\[\lim_{n \to \infty} \int_{\frac{1}{n}}^{1} \frac{\cos(x+h)-\cos(x)}{x^{n}} \, dx \quad \text{exists.} \]

Proof)

Claim 1: \(\frac{2}{n} - \sin(\frac{\pi}{n}) \geq 0 \) for all \(n \geq 1 \).

Proof

Look at \(f'(x) = x - \sin(x) \) \(\Rightarrow f(x) = 1 - \cos(x) \).

Then \(f(0) = 0 < f'(x) \geq 0 \quad \forall x \), so \(f \) is increasing, \(f(\frac{n}{n}) = \frac{2}{n} - \sin(\frac{\pi}{n}) \geq 0 \) by Claim 1.

Hence \(\forall \frac{n}{n} \leq x \), \(2x - \sin(x+\frac{\pi}{n}) \geq 0 \).

So look at \(\int_{\frac{1}{n}}^{1} \frac{\cos(x+h)-\cos(x)}{x^{n}} \, dx = g_{n}(x) \).

By the M.V.T., \(\exists \xi \in (x, x+\frac{\pi}{n}) \), \(\sin(x) = \frac{\cos(x+h)-\cos(x)}{g_{n}(\xi)} \).

Now \(|\int_{\frac{1}{n}}^{1} \frac{\cos(x+h)-\cos(x)}{x^{n}} \, dx| \leq \int_{\frac{1}{n}}^{1} \frac{1}{x^{n}} \, dx \leq \frac{1}{1-x} \leq \frac{1}{\frac{2}{n}} \).

Now \(\int_{0}^{1} \frac{2}{x} \, dx = 4 \quad \checkmark \)

Claim 2: \(\lim_{n \to \infty} \int_{\frac{1}{n}}^{1} \frac{\cos(x+h)-\cos(x)}{x^{n}} \, dx = -\sin(\frac{\pi}{2}) \).

So by the L.C.T. (Prop 15, p. 26),

\[\lim_{n \to \infty} \int_{\frac{1}{n}}^{1} \frac{\cos(x+h)-\cos(x)}{x^{n}} \, dx = \lim_{n \to \infty} \int_{0}^{1} g_{n}(x) \, dx \]

\[= \int_{0}^{1} -\sin(x) \, dx \quad \text{which is finite} \]

(claiming since \(\int_{0}^{1} |g_{n}(x)| \, dx \leq \int_{0}^{1} \frac{2}{x} \, dx = 4 \) in L.C.T.)

\[\Rightarrow \int_{0}^{1} \frac{x^{n}}{2n} \, dx < 4 \quad \checkmark \]
4) Let \(f : \mathbb{R} \to \mathbb{R} \) be a Lebesgue integrable function so that \(\int_E f(x) \, dx = 0 \) \(\forall \) set \(E \) with \(m(E) = \pi \). Then \(f = 0 \) a.e.

Proof: Claim: If \(E \subseteq \mathbb{R} \) is measurable then \(\forall \, b \in [0, \infty] \), there is a set \(F \subseteq E \) with \(m(F) = b \) \(\text{(F in)} \).

Proof: In class, we saw that \(g(x) = m(E \cap (-x,x)) \) is a continuous function \(g : \mathbb{R} \to \mathbb{R} \).

If \(b = 0 \), \(m(E) \) then clearly we are done.

So assume \(0 < b < m(E) \).

Assume \(m(E) < \infty \), then look at \(A_n = E \cap (-n,n) \).

Clearly, \(E = \bigcup A_n \) \(\forall \) each \(A_n \) is measurable.

\(A_n \subseteq A_{n+1} \subseteq \ldots \) \(A_1 \subseteq \ldots \).

Applying Prop 14 to \((E \setminus A_0) \), we find

\[
\lim_{n \to \infty} m(E \setminus A_n) = m(E) \setminus (\bigcup_{n=1}^{\infty} A_n) = m(E \setminus \bigcup_{n=1}^{\infty} A_n).
\]

\[
\exists \, n \text{ s.t. } m(E \setminus A_n) = m(E) - m(A_n) = m(E) - b
\]

\[
\Rightarrow g(n) = m(A_n) = m(E \setminus (-n,n)) > b
\]

Yet \(g(0) = m(E) = b \).

