it is trivial to verify that \(\Lambda (\alpha f + \beta g) = \alpha \Lambda (f) + \beta \Lambda (g) \). So \(\Lambda \) is a linear functional. Further, \(\Lambda \) is bounded, since,

\[
|\Lambda f| \leq \|\Lambda_{N_0} f\| + \sum_{k=0}^{\infty} |\Lambda_{N_{k+1}} f - \Lambda_{N_k} f| \\
\leq \|\Lambda_{N_0} f\| + \sum_{k=0}^{\infty} \frac{1}{2^k} \|f\|_V \\
\leq (\|\Lambda_{N_0}\|_V + 2) \|f\|_V.
\]

Hence \(\Lambda \in \mathcal{V}^* \).

We now show that \(V^* \) is complete by proving \(\lim_{n \to \infty} \|\Lambda_n - \Lambda\|_V = 0 \). Given any \(\varepsilon > 0 \), let \(h \) be such that \(\frac{1}{2^h} < \frac{\varepsilon}{2^h} \). Then \(\forall n \geq N_h \) (because the sum for \(\Lambda \) is telescopic),

\[
|\Lambda f - \Lambda_n f| = \left| (\Lambda_{N_h} f - \Lambda_n f) + \sum_{k=h}^{\infty} (\Lambda_{N_{k+1}} f - \Lambda_{N_k} f) \right| \\
\leq \frac{1}{2^h} \|f\|_V + \frac{1}{2^h} \|f\|_V \\
< \varepsilon \|f\|_V.
\]
b) Cont.) so that \(\|A - A_n\| < \varepsilon \), hence \(\|A - A_n\| \to 0 \) as claimed, and \(y^* \) is complete.

This will in fact imply the Riesz-Fisher Theorem that \(L^2 \) is complete for \(1 < p < \infty \), when coupled with the fact that for \(k < q < \infty \), \((L^q)^* = L^q \). Indeed, it is easy to show that \(L^2 \) is a normal linear space, see that \(L^p = (L^q)^* \) is complete for \(k < p < \infty \). (Proof: denominator \(p' = 1 \), \(x^* \neq (L^q)^* \).

c) It is obvious that \(L^\infty (X, \mu) = \{ \alpha X + \beta X_b : \alpha, \beta \in \mathbb{R} \} \), since all these functions are contained in \(L^\infty \), and this characterizes all functions on \(X \). Also \(L^p (X, \mu) \) is just the set \(\{ \alpha X_b : \alpha \in \mathbb{R} \} \), since all these functions are in \(L^p \), and for a function to be in \(L^p \), its value at \(b \) must be \(0 \).

Now, for any linear functional \(\Lambda \) on \(L^p \), any function \(f = \alpha X + \beta X_b \in L^p \), we have \(\Lambda f = \Lambda (\alpha X + \beta X_b) = \alpha \Lambda X + \beta \Lambda X_b \), where \(\Lambda X = \int X d\mu \). So \((L^p)^* = \{ \Lambda : \Lambda f = \int_X f d\mu \} \), \(\Lambda \in \mathbb{R} \).

Now, if two normed linear spaces are isomorphic, it will follow easily that the cardinality of their dimension is the same, since an isomorphism will preserve spans and linear independence. Yet \(\dim_{\mathbb{R}} L^p (X, \mu) = \dim_{\mathbb{R}} (L^p)^* = 2 \), plain, with the basis \(\{ X, X_b \} \), and \(\dim_{\mathbb{R}} L^2 (X, \mu) = 1 \), with a basis \(\{ \Lambda_0 : \Lambda_0 f = \int f d\mu \} \).

Therefore it cannot be that \(L^p (X, \mu) \) and \(L^2 (X, \mu) \) are isomorphic.

This shows that the Riesz Representation Theorem cannot be extended for \(p \neq 2 \) to measures that are not or finite.

\(\ast \)

(0/10)

d) Given any \(\varepsilon > 0 \), there is a decomposition of \(X \) into disjoint sets \(A, B \) such that \(\mu (B) < \infty \), and \(\int A |f|^p d\mu < E/\varepsilon \). Now, by Fatou's lemma, we know that

\[\int_X |f|^p d\mu = \lim \inf \int_B |f|^p d\mu \leq \lim \inf \int_B |f|^p d\mu = \lim \inf \int_X |f|^p d\mu - \sum \int_B |f|^p d\mu = \int_X |f|^p d\mu - \sum \int_B |f|^p d\mu \]

This shows that \(\lim \sup \int_B |f|^p d\mu \leq \int_X |f|^p d\mu < E/\varepsilon \). Now, note that for \(\Delta(x) = 2^p \int x |f|^p d\mu \), \(\lim \Delta(x) = 0 \). (This has been proven before.) Hence this is a \(\delta > 0 \) for which \(f \in L^p \) for all \(\mu (E) < \delta \). By Egorov's Theorem, there is a decomposition of \(B \) into disjoint sets \(C \) and \(D \) for which \(\mu (C) < \delta \), and \(f \to f \) uniformly on \(C \). We have defined \(\delta \) such that \(\int_D |f|^p d\mu < E/\varepsilon \). As above, this implies \(\lim \sup \int_D |f|^p d\mu < E/\varepsilon \). (Continued.)
\[
\int_A |f - f_n|_p^p \, d\mu = \int_A |f - f_n|_p^p \, d\mu + \int_C |f - f_n|_p^p \, d\mu + \int_D |f - f_n|_p^p \, d\mu \\
\leq \left(\int_A |f|_p^p \, d\mu + \int_C |f - f_n|_p^p \, d\mu + \int_D |f - f_n|_p^p \, d\mu \right) \left(\int_A (|f|_p)^{p'} + \int_C (|f - f_n|_p)^{p'} + \int_D (|f - f_n|_p)^{p'} \right) \frac{1}{\delta^p} \\
< \frac{2^p(\delta^{p'})^p}{\delta^{p'}} + \frac{\varepsilon}{\delta^{p'}} \mu(A) + \frac{(2(\delta^{p'})^p}{\delta^{p'}} \\
= \frac{\varepsilon}{\delta} + 2^{p+1} \frac{\varepsilon}{\delta} = \frac{1}{2} \frac{\varepsilon}{\delta}.\]

As this can be made arbitrarily small through choice of \(\varepsilon \), so too can \(\|f - f_n\|_p \) (\(\forall n \geq N \)). Hence \(\|f - f_n\|_p \to 0 \).

Proof of \(\star \): For \(\sigma \)-finite \(X \), this is obvious; since \(\mu \) can write

\(X = U \cup \mathcal{X} \) for increasing sets \(\mathcal{X} \) of finite measure, then

\[
\int_X |f|_p \, d\mu = \lim \int_{X_n} |f|_p \, d\mu,
\]

as so we may have

\[
\int_{X_0} |f|_p \, d\mu = \int_X |f|_p \, d\mu - \int_{X_0} |f|_p \, d\mu < \frac{\varepsilon}{2} \quad \text{for some} \ i.
\]

This is easy to extend to any \(\sigma \)-finite measure \(\mu \); simply consider any \(\sigma \)-finite collection of sets \(X \) which has \(\mu \) as their union \(X \).