So by the intermediate value Thm, \(\exists \, 0 < x < n \) s.t. \(g(x) = m(E \cap (-x,x)) = b \).

Now if \(m(E) = \infty \), \(m \left(\bigcup_{n=1}^{\infty} A_n \right) = \sum \infty \wedge \forall K \text{ yet } m \left(\bigcup_{n=1}^{K} A_n \right) = m(E) = \infty \text{ free above).

So for some \(K \), \(m \left(\bigcup_{n=1}^{K} A_n \right) = b \), now apply the result for the finite case.

Write \(f = f^+ - f^- \). If \(m(\text{supp} f^+) = 0 \) then

by the claim \(\exists \) a set \(E \subseteq \text{supp} f^+ \) s.t.

\(m(E) = 0 \Rightarrow \sum_{E} f^+ = \sum_{E} f^- = \sum_{E} f^+ = 0 \) \((\text{supp} f^- \cap \text{supp} f^+ = \emptyset) \).

Then by Prop 13, \(f^+ = 0 \) a.e. on \(E \), but this is a contradiction since \(f \neq 0 \) on \(E \) \(E \subseteq \text{supp} f^+ \) \(m(E) \neq 0 \).

This gives \(m(\text{supp} f^+) \neq \pi \), a similar argument yields \(m(\text{supp} f^-) < \pi \).

So \(m(E \cap \text{supp} f^+ \cup \text{supp} f^-) = \infty \Rightarrow \exists \) a set \(E \subseteq \mathbb{R} \setminus (\text{supp} f^+ \cup \text{supp} f^-) \) with \(m(E) = \pi - m(\text{supp} f^+) \Rightarrow m(E \cup \text{supp} f^+) = \pi \) \(\left(\text{E and supp} f^+ \text{ disjoint}\right) \).

\[
\Rightarrow \sum_{E \cup \text{supp} f^+} f^+ = \sum_{E \cup \text{supp} f^+} f^- = \sum_{E \cup \text{supp} f^+} f^+ = 0 \Rightarrow f^+ = 0 \text{ a.e. on } E \cup \text{supp} f^+
\]

\[
\Rightarrow m(\text{supp} f^+) = 0 \text{ a sym. arg. shows } m(\text{supp} f^-) = 0 \Rightarrow m(\text{supp} f) = m(\text{supp} f^+ \cup \text{supp} f^-) = 0 \]
Find all \(f : [0,1] \to \mathbb{R} \) with B.V. \(s.t. \) \(f(x) + (T_0^x f)^{1/2} = 1 \) \(\forall x \in [0,1] \) \(\int_0^1 f(x) \, dx = \frac{1}{3} \).

Proof: First we note \(f \) is non-increasing since if \(x \in [0,1] \), clearly \(T_0^x f \leq T_0 f \implies 1 - T_0^x f \leq 1 - T_0 f \implies f(y) \leq f(x) \).

So \(T_0^x f = f(0) - f(x) \) since \(f \) is non-increasing.

Also by hypothesis \(T_0^x f = (1 - f(x))^2 \implies f(0) - f(x) = (1 - f(x))^2 \).

Hence \(1 - f(x) = (1 - f(x))^2 \implies (1 - f(x))(1 - f(x)) = (1 - f(x))(f(x)) \implies f(x) = 1 \) or \(f(x) = 0 \).

Now \(f(x) = \begin{cases} 1 & x \in [0,\frac{1}{3}] \\ 0 & x \in (\frac{1}{3},1] \end{cases} \) or \(f(x) = \begin{cases} 0 & x \in [0,\frac{1}{3}] \\ 1 & x \in (\frac{1}{3},1] \end{cases} \).

To find \(a \), consider \(\int_0^1 f(x) \, dx = c = \frac{1}{3} \).

\(a = \begin{cases} 1 & x \in [0,\frac{1}{3}] \\ 0 & x \in (\frac{1}{3},1] \end{cases} \) or \(a = \begin{cases} 0 & x \in [0,\frac{1}{3}] \\ 1 & x \in (\frac{1}{3},1] \end{cases} \).
If \(f \) is continuous on \([a, b]\) and \(P^+ \) is everywhere non-negative on \((a, b)\), then \(f \) is non-decreasing on \([a, b]\).

Proof. First, we assume \(P^+ f > 0 \) then fix \(y \in (a, b) \).

\([a, y]\) is compact so \(f \) attains its max on \([a, y]\) at a point \(c \in [a, y] \).

Now if \(c < y \) then \(y - c = \delta > 0 \), so we can find \(\delta > 0 \) such that \(f(c + \delta) > f(c) \)

since \(\lim_{h \to 0^+} (f(c + \delta) - f(c)) > 0 \). Hence, \(z \in (c, y) \) but \(f(z) < f(c + \delta) \) which contradicts that \(f(c) \) is a max.

\(\therefore z = y \Rightarrow f(y) \) is the maximum value on \([a, y]\) = \(\forall x \leq y, \ f(x) \leq f(y) \).

Since this holds true for arbitrary \(y \), \(f(x) \leq f(y) \) \(\forall x \leq y, \ x, y \in [a, b] \).

Now define \(g_n(x) = f(x) + \frac{1}{n} x \). Then \(g_n(x) \) is continuous on \([a, b]\).

Moreover \(P^+ g_n(x) = \lim_{h \to 0^+} \left(\frac{g_n(x + h) - g_n(x)}{h} \right) = \lim_{h \to 0^+} \left(\frac{f(x + h) - f(x) + \frac{1}{n}(x + h - x)}{h} \right) = \lim_{h \to 0^+} \left(\frac{f(x + h) - f(x)}{h} \right) + \frac{1}{n} \geq \frac{1}{n}. \)

So, by the previous part \(\forall x \leq y, \ g_n(x) \leq g_n(y) \)

\(\therefore \lim_{n \to \infty} g_n(x) \leq \lim_{n \to \infty} g_n(y) \) \(\forall x \leq y \)

\(\Rightarrow f(x) + \lim_{n \to \infty} \left(\frac{1}{n} x \right) \leq f(y) + \lim_{n \to \infty} \left(\frac{1}{n} y \right) \)

\(\Rightarrow f(x) \leq f(y) \) \(\forall x \leq y, \ x, y \in [a, b] \).
Let \(f \) be BV, then \(A \in (a,b) \), \(\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) \) exists.

Proof. Clearly, it is sufficient to show this for monotone functions since if \(f \) is BV, it is the sum of two monotone functions.

So, WLOG, suppose \(f \) is non-decreasing.

\[
S = \{ f(t) | a < c \leq t \} \quad \text{is bounded above by} \quad f(c)
\]

so \(L = \sup S \) exists as a real number.

Fix \(\varepsilon > 0 \), since \(L \) is sup \(S \) \(\exists \delta \) s.t. \(a < c < c + \delta \) \(\Rightarrow \) \(f(c) - f(y) < \varepsilon \)

\[
\forall \varepsilon > 0, \quad L - \varepsilon < f(c) \leq L \quad \text{if} \quad c \in (a,b) \quad \Rightarrow \quad f(t) - f(c) < \varepsilon
\]

A symmetric argument using \(T = \inf \{ f(t) | c \leq t < b \} \) shows \(\lim_{x \to b^-} f(x) \) exists.

A monotone function can have only a countable number of discontinuities.

Proof. Suppose \(f \) is non-decreasing, then from the above construction of \(\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) \), it is clear \(\lim_{x \to \pm \infty} f(x) = f(c^-) - f(c^+) = L \) \(\forall \varepsilon > 0 \)

Let \(E_n = \{ c \in (a,b) | f(c^-) - f(c^+) > \varepsilon \} \)

For each \(n \), the set \(E_n \) is finite since

\[
f(b) - f(a) = \sum_{i=1}^{k} (f(c_i) - f(c_{i-1})) \quad \text{for} \quad (c_i), i = 1, \ldots, k \text{ a finite subset of } E_n
\]

\[
2, \frac{f(b) - f(a)}{\varepsilon} \quad \text{is} \quad \frac{1}{n}
\]

so \(1 \in E_n \leq \{ f(b) - f(a) \} \)

Now \(E = \bigcup_{n=1}^{\infty} E_n \) is a countable union of finite sets, so it is countable.

If \(c \in E \) then \(f(c^-) = f(c^+) \Rightarrow f \) is continuous.

If \(a < c \in E \) \(\Rightarrow \) \(f \) is continuous at \(c \) so \(E \) contains all points of discontinuity.

The set of discontinuities of \(f \) is finite.
Let f be defined by $f(0) = 0$ and $f(x) = x^2 \sin \left(\frac{1}{x} \right)$ for $x \neq 0$.

Then, f is not of bounded variation.

Proof: From calculus we know

$$\frac{1}{\pi} \sum_{t=1}^{\infty} \frac{1}{2n\pi + \pi/2} = \infty \text{ thus, } \sqrt{N} \sum_{t=1}^{N} \frac{1}{2nt + \pi/2}$$

for all $N \in \mathbb{N}$, \exists M s.t. $N \leq M \leq \frac{2M}{2n\pi} - \frac{\sqrt{N}}{2}$

Then consider the partition of $[0, 1]$, $P = \{x_t \}_{t=0}^{2M}$

$x_0 = 1$, $x_{2n+1} = -1$, $x_t = \frac{1}{2n\pi} \sin \left(\frac{1}{2n\pi} \right)

Note: $x_1 = x_3 = x_5 = \ldots$

Then $\xi_P = \sum_{t=1}^{2M} |f(x_t) - f(x_{t-1})|

= \sum_{t=1}^{2M} \left| 0 - f(x_{t-1}) \right| + \sum_{t=2}^{2M} \left| f(x_t) - 0 \right|

= \sum_{t=1}^{2M} \left| \frac{1}{2n\pi} \sin \left(\frac{1}{2n\pi} \right) \right|

= \sum_{t=1}^{2M} \left| \frac{1}{2n\pi} \right| \sin \left(\frac{1}{2n\pi} \right)

\geq N \sqrt{N} \geq N \sqrt{N} \geq N \sqrt{N}

For every $N \in \mathbb{N}$ we can find a partition P so that $\xi_P \geq N \Rightarrow \sup \xi_P = \infty$.

Hence f is not of bounded variation on $[0, 1]$. Notice this proof shows in fact it is not of bounded variation on $[0, 1]$. (Just choose $x_{2n+1} = 0$.)
Let f be absolutely continuous in $[a, b]$, for each $x > 0$.

Does continuity of f at 0 imply that f is absolutely continuous on $[0, 1]$? No.

Proof) Define $f(0) = 0$. If $f(x) = x^2 \sin \left(\frac{1}{x} \right)$, then it was commented that f is not of bounded variation on $[0, 1]$. So by the contrapositive of Lemma 14, f is not absolutely continuous on $[0, 1]$. Notice $x^2 \geq x^2, \sin \left(\frac{1}{x^2} \right) = -x^2$, so by the squeeze theorem, $\lim_{x \to 0} x^2 \sin \left(\frac{1}{x^2} \right) = 0$. So f is continuous at 0.

Also, for any $x > 0$, we have f' exists on $[a, b]$ (since $(x^2)' = (x^2)' \sin \left(\frac{1}{x^2} \right)$ exist there).

So if $f = \int_a^b f'(t) \, dt + f(a)$.

So by Thm 14, f is absolutely continuous on $[a, b]$. A.e.

If f is also of bounded variation on $[0, 1]$, then f is absolutely continuous on $[0, 1]$.

Proof) First: suppose that f is a.v. $\Rightarrow f'$ exists. i.e. on $[0, 1]$, x is measurable. (Thm 3)

By the proof of Lemma 14, on $[a, b]$, $f(x) = \int_a^x f'(t) \, dt + f(a)$.

Fix $x \in (0, 1)$ then we have f is continuous at 0, so $\exists \varepsilon > 0$ s.t. $0 < y < \varepsilon \Rightarrow |f(y) - f(0)| < 1$.

Then since f is b.v. on $[0, 1]$, $f = f'$ is b.v. on $[0, x)$.

We have by the proof of Thm 14, $\int_a^x f'(t) \, dt < 1$ (Only the B.V. of f' is used to get this in the proof).

As $|f'(t)|$ is integrable on $[0, x)$ for any $x \in (0, 1)$.

Moreover $\int_0^x f'(t) \, dt = \int_0^x f'(t) \, dt + \int_0^x f'(t) \, dt = \int_0^x f'(t) \, dt$ a.e. $x \geq \frac{1}{x}$.
Hence $f'(t)$ is non-negative, i.e., $\forall t \in \mathbb{R}, t \geq 0 \Rightarrow f'(t) = f$.

So by the MCT, $\lim_{n \to \infty} \int_{\frac{1}{n}}^{x} f(t) \, dt = \int_{0}^{x} f(t) \, dt$, \checkmark

So, $f(x) = \lim_{n \to \infty} f(x) = \lim_{n \to \infty} \left(\int_{\frac{1}{n}}^{x} f'(t) \, dt + f\left(\frac{1}{n}\right) \right)$$ = \left[\int \frac{f'(t)}{dt} \, dt \right] + \lim_{n \to \infty} f\left(\frac{1}{n}\right)$, \checkmark

$= \int_{0}^{x} f'(t) \, dt + f(0)$ (if cont at 0)

Hence, by Thm 14, f is abs. continuous on $[0,1]$.
Let F be absolutely continuous on $[a,b]$ then $T_a^b(F) = \int_a^b F'(t) \, dt$

Proof. Since F is A.C., $F' \in L^1(a,b)$, $F(x) = \int_a^x F'(t) \, dt + F(a)$ by Thm 14.

Notice for $x \geq a$, $F(x) - F(a) = \int_a^x F'(t) \, dt = \int_a^y F'(t) \, dt + (F(x) - F(y))$.

Notice $T_a^b(F) = \int_a^b \left[\int_a^y F'(t) \, dt \right] \, dy$

$$= \int_a^b \sum_{i=1}^{\infty} F'(x_i) \Delta x_i$$

Now $\int_a^b \int_a^y |F'(t)| \, dt = \int_a^b \sum_{i=1}^{\infty} |F'(x_i)| \Delta y$.

Write $g(x) = \int_a^x F'(t) \, dt + C$, $h(x) = \int_a^x F'(t) \, dt - F(a)$

Then $F(x) = g(x) + h(x) = \int_a^x F'(t) \, dt - F(a)$ so

$g(x) - h(x)$ are absolutely continuous by Thm 14,

g' and h are abs. (cont.) Also, by definition

$F'(x) = (F')' = (F')^- \geq 0 \Rightarrow g(x) - h(x)$ are increasing functions.

Notice that $\int_a^b |F'(t)| \, dt$ is actually equal to $F(b) - F(a)$.

So we have $T_a^b(g) = P_a^b g = \int_a^b F'(t) \, dt$

Also $T_a^b(h) = P_a^b h = -\int_a^b (F'(t))^- \, dt$

Finally notice $f(b) - f(a) = P_a^b f - P_a^b f$

So repeating the proof of Lemma 4, yields $T_a^b(F) = \int_a^b F'(t) \, dt$

To get the second result realize,

$f(b) - f(a) + T_k^b(f(t) = 2P_a^b f + 2P_a^b g$

$\Rightarrow P_a^b f + P_a^b g = g(b) - g(a) = \int_a^b F'(t) \, dt.$

\Box